1 // (C) Copyright John Maddock 2006.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #include <pch.hpp>
7
8 #define BOOST_TEST_MAIN
9 #include <boost/test/unit_test.hpp>
10 #include <boost/test/tools/floating_point_comparison.hpp>
11 #include <boost/test/results_collector.hpp>
12 #include <boost/math/special_functions/beta.hpp>
13 #include <boost/math/distributions/skew_normal.hpp>
14 #include <boost/math/tools/polynomial.hpp>
15 #include <boost/math/tools/roots.hpp>
16 #include <boost/math/constants/constants.hpp>
17 #include <boost/test/results_collector.hpp>
18 #include <boost/test/unit_test.hpp>
19 #include <boost/array.hpp>
20 #include <boost/type_index.hpp>
21 #include "table_type.hpp"
22 #include <iostream>
23 #include <iomanip>
24
25 #include <boost/multiprecision/cpp_bin_float.hpp>
26 #include <boost/multiprecision/cpp_complex.hpp>
27
28 #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
29 {\
30 unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\
31 BOOST_CHECK_CLOSE(a, b, prec); \
32 if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\
33 {\
34 std::cerr << "Failure was at row " << i << std::endl;\
35 std::cerr << std::setprecision(35); \
36 std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\
37 std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\
38 }\
39 }
40
41
42 //
43 // Implement various versions of inverse of the incomplete beta
44 // using different root finding algorithms, and deliberately "bad"
45 // starting conditions: that way we get all the pathological cases
46 // we could ever wish for!!!
47 //
48
49 template <class T, class Policy>
50 struct ibeta_roots_1 // for first order algorithms
51 {
ibeta_roots_1ibeta_roots_152 ibeta_roots_1(T _a, T _b, T t, bool inv = false, bool neg = false)
53 : a(_a), b(_b), target(t), invert(inv), neg(neg) {}
54
operator ()ibeta_roots_155 T operator()(const T& x)
56 {
57 return boost::math::detail::ibeta_imp(a, b, (neg ? -x : x), Policy(), invert, true) - target;
58 }
59 private:
60 T a, b, target;
61 bool invert, neg;
62 };
63
64 template <class T, class Policy>
65 struct ibeta_roots_2 // for second order algorithms
66 {
ibeta_roots_2ibeta_roots_267 ibeta_roots_2(T _a, T _b, T t, bool inv = false, bool neg = false)
68 : a(_a), b(_b), target(t), invert(inv), neg(neg) {}
69
operator ()ibeta_roots_270 boost::math::tuple<T, T> operator()(const T& xx)
71 {
72 typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
73 T x = neg ? -xx : xx;
74 T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
75 T f1 = invert ?
76 -boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
77 : boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
78 T y = 1 - x;
79 if(y == 0)
80 y = boost::math::tools::min_value<T>() * 8;
81 f1 /= y * x;
82
83 // make sure we don't have a zero derivative:
84 if(f1 == 0)
85 f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
86
87 return boost::math::make_tuple(f, neg ? -f1 : f1);
88 }
89 private:
90 T a, b, target;
91 bool invert, neg;
92 };
93
94 template <class T, class Policy>
95 struct ibeta_roots_3 // for third order algorithms
96 {
ibeta_roots_3ibeta_roots_397 ibeta_roots_3(T _a, T _b, T t, bool inv = false, bool neg = false)
98 : a(_a), b(_b), target(t), invert(inv), neg(neg) {}
99
operator ()ibeta_roots_3100 boost::math::tuple<T, T, T> operator()(const T& xx)
101 {
102 typedef typename boost::math::lanczos::lanczos<T, Policy>::type L;
