• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright John Maddock 2006, 2012.
2 // Copyright Paul A. Bristow 2007, 2012.
3 
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8 
9 // test_weibull.cpp
10 
11 #ifdef _MSC_VER
12 #  pragma warning (disable : 4127) //  conditional expression is constant.
13 #endif
14 
15 
16 #include <boost/math/concepts/real_concept.hpp> // for real_concept
17 #define BOOST_TEST_MAIN
18 #include <boost/test/unit_test.hpp> // Boost.Test
19 #include <boost/test/tools/floating_point_comparison.hpp>
20 
21 #include <boost/math/distributions/weibull.hpp>
22     using boost::math::weibull_distribution;
23 #include <boost/math/tools/test.hpp>
24 #include "test_out_of_range.hpp"
25 
26 #include <iostream>
27    using std::cout;
28    using std::endl;
29    using std::setprecision;
30 #include <limits>
31   using std::numeric_limits;
32 
33 template <class RealType>
check_weibull(RealType shape,RealType scale,RealType x,RealType p,RealType q,RealType tol)34 void check_weibull(RealType shape, RealType scale, RealType x, RealType p, RealType q, RealType tol)
35 {
36    BOOST_CHECK_CLOSE(
37       ::boost::math::cdf(
38          weibull_distribution<RealType>(shape, scale),       // distribution.
39          x),                                            // random variable.
40          p,                                             // probability.
41          tol);                                          // %tolerance.
42    BOOST_CHECK_CLOSE(
43       ::boost::math::cdf(
44          complement(
45             weibull_distribution<RealType>(shape, scale),    // distribution.
46             x)),                                        // random variable.
47          q,                                             // probability complement.
48          tol);                                          // %tolerance.
49    BOOST_CHECK_CLOSE(
50       ::boost::math::quantile(
51          weibull_distribution<RealType>(shape, scale),       // distribution.
52          p),                                            // probability.
53          x,                                             // random variable.
54          tol);                                          // %tolerance.
55    BOOST_CHECK_CLOSE(
56       ::boost::math::quantile(
57          complement(
58             weibull_distribution<RealType>(shape, scale),    // distribution.
59             q)),                                        // probability complement.
60          x,                                             // random variable.
61          tol);                                          // %tolerance.
62 }
63 
64 template <class RealType>
test_spots(RealType)65 void test_spots(RealType)
66 {
67    // Basic sanity checks
68    //
69    // These test values were generated for the normal distribution
70    // using the online calculator at
71    // http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
72    //
73    // Tolerance is just over 5 decimal digits expressed as a percentage:
74    // that's the limit of the test data.
75    RealType tolerance = 2e-5f * 100;
76    cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl;
77 
78    using std::exp;
79 
80    check_weibull(
81       static_cast<RealType>(0.25),     // shape
82       static_cast<RealType>(0.5),     // scale
83       static_cast<RealType>(0.1),     // x
84       static_cast<RealType>(0.487646),   // p
85       static_cast<RealType>(1-0.487646),   // q
86       tolerance);
87    check_weibull(
88       static_cast<RealType>(0.25),     // shape
89       static_cast<RealType>(0.5),     // scale
90       static_cast<RealType>(0.5),     // x
91       static_cast<RealType>(1-0.367879),   // p
92       static_cast<RealType>(0.367879),   // q
93       tolerance);
94    check_weibull(
95       static_cast<RealType>(0.25),     // shape
96       static_cast<RealType>(0.5),     // scale
97       static_cast<RealType>(1),     // x
98       static_cast<RealType>(1-0.304463),   // p
99       static_cast<RealType>(0.304463),   // q
100       tolerance);
101    check_weibull(
102       static_cast<RealType>(0.25),     // shape
103       static_cast<RealType>(0.5),     // scale
104       static_cast<RealType>(2),     // x
105       static_cast<RealType>(1-0.243117),   // p
