1 ///////////////////////////////////////////////////////////////
2 // Copyright 2012 John Maddock. Distributed under the Boost
3 // Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt
5
6 #ifdef _MSC_VER
7 #define _SCL_SECURE_NO_WARNINGS
8 #endif
9
10 #include <boost/multiprecision/gmp.hpp>
11 #include <boost/multiprecision/cpp_int.hpp>
12 #include <boost/multiprecision/miller_rabin.hpp>
13 #include <boost/math/special_functions/prime.hpp>
14 #include <iostream>
15 #include <iomanip>
16 #include "test.hpp"
17
18 template <class I>
test()19 void test()
20 {
21 //
22 // Very simple test program to verify that the GMP's Miller-Rabin
23 // implementation and this one agree on whether some random numbers
24 // are prime or not. Of course these are probabilistic tests so there's
25 // no reason why they should actually agree - except the probability of
26 // disagreement for 25 trials is almost infinitely small.
27 //
28 using namespace boost::random;
29 using namespace boost::multiprecision;
30
31 typedef I test_type;
32
33 static const unsigned test_bits =
34 std::numeric_limits<test_type>::digits && (std::numeric_limits<test_type>::digits <= 256)
35 ? std::numeric_limits<test_type>::digits
36 : 128;
37
38 independent_bits_engine<mt11213b, test_bits, test_type> gen;
39 //
40 // We must use a different generator for the tests and number generation, otherwise
41 // we get false positives. Further we use the same random number engine for the
42 // Miller Rabin test as GMP uses internally:
43 //
44 mt19937 gen2;
45
46 //
47 // Begin by testing the primes in our table as all these should return true:
48 //
49 for (unsigned i = 1; i < boost::math::max_prime; ++i)
50 {
51 BOOST_TEST(miller_rabin_test(test_type(boost::math::prime(i)), 25, gen));
52 BOOST_TEST(mpz_probab_prime_p(mpz_int(boost::math::prime(i)).backend().data(), 25));
53 }
54 //
55 // Now test some random values and compare GMP's native routine with ours.
56 //
57 for (unsigned i = 0; i < 10000; ++i)
58 {
59 test_type n = gen();
60 bool is_prime_boost = miller_rabin_test(n, 25, gen2);
61 bool is_gmp_prime = mpz_probab_prime_p(mpz_int(n).backend().data(), 25) ? true : false;
62 if (is_prime_boost && is_gmp_prime)
63 {
64 std::cout << "We have a prime: " << std::hex << std::showbase << n << std::endl;
65 }
66 if (is_prime_boost != is_gmp_prime)
67 std::cout << std::hex << std::showbase << "n = " << n << std::endl;
68 BOOST_CHECK_EQUAL(is_prime_boost, is_gmp_prime);
69 }
70 }
71
main()72 int main()
73 {
74 using namespace boost::multiprecision;
75
76 test<mpz_int>();
77 test<number<gmp_int, et_off> >();
78 test<boost::uint64_t>();
79 test<boost::uint32_t>();
80
81 test<cpp_int>();
82 test<number<cpp_int_backend<64, 64, unsigned_magnitude, checked, void>, et_off> >();
83 test<checked_uint128_t>();
84 test<checked_uint1024_t>();
85
86 return boost::report_errors();
87 }
88