103 T x = neg ? -xx : xx;
104 T f = boost::math::detail::ibeta_imp(a, b, x, Policy(), invert, true) - target;
105 T f1 = invert ?
106 -boost::math::detail::ibeta_power_terms(b, a, 1 - x, x, L(), true, Policy())
107 : boost::math::detail::ibeta_power_terms(a, b, x, 1 - x, L(), true, Policy());
108 T y = 1 - x;
109 if(y == 0)
110 y = boost::math::tools::min_value<T>() * 8;
111 f1 /= y * x;
112 T f2 = f1 * (-y * a + (b - 2) * x + 1) / (y * x);
113 if(invert)
114 f2 = -f2;
115
116 // make sure we don't have a zero derivative:
117 if(f1 == 0)
118 f1 = (invert ? -1 : 1) * boost::math::tools::min_value<T>() * 64;
119
120 if (neg)
121 {
122 f1 = -f1;
123 }
124
125 return boost::math::make_tuple(f, f1, f2);
126 }
127 private:
128 T a, b, target;
129 bool invert, neg;
130 };
131
inverse_ibeta_bisect(double a,double b,double z)132 double inverse_ibeta_bisect(double a, double b, double z)
133 {
134 typedef boost::math::policies::policy<> pol;
135 bool invert = false;
136 int bits = std::numeric_limits<double>::digits;
137
138 //
139 // special cases, we need to have these because there may be other
140 // possible answers:
141 //
142 if(z == 1) return 1;
143 if(z == 0) return 0;
144
145 //
146 // We need a good estimate of the error in the incomplete beta function
147 // so that we don't set the desired precision too high. Assume that 3-bits
148 // are lost each time the arguments increase by a factor of 10:
149 //
150 using namespace std;
151 int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
152 if(bits_lost < 0)
153 bits_lost = 3;
154 else
155 bits_lost += 3;
156 int precision = bits - bits_lost;
157
158 double min = 0;
159 double max = 1;
160 boost::math::tools::eps_tolerance<double> tol(precision);
161 return boost::math::tools::bisect(ibeta_roots_1<double, pol>(a, b, z, invert), min, max, tol).first;
162 }
163
inverse_ibeta_bisect_neg(double a,double b,double z)164 double inverse_ibeta_bisect_neg(double a, double b, double z)
165 {
166 typedef boost::math::policies::policy<> pol;
167 bool invert = false;
168 int bits = std::numeric_limits<double>::digits;
169
170 //
171 // special cases, we need to have these because there may be other
172 // possible answers:
173 //
174 if(z == 1) return 1;
175 if(z == 0) return 0;
176
177 //
178 // We need a good estimate of the error in the incomplete beta function
179 // so that we don't set the desired precision too high. Assume that 3-bits
180 // are lost each time the arguments increase by a factor of 10:
181 //
182 using namespace std;
183 int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
184 if(bits_lost < 0)
185 bits_lost = 3;
186 else
187 bits_lost += 3;
188 int precision = bits - bits_lost;
189
190 double min = -1;
191 double max = 0;
192 boost::math::tools::eps_tolerance<double> tol(precision);
193 return -boost::math::tools::bisect(ibeta_roots_1<double, pol>(a, b, z, invert, true), min, max, tol).first;
194 }
195
inverse_ibeta_newton(double a,double b,double z)196 double inverse_ibeta_newton(double a, double b, double z)
197 {
198 double guess = 0.5;
199 bool invert = false;
200 int bits = std::numeric_limits<double>::digits;
201
202 //
203 // special cases, we need to have these because there may be other
204 // possible answers:
205 //
206 if(z == 1) return 1;
207 if(z == 0) return 0;
208
209 //
210 // We need a good estimate of the error in the incomplete beta function
211 // so that we don't set the desired precision too high. Assume that 3-bits
212 // are lost each time the arguments increase by a factor of 10:
213 //
214 using namespace std;
215 int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
216 if(bits_lost < 0)
217 bits_lost = 3;
218 else
219 bits_lost += 3;
220 int precision = bits - bits_lost;
221
222 double min = 0;
223 double max = 1;
224 return boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
225 }
226
inverse_ibeta_newton_neg(double a,double b,double z)227 double inverse_ibeta_newton_neg(double a, double b, double z)
228 {
229 double guess = 0.5;
230 bool invert = false;
231 int bits = std::numeric_limits<double>::digits;
232
233 //
234 // special cases, we need to have these because there may be other
235 // possible answers:
236 //
237 if(z == 1) return 1;
238 if(z == 0) return 0;
239
240 //