106       static_cast<RealType>(0.243117),   // q
107       tolerance);
108    check_weibull(
109       static_cast<RealType>(0.25),     // shape
110       static_cast<RealType>(0.5),     // scale
111       static_cast<RealType>(5),     // x
112       static_cast<RealType>(1-0.168929),   // p
113       static_cast<RealType>(0.168929),   // q
114       tolerance);
115 
116    check_weibull(
117       static_cast<RealType>(0.5),     // shape
118       static_cast<RealType>(2),     // scale
119       static_cast<RealType>(0.1),     // x
120       static_cast<RealType>(0.200371),   // p
121       static_cast<RealType>(1-0.200371),   // q
122       tolerance);
123    check_weibull(
124       static_cast<RealType>(0.5),     // shape
125       static_cast<RealType>(2),     // scale
126       static_cast<RealType>(0.5),     // x
127       static_cast<RealType>(0.393469),   // p
128       static_cast<RealType>(1-0.393469),   // q
129       tolerance);
130    check_weibull(
131       static_cast<RealType>(0.5),     // shape
132       static_cast<RealType>(2),     // scale
133       static_cast<RealType>(1),     // x
134       static_cast<RealType>(1-0.493069),   // p
135       static_cast<RealType>(0.493069),   // q
136       tolerance);
137    check_weibull(
138       static_cast<RealType>(0.5),     // shape
139       static_cast<RealType>(2),     // scale
140       static_cast<RealType>(2),     // x
141       static_cast<RealType>(1-0.367879),   // p
142       static_cast<RealType>(0.367879),   // q
143       tolerance);
144    check_weibull(
145       static_cast<RealType>(0.5),     // shape
146       static_cast<RealType>(2),     // scale
147       static_cast<RealType>(5),     // x
148       static_cast<RealType>(1-0.205741),   // p
149       static_cast<RealType>(0.205741),   // q
150       tolerance);
151 
152    check_weibull(
153       static_cast<RealType>(2),     // shape
154       static_cast<RealType>(0.25),     // scale
155       static_cast<RealType>(0.1),     // x
156       static_cast<RealType>(0.147856),   // p
157       static_cast<RealType>(1-0.147856),   // q
158       tolerance);
159    check_weibull(
160       static_cast<RealType>(2),     // shape
161       static_cast<RealType>(0.25),     // scale
162       static_cast<RealType>(0.5),     // x
163       static_cast<RealType>(1-0.018316),   // p
164       static_cast<RealType>(0.018316),   // q
165       tolerance);
166 
167    /*
168    This test value came from
169    http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
170    but appears to be grossly incorrect: certainly it does not agree with the values
171    I get from pushing numbers into a calculator (0.0001249921878255106610615995196123).
172    Strangely other test values generated for the same shape and scale parameters do look OK.
173    check_weibull(
174       static_cast<RealType>(3),     // shape
175       static_cast<RealType>(2),     // scale
176       static_cast<RealType>(0.1),     // x
177       static_cast<RealType>(1.25E-40),   // p
178       static_cast<RealType>(1-1.25E-40),   // q
179       tolerance);
180       */
181    check_weibull(
182       static_cast<RealType>(3),     // shape
183       static_cast<RealType>(2),     // scale
184       static_cast<RealType>(0.5),     // x
185       static_cast<RealType>(0.015504),   // p
186       static_cast<RealType>(1-0.015504),   // q
187       tolerance * 10); // few digits in test value
188    check_weibull(
189       static_cast<RealType>(3),     // shape
190       static_cast<RealType>(2),     // scale
191       static_cast<RealType>(1),     // x
192       static_cast<RealType>(0.117503),   // p
193       static_cast<RealType>(1-0.117503),   // q
194       tolerance);
195    check_weibull(
196       static_cast<RealType>(3),     // shape
197       static_cast<RealType>(2),     // scale
198       static_cast<RealType>(2),     // x
199       static_cast<RealType>(1-0.367879),   // p
200       static_cast<RealType>(0.367879),   // q
201       tolerance);
202 
203    //
204    // Tests for PDF
205    //
206    BOOST_CHECK_CLOSE(
207       pdf(weibull_distribution<RealType>(0.25, 0.5), static_cast<RealType>(0.1)),
208       static_cast<RealType>(0.856579),
209       tolerance);
210    BOOST_CHECK_CLOSE(
