1 // Copyright Paul A. Bristow 2016, 2017, 2018.
2 // Copyright John Maddock 2016.
3
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8
9 // test_lambert_w_integrals.cpp
10 //! \brief quadrature tests that cover the whole range of the Lambert W0 function.
11
12 #include <boost/config.hpp> // for BOOST_MSVC definition etc.
13 #include <boost/version.hpp> // for BOOST_MSVC versions.
14
15 // Boost macros
16 #define BOOST_TEST_MAIN
17 #define BOOST_LIB_DIAGNOSTIC "on" // Report library file details.
18 #include <boost/test/included/unit_test.hpp> // Boost.Test
19 // #include <boost/test/unit_test.hpp> // Boost.Test
20 #include <boost/test/tools/floating_point_comparison.hpp>
21
22 #include <boost/array.hpp>
23 #include <boost/lexical_cast.hpp>
24 #include <boost/type_traits/is_constructible.hpp>
25 #include <boost/multiprecision/cpp_bin_float.hpp>
26 using boost::multiprecision::cpp_bin_float_quad;
27
28 #include <boost/math/special_functions/fpclassify.hpp> // isnan, isfinite.
29 #include <boost/math/special_functions/next.hpp> // float_next, float_prior
30 using boost::math::float_next;
31 using boost::math::float_prior;
32 #include <boost/math/special_functions/ulp.hpp> // ulp
33
34 #include <boost/math/tools/test_value.hpp> // for create_test_value and macro BOOST_MATH_TEST_VALUE.
35 #include <boost/math/policies/policy.hpp>
36 using boost::math::policies::digits2;
37 using boost::math::policies::digits10;
38 #include <boost/math/special_functions/lambert_w.hpp> // For Lambert W lambert_w function.
39 using boost::math::lambert_wm1;
40 using boost::math::lambert_w0;
41
42 #include <limits>
43 #include <cmath>
44 #include <typeinfo>
45 #include <iostream>
46 #include <type_traits>
47 #include <exception>
48
49 std::string show_versions(void);
50
51 // Added code and test for Integral of the Lambert W function: by Nick Thompson.
52 // https://en.wikipedia.org/wiki/Lambert_W_function#Definite_integrals
53
54 #include <boost/math/constants/constants.hpp> // for integral tests.
55 #include <boost/math/quadrature/tanh_sinh.hpp> // for integral tests.
56 #include <boost/math/quadrature/exp_sinh.hpp> // for integral tests.
57
58 using boost::math::policies::policy;
59 using boost::math::policies::make_policy;
60
61 // using statements needed for changing error handling policy.
62 using boost::math::policies::evaluation_error;
63 using boost::math::policies::domain_error;
64 using boost::math::policies::overflow_error;
65 using boost::math::policies::ignore_error;
66 using boost::math::policies::throw_on_error;
67
68 typedef policy<
69 domain_error<throw_on_error>,
70 overflow_error<ignore_error>
71 > no_throw_policy;
72
73 // Assumes that function has a throw policy, for example:
74 // NOT lambert_w0<T>(1 / (x * x), no_throw_policy());
75 // Error in function boost::math::quadrature::exp_sinh<double>::integrate:
76 // The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
77 // Please ensure your function evaluates to a finite number of its entire domain.
78 template <typename T>
debug_integration_proc(T x)79 T debug_integration_proc(T x)
80 {
81 T result; // warning C4701: potentially uninitialized local variable 'result' used
82 // T result = 0 ; // But result may not be assigned below?
83 try
84 {
85 // Assign function call to result in here...
86 if (x <= sqrt(boost::math::tools::min_value<T>()) )
87 {
88 result = 0;
89 }
90 else
91 {
92 result = lambert_w0<T>(1 / (x * x));
93 }
94 // result = lambert_w0<T>(1 / (x * x), no_throw_policy()); // Bad idea, less helpful diagnostic message is:
95 // Error in function boost::math::quadrature::exp_sinh<double>::integrate:
96 // The exp_sinh quadrature evaluated your function at a singular point and resulted in inf.
97 // Please ensure your function evaluates to a finite number of its entire domain.