241 // We need a good estimate of the error in the incomplete beta function
242 // so that we don't set the desired precision too high. Assume that 3-bits
243 // are lost each time the arguments increase by a factor of 10:
244 //
245 using namespace std;
246 int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
247 if(bits_lost < 0)
248 bits_lost = 3;
249 else
250 bits_lost += 3;
251 int precision = bits - bits_lost;
252
253 double min = -1;
254 double max = 0;
255 return -boost::math::tools::newton_raphson_iterate(ibeta_roots_2<double, boost::math::policies::policy<> >(a, b, z, invert, true), -guess, min, max, precision);
256 }
257
inverse_ibeta_halley(double a,double b,double z)258 double inverse_ibeta_halley(double a, double b, double z)
259 {
260 double guess = 0.5;
261 bool invert = false;
262 int bits = std::numeric_limits<double>::digits;
263
264 //
265 // special cases, we need to have these because there may be other
266 // possible answers:
267 //
268 if(z == 1) return 1;
269 if(z == 0) return 0;
270
271 //
272 // We need a good estimate of the error in the incomplete beta function
273 // so that we don't set the desired precision too high. Assume that 3-bits
274 // are lost each time the arguments increase by a factor of 10:
275 //
276 using namespace std;
277 int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
278 if(bits_lost < 0)
279 bits_lost = 3;
280 else
281 bits_lost += 3;
282 int precision = bits - bits_lost;
283
284 double min = 0;
285 double max = 1;
286 return boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
287 }
288
inverse_ibeta_halley_neg(double a,double b,double z)289 double inverse_ibeta_halley_neg(double a, double b, double z)
290 {
291 double guess = -0.5;
292 bool invert = false;
293 int bits = std::numeric_limits<double>::digits;
294
295 //
296 // special cases, we need to have these because there may be other
297 // possible answers:
298 //
299 if(z == 1) return 1;
300 if(z == 0) return 0;
301
302 //
303 // We need a good estimate of the error in the incomplete beta function
304 // so that we don't set the desired precision too high. Assume that 3-bits
305 // are lost each time the arguments increase by a factor of 10:
306 //
307 using namespace std;
308 int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
309 if(bits_lost < 0)
310 bits_lost = 3;
311 else
312 bits_lost += 3;
313 int precision = bits - bits_lost;
314
315 double min = -1;
316 double max = 0;
317 return -boost::math::tools::halley_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert, true), guess, min, max, precision);
318 }
319
inverse_ibeta_schroder(double a,double b,double z)320 double inverse_ibeta_schroder(double a, double b, double z)
321 {
322 double guess = 0.5;
323 bool invert = false;
324 int bits = std::numeric_limits<double>::digits;
325
326 //
327 // special cases, we need to have these because there may be other
328 // possible answers:
329 //
330 if(z == 1) return 1;
331 if(z == 0) return 0;
332
333 //
334 // We need a good estimate of the error in the incomplete beta function
335 // so that we don't set the desired precision too high. Assume that 3-bits
336 // are lost each time the arguments increase by a factor of 10:
337 //
338 using namespace std;
339 int bits_lost = static_cast<int>(ceil(log10((std::max)(a, b)) * 3));
340 if(bits_lost < 0)
341 bits_lost = 3;
342 else
343 bits_lost += 3;
344 int precision = bits - bits_lost;
345
346 double min = 0;
347 double max = 1;
348 return boost::math::tools::schroder_iterate(ibeta_roots_3<double, boost::math::policies::policy<> >(a, b, z, invert), guess, min, max, precision);
349 }
350
351
352 template <class Real, class T>
test_inverses(const T & data)353 void test_inverses(const T& data)
354 {
355 using namespace std;
356 typedef Real value_type;
357
358 value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 150;
359 if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50)
360 precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated
361
362 for(unsigned i = 0; i < data.size(); ++i)
363 {
364 //
365 // These inverse tests are thrown off if the output of the
366 // incomplete beta is too close to 1: basically there is insuffient
367 // information left in the value we're using as input to the inverse
368 // to be able to get back to the original value.