211       pdf(weibull_distribution<RealType>(0.25, 0.5), static_cast<RealType>(0.5)),
212       static_cast<RealType>(0.183940),
213       tolerance);
214    BOOST_CHECK_CLOSE(
215       pdf(weibull_distribution<RealType>(0.25, 0.5), static_cast<RealType>(5)),
216       static_cast<RealType>(0.015020),
217       tolerance * 10); // fewer digits in test value
218    BOOST_CHECK_CLOSE(
219       pdf(weibull_distribution<RealType>(0.5, 2), static_cast<RealType>(0.1)),
220       static_cast<RealType>(0.894013),
221       tolerance);
222    BOOST_CHECK_CLOSE(
223       pdf(weibull_distribution<RealType>(0.5, 2), static_cast<RealType>(0.5)),
224       static_cast<RealType>(0.303265),
225       tolerance);
226    BOOST_CHECK_CLOSE(
227       pdf(weibull_distribution<RealType>(0.5, 2), static_cast<RealType>(1)),
228       static_cast<RealType>(0.174326),
229       tolerance);
230    BOOST_CHECK_CLOSE(
231       pdf(weibull_distribution<RealType>(2, 0.25), static_cast<RealType>(0.1)),
232       static_cast<RealType>(2.726860),
233       tolerance);
234    BOOST_CHECK_CLOSE(
235       pdf(weibull_distribution<RealType>(2, 0.25), static_cast<RealType>(0.5)),
236       static_cast<RealType>(0.293050),
237       tolerance);
238    BOOST_CHECK_CLOSE(
239       pdf(weibull_distribution<RealType>(3, 2), static_cast<RealType>(1)),
240       static_cast<RealType>(0.330936),
241       tolerance);
242    BOOST_CHECK_CLOSE(
243       pdf(weibull_distribution<RealType>(3, 2), static_cast<RealType>(2)),
244       static_cast<RealType>(0.551819),
245       tolerance);
246 
247    //
248    // These test values were obtained using the formulas at
249    // http://en.wikipedia.org/wiki/Weibull_distribution
250    // which are subtly different to (though mathematically
251    // the same as) the ones on the Mathworld site
252    // http://mathworld.wolfram.com/WeibullDistribution.html
253    // which are the ones used in the implementation.
254    // The assumption is that if both computation methods
255    // agree then the implementation is probably correct...
256    // What's not clear is which method is more accurate.
257    //
258    tolerance = (std::max)(
259       boost::math::tools::epsilon<RealType>(),
260       static_cast<RealType>(boost::math::tools::epsilon<double>())) * 5 * 100; // 5 eps as a percentage
261    cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << " %" << endl;
262    weibull_distribution<RealType> dist(2, 3);
263    RealType x = static_cast<RealType>(0.125);
264 
265    BOOST_MATH_STD_USING // ADL of std lib math functions
266 
267    // mean:
268    BOOST_CHECK_CLOSE(
269       mean(dist)
270       , dist.scale() * boost::math::tgamma(1 + 1 / dist.shape()), tolerance);
271    // variance:
272    BOOST_CHECK_CLOSE(
273       variance(dist)
274       , dist.scale() * dist.scale() * boost::math::tgamma(1 + 2 / dist.shape()) - mean(dist) * mean(dist), tolerance);
275    // std deviation:
276    BOOST_CHECK_CLOSE(
277     standard_deviation(dist)
278     , sqrt(variance(dist)), tolerance);
279    // hazard:
280    BOOST_CHECK_CLOSE(
281     hazard(dist, x)
282     , pdf(dist, x) / cdf(complement(dist, x)), tolerance);
283    // cumulative hazard:
284    BOOST_CHECK_CLOSE(
285     chf(dist, x)
286     , -log(cdf(complement(dist, x))), tolerance);
287    // coefficient_of_variation:
288    BOOST_CHECK_CLOSE(
289     coefficient_of_variation(dist)
290     , standard_deviation(dist) / mean(dist), tolerance);
291    // mode:
292    BOOST_CHECK_CLOSE(
293     mode(dist)
294     , dist.scale() * pow((dist.shape() - 1) / dist.shape(), 1/dist.shape()), tolerance);
295    // median:
296    BOOST_CHECK_CLOSE(
297     median(dist)
298     , dist.scale() * pow(log(static_cast<RealType>(2)), 1 / dist.shape()), tolerance);
299    // skewness:
300    BOOST_CHECK_CLOSE(
301     skewness(dist),
302     (boost::math::tgamma(1 + 3/dist.shape()) * pow(dist.scale(), RealType(3)) - 3 * mean(dist) * variance(dist) - pow(mean(dist), RealType(3))) / pow(standard_deviation(dist), RealType(3)),
303     tolerance * 100);
304    // kurtosis:
305    BOOST_CHECK_CLOSE(
306     kurtosis(dist)
307     , kurtosis_excess(dist) + 3, tolerance);
308    // kurtosis excess:
309    BOOST_CHECK_CLOSE(
310     kurtosis_excess(dist),