98
99 } // try
100 catch (const std::exception& e)
101 {
102 std::cout << "Exception " << e.what() << std::endl;
103 // set breakpoint here:
104 std::cout << "Unexpected exception thrown in integration code at abscissa (x): " << x << "." << std::endl;
105 if (!std::isfinite(result))
106 {
107 // set breakpoint here:
108 std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
109 }
110 if (std::isnan(result))
111 {
112 // set breakpoint here:
113 std::cout << "Unexpected non-finite result in integration code at abscissa (x): " << x << "." << std::endl;
114 }
115 } // catch
116 return result;
117 } // T debug_integration_proc(T x)
118
119 template<class Real>
test_integrals()120 void test_integrals()
121 {
122 // Integral of the Lambert W function:
123 // https://en.wikipedia.org/wiki/Lambert_W_function
124 using boost::math::quadrature::tanh_sinh;
125 using boost::math::quadrature::exp_sinh;
126 // file:///I:/modular-boost/libs/math/doc/html/math_toolkit/quadrature/double_exponential/de_tanh_sinh.html
127 using std::sqrt;
128
129 std::cout << "Integration of type " << typeid(Real).name() << std::endl;
130
131 Real tol = std::numeric_limits<Real>::epsilon();
132 { // // Integrate for function lambert_W0(z);
133 tanh_sinh<Real> ts;
134 Real a = 0;
135 Real b = boost::math::constants::e<Real>();
136 auto f = [](Real z)->Real
137 {
138 return lambert_w0<Real>(z);
139 };
140 Real z = ts.integrate(f, a, b); // OK without any decltype(f)
141 BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::e<Real>() - 1, tol);
142 }
143 {
144 // Integrate for function lambert_W0(z/(z sqrt(z)).
145 exp_sinh<Real> es;
146 auto f = [](Real z)->Real
147 {
148 return lambert_w0<Real>(z)/(z * sqrt(z));
149 };
150 Real z = es.integrate(f); // OK
151 BOOST_CHECK_CLOSE_FRACTION(z, 2 * boost::math::constants::root_two_pi<Real>(), tol);
152 }
153 {
154 // Integrate for function lambert_W0(1/z^2).
155 exp_sinh<Real> es;
156 //const Real sqrt_min = sqrt(boost::math::tools::min_value<Real>()); // 1.08420217e-19 fo 32-bit float.
157 // error C3493: 'sqrt_min' cannot be implicitly captured because no default capture mode has been specified
158 auto f = [](Real z)->Real
159 {
160 if (z <= sqrt(boost::math::tools::min_value<Real>()) )
161 { // Too small would underflow z * z and divide by zero to overflow 1/z^2 for lambert_w0 z parameter.
162 return static_cast<Real>(0);
163 }
164 else
165 {
166 return lambert_w0<Real>(1 / (z * z)); // warning C4756: overflow in constant arithmetic, even though cannot happen.
167 }
168 };
169 Real z = es.integrate(f);
170 BOOST_CHECK_CLOSE_FRACTION(z, boost::math::constants::root_two_pi<Real>(), tol);
171 }
172 } // template<class Real> void test_integrals()
173
174
BOOST_AUTO_TEST_CASE(integrals)175 BOOST_AUTO_TEST_CASE( integrals )
176 {
177 std::cout << "Macro BOOST_MATH_LAMBERT_W0_INTEGRALS is defined." << std::endl;
178 BOOST_TEST_MESSAGE("\nTest Lambert W0 integrals.");
179 try
180 {
181 // using statements needed to change precision policy.
182 using boost::math::policies::policy;
183 using boost::math::policies::make_policy;
184 using boost::math::policies::precision;
185 using boost::math::policies::digits2;
186 using boost::math::policies::digits10;
187
188 // using statements needed for changing error handling policy.
189 using boost::math::policies::evaluation_error;
190 using boost::math::policies::domain_error;
191 using boost::math::policies::overflow_error;
192 using boost::math::policies::ignore_error;
193 using boost::math::policies::throw_on_error;
194
195 /*
196 typedef policy<
197 domain_error<throw_on_error>,
198 overflow_error<ignore_error>
199 > no_throw_policy;
200
201 // Experiment with better diagnostics.