369 //
370 if(data[i][5] == 0)
371 {
372 BOOST_CHECK_EQUAL(inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
373 BOOST_CHECK_EQUAL(inverse_ibeta_halley_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
374 BOOST_CHECK_EQUAL(inverse_ibeta_schroder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
375 BOOST_CHECK_EQUAL(inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
376 BOOST_CHECK_EQUAL(inverse_ibeta_newton_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
377 BOOST_CHECK_EQUAL(inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
378 BOOST_CHECK_EQUAL(inverse_ibeta_bisect_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0));
379 }
380 else if((1 - data[i][5] > 0.001)
381 && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<value_type>())
382 && (fabs(data[i][5]) > 2 * boost::math::tools::min_value<double>()))
383 {
384 value_type inv = inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
385 BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
386 inv = inverse_ibeta_halley_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
387 BOOST_ASSERT(boost::math::isfinite(inv));
388 BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
389 inv = inverse_ibeta_schroder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
390 BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
391 inv = inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
392 BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
393 inv = inverse_ibeta_newton_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
394 BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
395 inv = inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
396 BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
397 inv = inverse_ibeta_bisect_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5]));
398 BOOST_CHECK_CLOSE_EX(Real(data[i][2]), inv, precision, i);
399 }
400 else if(1 == data[i][5])
401 {
402 BOOST_CHECK_EQUAL(inverse_ibeta_halley(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
403 BOOST_CHECK_EQUAL(inverse_ibeta_halley_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
404 BOOST_CHECK_EQUAL(inverse_ibeta_schroder(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
405 BOOST_CHECK_EQUAL(inverse_ibeta_newton(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
406 BOOST_CHECK_EQUAL(inverse_ibeta_newton_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
407 BOOST_CHECK_EQUAL(inverse_ibeta_bisect(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
408 BOOST_CHECK_EQUAL(inverse_ibeta_bisect_neg(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1));
409 }
410
411 }
412 }
413
414 #ifndef SC_
415 #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
416 #endif
417
418 template <class T>
test_beta(T,const char *)419 void test_beta(T, const char* /* name */)
420 {
421 //
422 // The actual test data is rather verbose, so it's in a separate file
423 //
424 // The contents are as follows, each row of data contains
425 // five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
426 //
427 # include "ibeta_small_data.ipp"
428
429 test_inverses<T>(ibeta_small_data);
430
431 # include "ibeta_data.ipp"
432
433 test_inverses<T>(ibeta_data);
434
435 # include "ibeta_large_data.ipp"
436
437 test_inverses<T>(ibeta_large_data);
438 }
439
440 #if !defined(BOOST_NO_CXX11_AUTO_DECLARATIONS) && !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX) && !defined(BOOST_NO_CXX11_LAMBDAS)
441 template <class Complex>
test_complex_newton()442 void test_complex_newton()
443 {
444 typedef typename Complex::value_type Real;
445 std::cout << "Testing complex Newton's Method on type " << boost::typeindex::type_id<Real>().pretty_name() << "\n";
446 using std::abs;
447 using std::sqrt;
448 using boost::math::tools::complex_newton;
449 using boost::math::tools::polynomial;
450 using boost::math::constants::half;
451
452 Real tol = std::numeric_limits<Real>::epsilon();
453 // p(z) = z^2 + 1, roots: \pm i.
