• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1Ufuncs
2======
3
4Ufuncs or universal functions operate on ndarrays element by element, and support array broadcasting, type casting, and other features.
5
6Lets try and see how we can use the binary and unary ufunc methods
7
8After the neccessary includes ::
9
10  #include <boost/python/numpy.hpp>
11  #include <iostream>
12
13  namespace p = boost::python;
14  namespace np = boost::python::numpy;
15
16Now we create the structs necessary to implement the ufuncs. The typedefs *must* be made as the ufunc generators take these typedefs as inputs and return an error otherwise ::
17
18  struct UnarySquare
19  {
20    typedef double argument_type;
21    typedef double result_type;
22
23    double operator()(double r) const { return r * r;}
24  };
25
26  struct BinarySquare
27  {
28    typedef double first_argument_type;
29    typedef double second_argument_type;
30    typedef double result_type;
31
32    double operator()(double a,double b) const { return (a*a + b*b) ; }
33  };
34
35Initialise the Python runtime and the numpy module ::
36
37  int main(int argc, char **argv)
38  {
39    Py_Initialize();
40    np::initialize();
41
42Now expose the struct UnarySquare to Python as a class, and let ud be the class object. ::
43
44    p::object ud = p::class_<UnarySquare, boost::shared_ptr<UnarySquare> >("UnarySquare");
45    ud.def("__call__", np::unary_ufunc<UnarySquare>::make());
46
47Let inst be an instance of the class ud ::
48
49    p::object inst = ud();
50
51Use the "__call__" method to call the overloaded () operator and print the value ::
52
53    std::cout << "Square of unary scalar 1.0 is " << p::extract<char const *>(p::str(inst.attr("__call__")(1.0))) << std::endl;
54
55Create an array in C++ ::
56
57    int arr[] = {1,2,3,4} ;
58
59
60..and use it to create the ndarray in Python ::
61
62    np::ndarray demo_array = np::from_data(arr, np::dtype::get_builtin<int>(),
63                                           p::make_tuple(4),
64					   p::make_tuple(4),
65					   p::object());
66
67Print out the demo array ::
68
69    std::cout << "Demo array is " << p::extract<char const *>(p::str(demo_array)) << std::endl;
70
71Call the "__call__" method to perform the operation and assign the value to result_array ::
72
73    p::object result_array = inst.attr("__call__")(demo_array);
74
75Print the resultant array ::
76
77    std::cout << "Square of demo array is " << p::extract<char const *>(p::str(result_array)) << std::endl;
78
79Lets try the same with a list ::
80
81    p::list li;
82    li.append(3);
83    li.append(7);
84
85Print out the demo list ::
86
87    std::cout << "Demo list is " << p::extract<char const *>(p::str(li)) << std::endl;
88
89Call the ufunc for the list ::
90
91    result_array = inst.attr("__call__")(li);
92
93And print the list out ::
94
95    std::cout << "Square of demo list is " << p::extract<char const *>(p::str(result_array)) << std::endl;
96
97Now lets try Binary ufuncs. Again, expose the struct BinarySquare to Python as a class, and let ud be the class object ::
98
99    ud = p::class_<BinarySquare, boost::shared_ptr<BinarySquare> >("BinarySquare");
100    ud.def("__call__", np::binary_ufunc<BinarySquare>::make());
101
102And initialise ud ::
103
104    inst = ud();
105
106Print the two input lists ::
107
108    std::cout << "The two input list for binary ufunc are " << std::endl
109              << p::extract<char const *>(p::str(demo_array)) << std::endl
110	      << p::extract<char const *>(p::str(demo_array)) << std::endl;
111
112Call the binary ufunc taking demo_array as both inputs ::
113
114    result_array = inst.attr("__call__")(demo_array,demo_array);
115
116And print the output ::
117
118    std::cout << "Square of list with binary ufunc is " << p::extract<char const *>(p::str(result_array)) << std::endl;
119  }
120
121