• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 ///////////////////////////////////////////////////////////////////////////////
2 //  Copyright 2012 John Maddock.
3 //  Copyright 2012 Phil Endecott
4 //  Distributed under the Boost
5 //  Software License, Version 1.0. (See accompanying file
6 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7 
8 #include <boost/multiprecision/cpp_int.hpp>
9 #include "arithmetic_backend.hpp"
10 #include <boost/chrono.hpp>
11 #include <boost/random/mersenne_twister.hpp>
12 #include <boost/random/uniform_int_distribution.hpp>
13 
14 #include <fstream>
15 #include <iomanip>
16 
17 template <class Clock>
18 struct stopwatch
19 {
20    typedef typename Clock::duration duration;
stopwatchstopwatch21    stopwatch()
22    {
23       m_start = Clock::now();
24    }
elapsedstopwatch25    duration elapsed()
26    {
27       return Clock::now() - m_start;
28    }
resetstopwatch29    void reset()
30    {
31       m_start = Clock::now();
32    }
33 
34  private:
35    typename Clock::time_point m_start;
36 };
37 
38 // Custom 128-bit maths used for exact calculation of the Delaunay test.
39 // Only the few operators actually needed here are implemented.
40 
41 struct int128_t
42 {
43    int64_t  high;
44    uint64_t low;
45 
int128_tint128_t46    int128_t() {}
int128_tint128_t47    int128_t(int32_t i) : high(i >> 31), low(static_cast<int64_t>(i)) {}
int128_tint128_t48    int128_t(uint32_t i) : high(0), low(i) {}
int128_tint128_t49    int128_t(int64_t i) : high(i >> 63), low(i) {}
int128_tint128_t50    int128_t(uint64_t i) : high(0), low(i) {}
51 };
52 
operator <<(int128_t val,int amt)53 inline int128_t operator<<(int128_t val, int amt)
54 {
55    int128_t r;
56    r.low  = val.low << amt;
57    r.high = val.low >> (64 - amt);
58    r.high |= val.high << amt;
59    return r;
60 }
61 
operator +=(int128_t & l,int128_t r)62 inline int128_t& operator+=(int128_t& l, int128_t r)
63 {
64    l.low += r.low;
65    bool carry = l.low < r.low;
66    l.high += r.high;
67    if (carry)
68       ++l.high;
69    return l;
70 }
71 
operator -(int128_t val)72 inline int128_t operator-(int128_t val)
73 {
74    val.low  = ~val.low;
75    val.high = ~val.high;
76    val.low += 1;
77    if (val.low == 0)
78       val.high += 1;
79    return val;
80 }
81 
operator +(int128_t l,int128_t r)82 inline int128_t operator+(int128_t l, int128_t r)
83 {
84    l += r;
85    return l;
86 }
87 
operator <(int128_t l,int128_t r)88 inline bool operator<(int128_t l, int128_t r)
89 {
90    if (l.high != r.high)
91       return l.high < r.high;
92    return l.low < r.low;
93 }
94 
mult_64x64_to_128(int64_t a,int64_t b)95 inline int128_t mult_64x64_to_128(int64_t a, int64_t b)
96 {
97    // Make life simple by dealing only with positive numbers:
98    bool neg = false;
99    if (a < 0)
100    {
101       neg = !neg;
102       a   = -a;
103    }
104    if (b < 0)
105    {
106       neg = !neg;
107       b   = -b;
108    }
109 
110    // Divide input into 32-bit halves:
111    uint32_t ah = a >> 32;
112    uint32_t al = a & 0xffffffff;
113    uint32_t bh = b >> 32;
114    uint32_t bl = b & 0xffffffff;
115 
116    // Long multiplication, with 64-bit temporaries:
117 
118    //            ah al
119    //          * bh bl
120    // ----------------
121    //            al*bl   (t1)
122    // +       ah*bl      (t2)
123    // +       al*bh      (t3)
124    // +    ah*bh         (t4)
125    // ----------------
126 
127    uint64_t t1 = static_cast<uint64_t>(al) * bl;
128    uint64_t t2 = static_cast<uint64_t>(ah) * bl;
129    uint64_t t3 = static_cast<uint64_t>(al) * bh;
130    uint64_t t4 = static_cast<uint64_t>(ah) * bh;
131 
132    int128_t r(t1);
133    r.high = t4;
134    r += int128_t(t2) << 32;