454 polynomial<Complex> p{{1,0}, {0, 0}, {1,0}};
455 Complex guess{1,1};
456 polynomial<Complex> p_prime = p.prime();
457 auto f = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); };
458 Complex root = complex_newton(f, guess);
459
460 BOOST_CHECK(abs(root.real()) <= tol);
461 BOOST_CHECK_CLOSE(root.imag(), (Real)1, tol);
462
463 guess = -guess;
464 root = complex_newton(f, guess);
465 BOOST_CHECK(abs(root.real()) <= tol);
466 BOOST_CHECK_CLOSE(root.imag(), (Real)-1, tol);
467
468 // Test that double roots are handled correctly-as correctly as possible.
469 // Convergence at a double root is not quadratic.
470 // This sets p = (z-i)^2:
471 p = polynomial<Complex>({{-1,0}, {0,-2}, {1,0}});
472 p_prime = p.prime();
473 guess = -guess;
474 auto g = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); };
475 root = complex_newton(g, guess);
476 BOOST_CHECK(abs(root.real()) < 10*sqrt(tol));
477 BOOST_CHECK_CLOSE(root.imag(), (Real)1, tol);
478
479 // Test that zero derivatives are handled.
480 // p(z) = z^2 + iz + 1
481 p = polynomial<Complex>({{1,0}, {0,1}, {1,0}});
482 // p'(z) = 2z + i
483 p_prime = p.prime();
484 guess = Complex(0,-boost::math::constants::half<Real>());
485 auto g2 = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); };
486 root = complex_newton(g2, guess);
487
488 // Here's the other root, in case code changes cause it to be found:
489 //Complex expected_root1{0, half<Real>()*(sqrt(static_cast<Real>(5)) - static_cast<Real>(1))};
490 Complex expected_root2{0, -half<Real>()*(sqrt(static_cast<Real>(5)) + static_cast<Real>(1))};
491
492 BOOST_CHECK_CLOSE(expected_root2.imag(),root.imag(), tol);
493 BOOST_CHECK(abs(root.real()) < tol);
494
495 // Does a zero root pass the termination criteria?
496 p = polynomial<Complex>({{0,0}, {0,0}, {1,0}});
497 p_prime = p.prime();
498 guess = Complex(0, -boost::math::constants::half<Real>());
499 auto g3 = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); };
500 root = complex_newton(g3, guess);
501 BOOST_CHECK(abs(root.real()) < tol);
502
503 // Does a monstrous root pass?
504 Real x = -pow(static_cast<Real>(10), 20);
505 p = polynomial<Complex>({{x, x}, {1,0}});
506 p_prime = p.prime();
507 guess = Complex(0, -boost::math::constants::half<Real>());
508 auto g4 = [&](Complex z) { return std::make_pair<Complex, Complex>(p(z), p_prime(z)); };
509 root = complex_newton(g4, guess);
510 BOOST_CHECK(abs(root.real() + x) < tol);
511 BOOST_CHECK(abs(root.imag() + x) < tol);
512
513 }
514
515 // Polynomials which didn't factorize using Newton's method at first:
test_daubechies_fails()516 void test_daubechies_fails()
517 {
518 std::cout << "Testing failures from Daubechies filter computation.\n";
519 using std::abs;
520 using std::sqrt;
521 using boost::math::tools::complex_newton;
522 using boost::math::tools::polynomial;
523 using boost::math::constants::half;
524
525 double tol = 500*std::numeric_limits<double>::epsilon();
526 polynomial<std::complex<double>> p{{-185961388.136908293,141732493.98435241}, {601080390,0}};
527 std::complex<double> guess{1,1};