311     (pow(dist.scale(), RealType(4)) * boost::math::tgamma(1 + 4/dist.shape())
312          - 3 * variance(dist) * variance(dist)
313          - 4 * skewness(dist) * variance(dist) * standard_deviation(dist) * mean(dist)
314          - 6 * variance(dist) * mean(dist) * mean(dist)
315          - pow(mean(dist), RealType(4))) / (variance(dist) * variance(dist)),
316     tolerance * 1000);
317 
318    RealType expected_entropy = boost::math::constants::euler<RealType>()*(1-1/dist.shape()) + log(dist.scale()/dist.shape()) + 1;
319    BOOST_CHECK_CLOSE(
320     entropy(dist)
321     , expected_entropy, tolerance);
322 
323    //
324    // Special cases:
325    //
326    BOOST_CHECK(cdf(dist, 0) == 0);
327    BOOST_CHECK(cdf(complement(dist, 0)) == 1);
328    BOOST_CHECK(quantile(dist, 0) == 0);
329    BOOST_CHECK(quantile(complement(dist, 1)) == 0);
330 
331    BOOST_CHECK_EQUAL(pdf(weibull_distribution<RealType>(1, 1), 0), 1);
332 
333    //
334    // Error checks:
335    //
336    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(1, -1), std::domain_error);
337    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(-1, 1), std::domain_error);
338    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(1, 0), std::domain_error);
339    BOOST_MATH_CHECK_THROW(weibull_distribution<RealType>(0, 1), std::domain_error);
340    BOOST_MATH_CHECK_THROW(pdf(dist, -1), std::domain_error);
341    BOOST_MATH_CHECK_THROW(cdf(dist, -1), std::domain_error);
342    BOOST_MATH_CHECK_THROW(cdf(complement(dist, -1)), std::domain_error);
343    BOOST_MATH_CHECK_THROW(quantile(dist, 1), std::overflow_error);
344    BOOST_MATH_CHECK_THROW(quantile(complement(dist, 0)), std::overflow_error);
345    BOOST_MATH_CHECK_THROW(quantile(dist, -1), std::domain_error);
346    BOOST_MATH_CHECK_THROW(quantile(complement(dist, -1)), std::domain_error);
347 
348    BOOST_CHECK_EQUAL(pdf(dist, 0), exp(-pow(RealType(0) / RealType(3), RealType(2))) * pow(RealType(0), RealType(1)) * RealType(2) / RealType(3));
349    BOOST_CHECK_EQUAL(pdf(weibull_distribution<RealType>(1, 3), 0), exp(-pow(RealType(0) / RealType(3), RealType(1))) * pow(RealType(0), RealType(0)) * RealType(1) / RealType(3));
350    BOOST_MATH_CHECK_THROW(pdf(weibull_distribution<RealType>(0.5, 3), 0), std::overflow_error);
351 
352    check_out_of_range<weibull_distribution<RealType> >(1, 1);
353 } // template <class RealType>void test_spots(RealType)
354 
BOOST_AUTO_TEST_CASE(test_main)355 BOOST_AUTO_TEST_CASE( test_main )
356 {
357 
358   // Check that can construct weibull distribution using the two convenience methods:
359   using namespace boost::math;
360   weibull myw1(2); // Using typedef
361    weibull_distribution<> myw2(2); // Using default RealType double.
362 
363     // Basic sanity-check spot values.
364    // (Parameter value, arbitrarily zero, only communicates the floating point type).
365   test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
366   test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
367 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
368   test_spots(0.0L); // Test long double.
369 #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582))
370   test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
371 #endif
372 #else
373    std::cout << "<note>The long double tests have been disabled on this platform "
374       "either because the long double overloads of the usual math functions are "
375       "not available at all, or because they are too inaccurate for these tests "
376       "to pass.</note>" << std::endl;
377 #endif
378 
379 
380 } // BOOST_AUTO_TEST_CASE( test_main )
381 
382 /*
383 
384 Output:
385 
386   Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_weibull.exe"
387   Running 1 test case...
388   Tolerance for type float is 0.002 %
389   Tolerance for type float is 5.96046e-005 %
390   Tolerance for type double is 0.002 %
391   Tolerance for type double is 1.11022e-013 %
392   Tolerance for type long double is 0.002 %
393   Tolerance for type long double is 1.11022e-013 %
394   Tolerance for type class boost::math::concepts::real_concept is 0.002 %
395   Tolerance for type class boost::math::concepts::real_concept is 1.11022e-013 %
396 
397   *** No errors detected
398 
399 
400 */
401 
402 
403 
404 
405