• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 ///////////////////////////////////////////////////////////////
2 //  Copyright 2012 John Maddock. Distributed under the Boost
3 //  Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
5 
6 #ifdef _MSC_VER
7 #define _SCL_SECURE_NO_WARNINGS
8 #endif
9 
10 #include <boost/multiprecision/gmp.hpp>
11 #include <boost/multiprecision/cpp_int.hpp>
12 #include <boost/multiprecision/miller_rabin.hpp>
13 #include <boost/math/special_functions/prime.hpp>
14 #include <iostream>
15 #include <iomanip>
16 #include "test.hpp"
17 
18 template <class I>
test()19 void test()
20 {
21    //
22    // Very simple test program to verify that the GMP's Miller-Rabin
23    // implementation and this one agree on whether some random numbers
24    // are prime or not.  Of course these are probabilistic tests so there's
25    // no reason why they should actually agree - except the probability of
26    // disagreement for 25 trials is almost infinitely small.
27    //
28    using namespace boost::random;
29    using namespace boost::multiprecision;
30 
31    typedef I test_type;
32 
33    static const unsigned test_bits =
34        std::numeric_limits<test_type>::digits && (std::numeric_limits<test_type>::digits <= 256)
35            ? std::numeric_limits<test_type>::digits
36            : 128;
37 
38    independent_bits_engine<mt11213b, test_bits, test_type> gen;
39    //
40    // We must use a different generator for the tests and number generation, otherwise
41    // we get false positives.  Further we use the same random number engine for the
42    // Miller Rabin test as GMP uses internally:
43    //
44    mt19937 gen2;
45 
46    //
47    // Begin by testing the primes in our table as all these should return true:
48    //
49    for (unsigned i = 1; i < boost::math::max_prime; ++i)
50    {
51       BOOST_TEST(miller_rabin_test(test_type(boost::math::prime(i)), 25, gen));
52       BOOST_TEST(mpz_probab_prime_p(mpz_int(boost::math::prime(i)).backend().data(), 25));
53    }
54    //
55    // Now test some random values and compare GMP's native routine with ours.
56    //
57    for (unsigned i = 0; i < 10000; ++i)
58    {
59       test_type n              = gen();
60       bool      is_prime_boost = miller_rabin_test(n, 25, gen2);
61       bool      is_gmp_prime   = mpz_probab_prime_p(mpz_int(n).backend().data(), 25) ? true : false;
62       if (is_prime_boost && is_gmp_prime)
63       {
64          std::cout << "We have a prime: " << std::hex << std::showbase << n << std::endl;
65       }
66       if (is_prime_boost != is_gmp_prime)
67          std::cout << std::hex << std::showbase << "n = " << n << std::endl;
68       BOOST_CHECK_EQUAL(is_prime_boost, is_gmp_prime);
69    }
70 }
71 
main()72 int main()
73 {
74    using namespace boost::multiprecision;
75 
76    test<mpz_int>();
77    test<number<gmp_int, et_off> >();
78    test<boost::uint64_t>();
79    test<boost::uint32_t>();
80 
81    test<cpp_int>();
82    test<number<cpp_int_backend<64, 64, unsigned_magnitude, checked, void>, et_off> >();
83    test<checked_uint128_t>();
84    test<checked_uint1024_t>();
85 
86    return boost::report_errors();
87 }
88