• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
2<html><meta http-equiv="Content-Type" content="text/html; charset=utf-8">
3<title>Narrow contracts - Boost.Outcome documentation</title>
4<link rel="stylesheet" href="../css/boost.css" type="text/css">
5<meta name="generator" content="Hugo 0.52 with Boostdoc theme">
6<meta name="viewport" content="width=device-width,initial-scale=1.0"/>
7
8<link rel="icon" href="../images/favicon.ico" type="image/ico"/>
9<body><div class="spirit-nav">
10<a accesskey="p" href="../motivation/plug_error_code2.html"><img src="../images/prev.png" alt="Prev"></a>
11    <a accesskey="u" href="../motivation.html"><img src="../images/up.png" alt="Up"></a>
12    <a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="../tutorial.html"><img src="../images/next.png" alt="Next"></a></div><div id="content">
13  <div class="titlepage"><div><div><h1 style="clear: both">Narrow contracts</h1></div></div></div>
14  <p>A program&rsquo;s thread of execution can enter a &ldquo;disappointing&rdquo; state for two reasons:</p>
15
16<ul>
17<li>due to disappointing situation in the environment (operating system, external input),
18or</li>
19<li>due to a bug in the program.</li>
20</ul>
21
22<p>The key to handling these disappointments correctly is to identify to which
23category they belong, and use the tools adequate for a given category. In this
24tutorial when we say &ldquo;error&rdquo; or &ldquo;failure&rdquo; we only refer to the first category.
25A bug is not an error.</p>
26
27<p>A bug is when a program is something else than what it is supposed to be. The
28correct action in that case is to change the program so that it is exactly what
29it is supposed to be. Unfortunately, sometimes the symptoms of a bug are only
30detected when the system is running and at this point no code changes are possible.</p>
31
32<p>In contrast, a failure is when a correct function in a correct program reflects
33some disappointing behavior in the environment. The correct action in that case
34is for the program to take a control path different than usual, which will likely
35cancel some operations and will likely result in different communication with the
36outside world.</p>
37
38<p>Symptoms of bugs can sometimes be detected during compilation or static program
39analysis or at run-time when observing certain values of objects that are declared
40never to be valid at certain points. One classical example is passing a null pointer
41to functions that expect a pointer to a valid object:</p>
42<div class="highlight"><pre class="chroma"><code class="language-c++" data-lang="c++"><span class="kt">int</span> <span class="nf">f</span><span class="p">(</span><span class="kt">int</span> <span class="o">*</span> <span class="n">pi</span><span class="p">)</span> <span class="c1">// expects: pi != nullptr
43</span><span class="c1"></span><span class="p">{</span>
44  <span class="k">return</span> <span class="o">*</span><span class="n">pi</span> <span class="o">+</span> <span class="mi">1</span><span class="p">;</span>
45<span class="p">}</span>
46</code></pre></div>
47<p>Passing a null pointer where it is not expected is so common a bug that tools
48are very good at finding them. For instance, static analyzers will usually detect
49it without even executing your code. Similarly, tools like undefined behavior
50sanitizers will compile a code as the one above so that a safety check is performed
51to check if the pointer is null, and an error message will be logged and program
52optionally terminated.</p>
53
54<p>More, compilers can perform optimizations based on undefined behavior caused by
55dereferencing a null pointer. In the following code:</p>
56<div class="highlight"><pre class="chroma"><code class="language-c++" data-lang="c++"><span class="n">pair</span><span class="o">&lt;</span><span class="kt">int</span><span class="p">,</span> <span class="kt">int</span><span class="o">&gt;</span> <span class="n">g</span><span class="p">(</span><span class="kt">int</span> <span class="o">*</span> <span class="n">pi</span><span class="p">)</span> <span class="c1">// expects: pi != nullptr
57</span><span class="c1"></span><span class="p">{</span>
58  <span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="o">*</span><span class="n">pi</span> <span class="o">+</span> <span class="mi">1</span><span class="p">;</span>
59  <span class="kt">int</span> <span class="n">j</span> <span class="o">=</span> <span class="p">(</span><span class="n">pi</span> <span class="o">==</span> <span class="k">nullptr</span><span class="p">)</span> <span class="o">?</span> <span class="mi">1</span> <span class="o">:</span> <span class="mi">0</span><span class="p">;</span>
60  <span class="k">return</span> <span class="p">{</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">};</span>
61<span class="p">}</span>
62</code></pre></div>
63<p>The compiler can see that if <code>pi</code> is null, the program would have undefined
64behavior. Since undefined behavior is required by the C++ standard to never
65be the programmer&rsquo;s intention, the compiler
66assumes that apparently this function is never called with <code>pi == nullptr</code>. If so,
