• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Paul A. Bristow 2016, 2017, 2018.
2 // Copyright John Maddock 2016.
3 
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8 
9 // test_lambert_w_integrals.cpp
10 //! \brief quadrature tests that cover the whole range of the Lambert W0 function.
11 
12 #include <boost/config.hpp>   // for BOOST_MSVC definition etc.
13 #include <boost/version.hpp>   // for BOOST_MSVC versions.
14 
15 // Boost macros
16 #define BOOST_TEST_MAIN
17 #define BOOST_LIB_DIAGNOSTIC "on" // Report library file details.
18 #include <boost/test/included/unit_test.hpp> // Boost.Test
19 // #include <boost/test/unit_test.hpp> // Boost.Test
20 #include <boost/test/tools/floating_point_comparison.hpp>
21 
22 #include <boost/array.hpp>
23 #include <boost/lexical_cast.hpp>
24 #include <boost/type_traits/is_constructible.hpp>
25 #include <boost/math/special_functions/fpclassify.hpp> // isnan, isfinite.
26 #include <boost/math/special_functions/next.hpp> // float_next, float_prior
27 using boost::math::float_next;
28 using boost::math::float_prior;
29 #include <boost/math/special_functions/ulp.hpp>  // ulp
30 
31 #include <boost/math/tools/test_value.hpp>  // for create_test_value and macro BOOST_MATH_TEST_VALUE.
32 #include <boost/math/policies/policy.hpp>
33 using boost::math::policies::digits2;
34 using boost::math::policies::digits10;
35 #include <boost/math/special_functions/lambert_w.hpp> // For Lambert W lambert_w function.
36 using boost::math::lambert_wm1;
37 using boost::math::lambert_w0;
38 
39 #include <limits>
40 #include <cmath>
41 #include <typeinfo>
42 #include <iostream>
43 #include <type_traits>
44 #include <exception>
45 
46 std::string show_versions(void);
47 
48 // Added code and test for Integral of the Lambert W function: by Nick Thompson.
49 // https://en.wikipedia.org/wiki/Lambert_W_function#Definite_integrals
50 
51 #include <boost/math/constants/constants.hpp> // for integral tests.
52 #include <boost/math/quadrature/tanh_sinh.hpp> // for integral tests.
53 #include <boost/math/quadrature/exp_sinh.hpp> // for integral tests.
54 
55   using boost::math::policies::policy;
56   using boost::math::policies::make_policy;
57 
58 // using statements needed for changing error handling policy.
59 using boost::math::policies::evaluation_error;
60 using boost::math::policies::domain_error;
61 using boost::math::policies::overflow_error;
62 using boost::math::policies::ignore_error;
63 using boost::math::policies::throw_on_error;
64 
65 typedef policy<
66   domain_error<throw_on_error>,
67   overflow_error<ignore_error>
68 > no_throw_policy;
69 
70 // Assumes that function has a throw policy, for example:
71 //    NOT lambert_w0<T>(1 / (x * x), no_throw_policy());
72 // Error in function boost::math::quadrature::exp_sinh<double>::integrate:
73 // The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
74 // Please ensure your function evaluates to a finite number of its entire domain.
75 template <typename T>
debug_integration_proc(T x)76 T debug_integration_proc(T x)
77 {
78    T result; // warning C4701: potentially uninitialized local variable 'result' used
79   // T result = 0 ; // But result may not be assigned below?
80   try
81   {
82    // Assign function call to result in here...
83     if (x <= sqrt(boost::math::tools::min_value<T>()) )
84     {
85       result = 0;
86     }
87     else
88     {
89       result = lambert_w0<T>(1 / (x * x));
90     }
91    // result = lambert_w0<T>(1 / (x * x), no_throw_policy());  // Bad idea, less helpful diagnostic message is:
92     // Error in function boost::math::quadrature::exp_sinh<double>::integrate:
93     // The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
94     // Please ensure your function evaluates to a finite number of its entire domain.