528 polynomial<std::complex<double>> p_prime = p.prime();
529 auto f = [&](std::complex<double> z) { return std::make_pair<std::complex<double>, std::complex<double>>(p(z), p_prime(z)); };
530 std::complex<double> root = complex_newton(f, guess);
531
532 std::complex<double> expected_root = -p.data()[0]/p.data()[1];
533 BOOST_CHECK_CLOSE(expected_root.imag(), root.imag(), tol);
534 BOOST_CHECK_CLOSE(expected_root.real(), root.real(), tol);
535 }
536 #endif
537
538 #if !defined(BOOST_NO_CXX17_IF_CONSTEXPR)
539 template<class Real>
test_solve_real_quadratic()540 void test_solve_real_quadratic()
541 {
542 Real tol = std::numeric_limits<Real>::epsilon();
543 using boost::math::tools::quadratic_roots;
544 auto [x0, x1] = quadratic_roots<Real>(1, 0, -1);
545 BOOST_CHECK_CLOSE(x0, Real(-1), tol);
546 BOOST_CHECK_CLOSE(x1, Real(1), tol);
547
548 auto p = quadratic_roots((Real)7, (Real)0, (Real)0);
549 BOOST_CHECK_SMALL(p.first, tol);
550 BOOST_CHECK_SMALL(p.second, tol);
551
552 // (x-7)^2 = x^2 - 14*x + 49:
553 p = quadratic_roots((Real)1, (Real)-14, (Real)49);
554 BOOST_CHECK_CLOSE(p.first, Real(7), tol);
555 BOOST_CHECK_CLOSE(p.second, Real(7), tol);
556
557 // This test does not pass in multiprecision,
558 // due to the fact it does not have an fma:
559 if (std::is_floating_point<Real>::value)
560 {
561 // (x-1)(x-1-eps) = x^2 + (-eps - 2)x + (1)(1+eps)
562 Real eps = 2*std::numeric_limits<Real>::epsilon();
563 Real b = 256 * (-2 - eps);
564 Real c = 256 * (1 + eps);
565 p = quadratic_roots((Real)256, b, c);
566 BOOST_CHECK_CLOSE(p.first, Real(1), tol);
567 BOOST_CHECK_CLOSE(p.second, Real(1) + eps, tol);
568 }
569
570 if (std::is_same<Real, double>::value)
571 {
572 // Kahan's example: This is the test that demonstrates the necessity of the fma instruction.
573 // https://en.wikipedia.org/wiki/Loss_of_significance#Instability_of_the_quadratic_equation
574 p = quadratic_roots<Real>((Real)94906265.625, (Real )-189812534, (Real)94906268.375);
575 BOOST_CHECK_CLOSE_FRACTION(p.first, Real(1), tol);
576 BOOST_CHECK_CLOSE_FRACTION(p.second, 1.000000028975958, 4*tol);
577 }
578 }
579
580 template<class Z>
test_solve_int_quadratic()581 void test_solve_int_quadratic()
582 {
583 double tol = std::numeric_limits<double>::epsilon();
584 using boost::math::tools::quadratic_roots;
585 auto [x0, x1] = quadratic_roots(1, 0, -1);
586 BOOST_CHECK_CLOSE(x0, double(-1), tol);
587 BOOST_CHECK_CLOSE(x1, double(1), tol);
588
589 auto p = quadratic_roots(7, 0, 0);
590 BOOST_CHECK_SMALL(p.first, tol);
591 BOOST_CHECK_SMALL(p.second, tol);
592
593 // (x-7)^2 = x^2 - 14*x + 49:
594 p = quadratic_roots(1, -14, 49);
595 BOOST_CHECK_CLOSE(p.first, double(7), tol);
596 BOOST_CHECK_CLOSE(p.second, double(7), tol);
597 }
598
599 template<class Complex>
test_solve_complex_quadratic()600 void test_solve_complex_quadratic()
601 {
602 using Real = typename Complex::value_type;
603 Real tol = std::numeric_limits<Real>::epsilon();
604 using boost::math::tools::quadratic_roots;
605 auto [x0, x1] = quadratic_roots<Complex>({1,0}, {0,0}, {-1,0});