67<code>j</code> is always <code>0</code> and the code can be transformed to a faster one:</p>
68<div class="highlight"><pre class="chroma"><code class="language-c++" data-lang="c++"><span class="n">pair</span><span class="o">&lt;</span><span class="kt">int</span><span class="p">,</span> <span class="kt">int</span><span class="o">&gt;</span> <span class="n">g</span><span class="p">(</span><span class="kt">int</span> <span class="o">*</span> <span class="n">pi</span><span class="p">)</span> <span class="c1">// expects: pi != nullptr
69</span><span class="c1"></span><span class="p">{</span>
70  <span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="o">*</span><span class="n">pi</span> <span class="o">+</span> <span class="mi">1</span><span class="p">;</span>
71  <span class="kt">int</span> <span class="n">j</span> <span class="o">=</span> <span class="mi">0</span><span class="p">;</span>
72  <span class="k">return</span> <span class="p">{</span><span class="n">i</span><span class="p">,</span> <span class="n">j</span><span class="p">};</span>
73<span class="p">}</span>
74</code></pre></div>
75<p>Functions like the one above that declare that certain values of input parameters
76must not be passed to them are said to have a <em>narrow contract</em>.</p>
77
78<p>Compilers give you non-standard tools to tell them about narrow contracts, so
79that they can detect it and make use of it the same way as they are detecting
80invalid null pointers. For instance, if a function in your library takes an <code>int</code>
81and declares that the value of this <code>int</code> must never be negative. You can use
82<code>__builtin_trap()</code> available in GCC and clang:</p>
83<div class="highlight"><pre class="chroma"><code class="language-c++" data-lang="c++"><span class="kt">void</span> <span class="nf">h</span><span class="p">(</span><span class="kt">int</span> <span class="n">i</span><span class="p">)</span> <span class="c1">// expects: i &gt;= 0
84</span><span class="c1"></span><span class="p">{</span>
85  <span class="k">if</span> <span class="p">(</span><span class="n">i</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">)</span> <span class="n">__builtin_trap</span><span class="p">();</span>
86
87  <span class="c1">// normal program logic follows ...
88</span><span class="c1"></span><span class="p">}</span>
89</code></pre></div>
90<p>This instruction when hit, causes the program to exit abnormally, which means:</p>
91
92<ul>
93<li>a debugger can be launched,</li>
94<li>static analyzer can warn you if it can detect a program flow that reaches this
95point,</li>
96<li>UB-sanitizer can log error message when it hits it.</li>
97</ul>
98
99<p>Another tool you could use is <code>__builtin_unreachable()</code>, also available in GCC
100and clang:</p>
101<div class="highlight"><pre class="chroma"><code class="language-c++" data-lang="c++"><span class="kt">void</span> <span class="nf">h</span><span class="p">(</span><span class="kt">int</span> <span class="n">i</span><span class="p">)</span> <span class="c1">// expects: i &gt;= 0
102</span><span class="c1"></span><span class="p">{</span>
103  <span class="k">if</span> <span class="p">(</span><span class="n">i</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">)</span> <span class="n">__builtin_unreachable</span><span class="p">();</span>
104
105  <span class="c1">// normal program logic follows ...
106</span><span class="c1"></span><span class="p">}</span>
107</code></pre></div>
108<p>This gives a hint to the tools: the programmer guarantees that the program flow
109will never reach to the point of executing it. In other words, it is undefined
110behavior if control reaches this point. Compiler and other tools can take this
111for granted. This way they can deduce that expression <code>i &lt; 0</code> will never be true,
112and they can further use this assumption to issue warnings or to optimize the code.
113UB-sanitizers can use it to inject a log message and terminate if this point is
114nonetheless reached.</p>
115
116<p>Allowing for some input values to be invalid works similarly to cyclic redundancy
117checks. It allows for the possibility to observe the symptoms of the bugs (not
118the bugs themselves), and if the symptom is revealed the hunt for the bug can start.
119This is not only tools that can now easily detect symptoms of bugs, but also
120humans during the code review. A reviewer can now say, &ldquo;hey, function <code>h()</code> is
121expecting a non-negative value, but this <code>i</code> is actually <code>-1</code>; maybe you wanted
122to pass <code>j</code> instead?&ldquo;.</p>
123
124
125        </div><p><small>Last revised: April 26, 2019 at 17:43:41 &#43;0200</small></p>
126<hr>
127<div class="spirit-nav">
128<a accesskey="p" href="../motivation/plug_error_code2.html"><img src="../images/prev.png" alt="Prev"></a>
129    <a accesskey="u" href="../motivation.html"><img src="../images/up.png" alt="Up"></a>
130    <a accesskey="h" href="../index.html"><img src="../images/home.png" alt="Home"></a><a accesskey="n" href="../tutorial.html"><img src="../images/next.png" alt="Next"></a></div></body>
131</html>
132