202 typedef float Real;
203
204 Real inf = std::numeric_limits<Real>::infinity();
205 Real max = (std::numeric_limits<Real>::max)();
206 std::cout.precision(std::numeric_limits<Real>::max_digits10);
207 //std::cout << "lambert_w0(inf) = " << lambert_w0(inf) << std::endl; // lambert_w0(inf) = 1.79769e+308
208 std::cout << "lambert_w0(inf, throw_policy()) = " << lambert_w0(inf, no_throw_policy()) << std::endl; // inf
209 std::cout << "lambert_w0(max) = " << lambert_w0(max) << std::endl; // lambert_w0(max) = 703.227
210 //std::cout << lambert_w0(inf) << std::endl; // inf - will throw.
211 std::cout << "lambert_w0(0) = " << lambert_w0(0.) << std::endl; // 0
212 std::cout << "lambert_w0(std::numeric_limits<Real>::denorm_min()) = " << lambert_w0(std::numeric_limits<Real>::denorm_min()) << std::endl; // 4.94066e-324
213 std::cout << "lambert_w0(std::numeric_limits<Real>::min()) = " << lambert_w0((std::numeric_limits<Real>::min)()) << std::endl; // 2.22507e-308
214
215 // Approximate the largest lambert_w you can get for type T?
216 float max_w_f = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<float>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
217 std::cout << "w max_f " << max_w_f << std::endl; // 84.2879
218 Real max_w = boost::math::lambert_w_detail::lambert_w0_approx((std::numeric_limits<Real>::max)()); // Corless equation 4.19, page 349, and Chapeau-Blondeau equation 20, page 2162.
219 std::cout << "w max " << max_w << std::endl; // 703.227
220
221 std::cout << "lambert_w0(7.2416706213544837e-163) = " << lambert_w0(7.2416706213544837e-163) << std::endl; //
222 std::cout << "test integral 1/z^2" << std::endl;
223 std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
224 std::cout << "ULP = " << boost::math::ulp(1e-10, policy<digits2<> >()) << std::endl; // ULP = 2.2204460492503131e-16
225 std::cout << "ULP = " << boost::math::ulp(1., policy<digits2<11> >()) << std::endl; // ULP = 2.2204460492503131e-16
226 std::cout << "epsilon = " << std::numeric_limits<Real>::epsilon() << std::endl; //
227 std::cout << "sqrt(max) = " << sqrt(boost::math::tools::max_value<float>() ) << std::endl; // sqrt(max) = 1.8446742974197924e+19
228 std::cout << "sqrt(min) = " << sqrt(boost::math::tools::min_value<float>() ) << std::endl; // sqrt(min) = 1.0842021724855044e-19
229
230
231
232 // Demo debug version.
233 Real tol = std::numeric_limits<Real>::epsilon();
234 Real x;
235 {
236 using boost::math::quadrature::exp_sinh;
237 exp_sinh<Real> es;
238 // Function to be integrated, lambert_w0(1/z^2).
239
240 //auto f = [](Real z)->Real
241 //{ // Naive - no protection against underflow and subsequent divide by zero.
242 // return lambert_w0<Real>(1 / (z * z));
243 //};
244 // Diagnostic is:
245 // Error in function boost::math::lambert_w0<Real>: Expected a finite value but got inf
246
247 auto f = [](Real z)->Real
248 { // Debug with diagnostics for underflow and subsequent divide by zero and other bad things.
249 return debug_integration_proc(z);
250 };
251 // Exception Error in function boost::math::lambert_w0<double>: Expected a finite value but got inf.
252
253 // Unexpected exception thrown in integration code at abscissa: 7.2416706213544837e-163.
254 // Unexpected exception thrown in integration code at abscissa (x): 3.478765835953569e-23.
255 x = es.integrate(f);
256 std::cout << "es.integrate(f) = " << x << std::endl;
257 BOOST_CHECK_CLOSE_FRACTION(x, boost::math::constants::root_two_pi<Real>(), tol);
258 // root_two_pi<double = 2.506628274631000502
259 }
260 */
261
262 test_integrals<cpp_bin_float_quad>();
263 }
264 catch (std::exception& ex)
265 {
266 std::cout << ex.what() << std::endl;
267 }
268 }
269
270