135    r += int128_t(t3) << 32;
136 
137    if (neg)
138       r = -r;
139 
140    return r;
141 }
142 
143 template <class R, class T>
mul_2n(R & r,const T & a,const T & b)144 BOOST_FORCEINLINE void mul_2n(R& r, const T& a, const T& b)
145 {
146    r = a;
147    r *= b;
148 }
149 
150 template <class B, boost::multiprecision::expression_template_option ET, class T>
mul_2n(boost::multiprecision::number<B,ET> & r,const T & a,const T & b)151 BOOST_FORCEINLINE void mul_2n(boost::multiprecision::number<B, ET>& r, const T& a, const T& b)
152 {
153    multiply(r, a, b);
154 }
155 
mul_2n(int128_t & r,const boost::int64_t & a,const boost::int64_t & b)156 BOOST_FORCEINLINE void mul_2n(int128_t& r, const boost::int64_t& a, const boost::int64_t& b)
157 {
158    r = mult_64x64_to_128(a, b);
159 }
160 
161 template <class Traits>
delaunay_test(int32_t ax,int32_t ay,int32_t bx,int32_t by,int32_t cx,int32_t cy,int32_t dx,int32_t dy)162 inline bool delaunay_test(int32_t ax, int32_t ay, int32_t bx, int32_t by,
163                           int32_t cx, int32_t cy, int32_t dx, int32_t dy)
164 {
165    // Test whether the quadrilateral ABCD's diagonal AC should be flipped to BD.
166    // This is the Cline & Renka method.
167    // Flip if the sum of the angles ABC and CDA is greater than 180 degrees.
168    // Equivalently, flip if sin(ABC + CDA) < 0.
169    // Trig identity: cos(ABC) * sin(CDA) + sin(ABC) * cos(CDA) < 0
170    // We can use scalar and vector products to find sin and cos, and simplify
171    // to the following code.
172    // Numerical robustness is important.  This code addresses it by performing
173    // exact calculations with large integer types.
174    //
175    // NOTE: This routine is limited to inputs with up to 30 BIT PRECISION, which
176    // is to say all inputs must be in the range [INT_MIN/2, INT_MAX/2].
177 
178    typedef typename Traits::i64_t  i64;
179    typedef typename Traits::i128_t i128;
180 
181    i64 cos_abc, t;
182    mul_2n(cos_abc, (ax - bx), (cx - bx)); // subtraction yields 31-bit values, multiplied to give 62-bit values
183    mul_2n(t, (ay - by), (cy - by));
184    cos_abc += t; // addition yields 63 bit value, leaving one left for the sign
185 
186    i64 cos_cda;
187    mul_2n(cos_cda, (cx - dx), (ax - dx));
188    mul_2n(t, (cy - dy), (ay - dy));
189    cos_cda += t;
190 
191    if (cos_abc >= 0 && cos_cda >= 0)
192       return false;
193    if (cos_abc < 0 && cos_cda < 0)
194       return true;
195 
196    i64 sin_abc;
197    mul_2n(sin_abc, (ax - bx), (cy - by));
198    mul_2n(t, (cx - bx), (ay - by));
199    sin_abc -= t;
200 
201    i64 sin_cda;
202    mul_2n(sin_cda, (cx - dx), (ay - dy));
203    mul_2n(t, (ax - dx), (cy - dy));
204    sin_cda -= t;
205 
206    i128 sin_sum, t128;
207    mul_2n(sin_sum, sin_abc, cos_cda); // 63-bit inputs multiplied to 126-bit output
208    mul_2n(t128, cos_abc, sin_cda);
209    sin_sum += t128; // Addition yields 127 bit result, leaving one bit for the sign
210 
211    return sin_sum < 0;
212 }
213 
214 struct dt_dat
215 {
216    int32_t ax, ay, bx, by, cx, cy, dx, dy;
217 };
218 
219 typedef std::vector<dt_dat> data_t;
220 data_t                      data;
221 
222 template <class Traits>
do_calc(const char * name)223 void do_calc(const char* name)
224 {
225    std::cout << "Running calculations for: " << name << std::endl;
226 
227    stopwatch<boost::chrono::high_resolution_clock> w;
228 
229    boost::uint64_t flips = 0;
230    boost::uint64_t calcs = 0;
231 
232    for (int j = 0; j < 1000; ++j)
233    {
234       for (data_t::const_iterator i = data.begin(); i != data.end(); ++i)
235       {
236          const dt_dat& d    = *i;
237          bool          flip = delaunay_test<Traits>(d.ax, d.ay, d.bx, d.by, d.cx, d.cy, d.dx, d.dy);