95 
96   } // try
97   catch (const std::exception& e)
98   {
99     std::cout << "Exception " << e.what() << std::endl;
100     // set breakpoint here:
101     std::cout << "Unexpected exception thrown in integration code at abscissa (x): " << x << "." << std::endl;
102     if (!std::isfinite(result))
103     {
104       // set breakpoint here:
105       std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
106     }
107     if (std::isnan(result))
108     {
109       // set breakpoint here:
110       std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
111     }
112   } // catch
113   return result;
114 } // T debug_integration_proc(T x)
115 
116 template<class Real>
test_integrals()117 void test_integrals()
118 {
119   // Integral of the Lambert W function:
120   // https://en.wikipedia.org/wiki/Lambert_W_function
121   using boost::math::quadrature::tanh_sinh;
122   using boost::math::quadrature::exp_sinh;
123   // file:///I:/modular-boost/libs/math/doc/html/math_toolkit/quadrature/double_exponential/de_tanh_sinh.html
124   using std::sqrt;
125 
126   std::cout << "Integration of type " << typeid(Real).name()  << std::endl;
127 
128   Real tol = std::numeric_limits<Real>::epsilon();
129   { //  // Integrate for function lambert_W0(z);
130     tanh_sinh<Real> ts;
131     Real a = 0;
132     Real b = boost::math::constants::e<Real>();
133     auto f = [](Real z)->Real
134     {
135       return lambert_w0<Real>(z);
136     };
137     Real z = ts.integrate(f, a, b); // OK without any decltype(f)
138     BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::e<Real>() - 1, tol);
139   }
140   {
141     // Integrate for function lambert_W0(z/(z sqrt(z)).
142     exp_sinh<Real> es;
143     auto f = [](Real z)->Real
144     {
145       return lambert_w0<Real>(z)/(z * sqrt(z));
146     };
147     Real z = es.integrate(f); // OK
148     BOOST_CHECK_CLOSE_FRACTION(z, 2 * boost::math::constants::root_two_pi<Real>(), tol);
149   }
150   {
151     // Integrate for function lambert_W0(1/z^2).
152     exp_sinh<Real> es;
153     //const Real sqrt_min = sqrt(boost::math::tools::min_value<Real>()); // 1.08420217e-19 fo 32-bit float.
154     // error C3493: 'sqrt_min' cannot be implicitly captured because no default capture mode has been specified
155     auto f = [](Real z)->Real
156     {
157       if (z <= sqrt(boost::math::tools::min_value<Real>()) )
158       { // Too small would underflow z * z and divide by zero to overflow 1/z^2 for lambert_w0 z parameter.
159         return static_cast<Real>(0);
160       }
161       else
162       {
163         return lambert_w0<Real>(1 / (z * z)); // warning C4756: overflow in constant arithmetic, even though cannot happen.
164       }
165     };
166     Real z = es.integrate(f);
167     BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::root_two_pi<Real>(), tol);
168   }
169 } // template<class Real> void test_integrals()
170 
171 
BOOST_AUTO_TEST_CASE(integrals)172 BOOST_AUTO_TEST_CASE( integrals )
173 {
174   std::cout << "Macro BOOST_MATH_LAMBERT_W0_INTEGRALS is defined." << std::endl;
175   BOOST_TEST_MESSAGE("\nTest Lambert W0 integrals.");
176   try
177   {
178   // using statements needed to change precision policy.
179   using boost::math::policies::policy;
180   using boost::math::policies::make_policy;
181   using boost::math::policies::precision;
182   using boost::math::policies::digits2;
183   using boost::math::policies::digits10;
184 
185   // using statements needed for changing error handling policy.
186   using boost::math::policies::evaluation_error;
187   using boost::math::policies::domain_error;
188   using boost::math::policies::overflow_error;
189   using boost::math::policies::ignore_error;
190   using boost::math::policies::throw_on_error;
191 
192   /*
193   typedef policy<
194     domain_error<throw_on_error>,
195     overflow_error<ignore_error>
196   > no_throw_policy;
197 
198   // Experiment with better diagnostics.