606 BOOST_CHECK_CLOSE(x0.real(), Real(-1), tol);
607 BOOST_CHECK_CLOSE(x1.real(), Real(1), tol);
608 BOOST_CHECK_SMALL(x0.imag(), tol);
609 BOOST_CHECK_SMALL(x1.imag(), tol);
610
611 auto p = quadratic_roots<Complex>({7,0}, {0,0}, {0,0});
612 BOOST_CHECK_SMALL(p.first.real(), tol);
613 BOOST_CHECK_SMALL(p.second.real(), tol);
614
615 // (x-7)^2 = x^2 - 14*x + 49:
616 p = quadratic_roots<Complex>({1,0}, {-14,0}, {49,0});
617 BOOST_CHECK_CLOSE(p.first.real(), Real(7), tol);
618 BOOST_CHECK_CLOSE(p.second.real(), Real(7), tol);
619
620 }
621
622 #endif
623
test_failures()624 void test_failures()
625 {
626 #if !defined(BOOST_NO_CXX11_LAMBDAS)
627 // There is no root:
628 BOOST_CHECK_THROW(boost::math::tools::newton_raphson_iterate([](double x) { return std::make_pair(x * x + 1, 2 * x); }, 10.0, -12.0, 12.0, 52), boost::math::evaluation_error);
629 BOOST_CHECK_THROW(boost::math::tools::newton_raphson_iterate([](double x) { return std::make_pair(x * x + 1, 2 * x); }, -10.0, -12.0, 12.0, 52), boost::math::evaluation_error);
630 // There is a root, but a bad guess takes us into a local minima:
631 BOOST_CHECK_THROW(boost::math::tools::newton_raphson_iterate([](double x) { return std::make_pair(boost::math::pow<6>(x) - 2 * boost::math::pow<4>(x) + x + 0.5, 6 * boost::math::pow<5>(x) - 8 * boost::math::pow<3>(x) + 1); }, 0.75, -20., 20., 52), boost::math::evaluation_error);
632
633 // There is no root:
634 BOOST_CHECK_THROW(boost::math::tools::halley_iterate([](double x) { return std::make_tuple(x * x + 1, 2 * x, 2); }, 10.0, -12.0, 12.0, 52), boost::math::evaluation_error);
635 BOOST_CHECK_THROW(boost::math::tools::halley_iterate([](double x) { return std::make_tuple(x * x + 1, 2 * x, 2); }, -10.0, -12.0, 12.0, 52), boost::math::evaluation_error);
636 // There is a root, but a bad guess takes us into a local minima:
637 BOOST_CHECK_THROW(boost::math::tools::halley_iterate([](double x) { return std::make_tuple(boost::math::pow<6>(x) - 2 * boost::math::pow<4>(x) + x + 0.5, 6 * boost::math::pow<5>(x) - 8 * boost::math::pow<3>(x) + 1, 30 * boost::math::pow<4>(x) - 24 * boost::math::pow<2>(x)); }, 0.75, -20., 20., 52), boost::math::evaluation_error);
638 #endif
639 }
640
BOOST_AUTO_TEST_CASE(test_main)641 BOOST_AUTO_TEST_CASE( test_main )
642 {
643
644 test_beta(0.1, "double");
645
646 #if !defined(BOOST_NO_CXX11_AUTO_DECLARATIONS) && !defined(BOOST_NO_CXX11_UNIFIED_INITIALIZATION_SYNTAX) && !defined(BOOST_NO_CXX11_LAMBDAS)
647 test_complex_newton<std::complex<float>>();
648 test_complex_newton<std::complex<double>>();
649 test_complex_newton<boost::multiprecision::cpp_complex_100>();
650 test_daubechies_fails();
651 #endif
652
653 #if !defined(BOOST_NO_CXX17_IF_CONSTEXPR)
654 test_solve_real_quadratic<float>();
655 test_solve_real_quadratic<double>();
656 test_solve_real_quadratic<long double>();
657 test_solve_real_quadratic<boost::multiprecision::cpp_bin_float_50>();
658
659 test_solve_int_quadratic<int>();
660 test_solve_complex_quadratic<std::complex<double>>();
661 #endif
662 test_failures();
663 }
664