238          if (flip)
239             ++flips;
240          ++calcs;
241       }
242    }
243    double t = boost::chrono::duration_cast<boost::chrono::duration<double> >(w.elapsed()).count();
244 
245    std::cout << "Number of calculations = " << calcs << std::endl;
246    std::cout << "Number of flips = " << flips << std::endl;
247    std::cout << "Total execution time = " << t << std::endl;
248    std::cout << "Time per calculation = " << t / calcs << std::endl
249              << std::endl;
250 }
251 
252 template <class I64, class I128>
253 struct test_traits
254 {
255    typedef I64  i64_t;
256    typedef I128 i128_t;
257 };
258 
generate_quadrilateral()259 dt_dat generate_quadrilateral()
260 {
261    static boost::random::mt19937                    gen;
262    static boost::random::uniform_int_distribution<> dist(INT_MIN / 2, INT_MAX / 2);
263 
264    dt_dat result;
265 
266    result.ax = dist(gen);
267    result.ay = dist(gen);
268    result.bx = boost::random::uniform_int_distribution<>(result.ax, INT_MAX / 2)(gen); // bx is to the right of ax.
269    result.by = dist(gen);
270    result.cx = dist(gen);
271    result.cy = boost::random::uniform_int_distribution<>(result.cx > result.bx ? result.by : result.ay, INT_MAX / 2)(gen); // cy is below at least one of ay and by.
272    result.dx = boost::random::uniform_int_distribution<>(result.cx, INT_MAX / 2)(gen);                                     // dx is to the right of cx.
273    result.dy = boost::random::uniform_int_distribution<>(result.cx > result.bx ? result.by : result.ay, INT_MAX / 2)(gen); // cy is below at least one of ay and by.
274 
275    return result;
276 }
277 
load_data()278 static void load_data()
279 {
280    for (unsigned i = 0; i < 100000; ++i)
281       data.push_back(generate_quadrilateral());
282 }
283 
main()284 int main()
285 {
286    using namespace boost::multiprecision;
287    std::cout << "loading data...\n";
288    load_data();
289 
290    std::cout << "calculating...\n";
291 
292    do_calc<test_traits<boost::int64_t, boost::int64_t> >("int64_t, int64_t");
293    do_calc<test_traits<number<arithmetic_backend<boost::int64_t>, et_off>, number<arithmetic_backend<boost::int64_t>, et_off> > >("arithmetic_backend<int64_t>, arithmetic_backend<int64_t>");
294    do_calc<test_traits<boost::int64_t, number<arithmetic_backend<boost::int64_t>, et_off> > >("int64_t, arithmetic_backend<int64_t>");
295    do_calc<test_traits<number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off>, number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off> > >("multiprecision::int64_t, multiprecision::int64_t");
296 
297    do_calc<test_traits<boost::int64_t, ::int128_t> >("int64_t, int128_t");
298    do_calc<test_traits<boost::int64_t, boost::multiprecision::int128_t> >("int64_t, boost::multiprecision::int128_t");
299    do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128, 128, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_on> > >("int64_t, int128_t (ET)");
300    do_calc<test_traits<number<cpp_int_backend<64, 64, boost::multiprecision::signed_magnitude, boost::multiprecision::unchecked, void>, et_off>, boost::multiprecision::int128_t> >("multiprecision::int64_t, multiprecision::int128_t");
301 
302    do_calc<test_traits<boost::int64_t, cpp_int> >("int64_t, cpp_int");
303    do_calc<test_traits<boost::int64_t, number<cpp_int_backend<>, et_off> > >("int64_t, cpp_int (no ET's)");
304    do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128> > > >("int64_t, cpp_int(128-bit cache)");
305    do_calc<test_traits<boost::int64_t, number<cpp_int_backend<128>, et_off> > >("int64_t, cpp_int (128-bit Cache no ET's)");
306 
307    return 0;
308 }
309