199   typedef float Real;
200 
201   Real inf = std::numeric_limits<Real>::infinity();
202   Real max = (std::numeric_limits<Real>::max)();
203   std::cout.precision(std::numeric_limits<Real>::max_digits10);
204   //std::cout << "lambert_w0(inf) = " << lambert_w0(inf) << std::endl; // lambert_w0(inf) = 1.79769e+308
205   std::cout << "lambert_w0(inf, throw_policy()) = " << lambert_w0(inf, no_throw_policy()) << std::endl; // inf
206   std::cout << "lambert_w0(max) = " << lambert_w0(max) << std::endl; // lambert_w0(max) = 703.227
207   //std::cout << lambert_w0(inf) << std::endl; // inf - will throw.
208   std::cout << "lambert_w0(0) = " << lambert_w0(0.) << std::endl; // 0
209   std::cout << "lambert_w0(std::numeric_limits<Real>::denorm_min()) = " << lambert_w0(std::numeric_limits<Real>::denorm_min()) << std::endl; // 4.94066e-324
210   std::cout << "lambert_w0(std::numeric_limits<Real>::min()) = " << lambert_w0((std::numeric_limits<Real>::min)()) << std::endl; // 2.22507e-308
211 
212   // Approximate the largest lambert_w you can get for type T?
213   float max_w_f = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<float>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
214   std::cout << "w max_f " << max_w_f << std::endl; // 84.2879
215   Real max_w = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<Real>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
216   std::cout << "w max " << max_w << std::endl; // 703.227
217 
218   std::cout << "lambert_w0(7.2416706213544837e-163) = " << lambert_w0(7.2416706213544837e-163) << std::endl; //
219   std::cout << "test integral 1/z^2" << std::endl;
220   std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
221   std::cout << "ULP = " << boost::math::ulp(1e-10, policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
222   std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<11> >()) << std::endl; // ULP = 2.2204460492503131e-16
223   std::cout << "epsilon =  " << std::numeric_limits<Real>::epsilon() << std::endl; //
224   std::cout << "sqrt(max) =  " << sqrt(boost::math::tools::max_value<float>() ) << std::endl; // sqrt(max) =  1.8446742974197924e+19
225   std::cout << "sqrt(min) =  " << sqrt(boost::math::tools::min_value<float>() ) << std::endl; // sqrt(min) =  1.0842021724855044e-19
226 
227 
228 
229 // Demo debug version.
230 Real tol = std::numeric_limits<Real>::epsilon();
231 Real x;
232 {
233   using boost::math::quadrature::exp_sinh;
234   exp_sinh<Real> es;
235   // Function to be integrated, lambert_w0(1/z^2).
236 
237     //auto f = [](Real z)->Real
238     //{ // Naive - no protection against underflow and subsequent divide by zero.
239     //  return lambert_w0<Real>(1 / (z * z));
240     //};
241     // Diagnostic is:
242     // Error in function boost::math::lambert_w0<Real>: Expected a finite value but got inf
243 
244     auto f = [](Real z)->Real
245     { // Debug with diagnostics for underflow and subsequent divide by zero and other bad things.
246       return debug_integration_proc(z);
247     };
248     // Exception Error in function boost::math::lambert_w0<double>: Expected a finite value but got inf.
249 
250     // Unexpected exception thrown in integration code at abscissa: 7.2416706213544837e-163.
251     // Unexpected exception thrown in integration code at abscissa (x): 3.478765835953569e-23.
252     x = es.integrate(f);
253     std::cout << "es.integrate(f) = " << x << std::endl;
254     BOOST_CHECK_CLOSE_FRACTION(x, boost::math::constants::root_two_pi<Real>(), tol);
255     // root_two_pi<double = 2.506628274631000502
256   }
257     */
258 
259   test_integrals<long double>();
260   }
261   catch (std::exception& ex)
262   {
263     std::cout << ex.what() << std::endl;
264   }
265 }
266 
267