• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section boost/python/iterator.hpp]
2[section Introduction]
3<boost/python/iterator.hpp> provides types and functions for creating [@http://www.python.org/doc/current/lib/typeiter.html Python iterators] from C++ Containers and Iterators. Note that if your `class_` supports random-access iterators, implementing [@http://www.python.org/doc/current/ref/sequence-types.html#l2h-128 __getitem__] (also known as the Sequence Protocol) may serve you better than using this facility: Python will automatically create an iterator type for you (see [@http://www.python.org/doc/current/lib/built-in-funcs.html#l2h-35 `iter()`]), and each access can be range-checked, leaving no possiblity of accessing through an invalidated C++ iterator.
4[endsect]
5[section Class template `iterator`]
6Instances of `iterator<C,P>` hold a reference to a callable Python object which, when invoked from Python, expects a single argument c convertible to C and creates a Python iterator that traverses `[c.begin(), c.end())`. The optional [link concepts.callpolicies CallPolicies] `P` can be used to control how elements are returned during iteration.
7
8In the table below, c is an instance of Container.
9
10[table
11[[Template Parameter][Requirements][Semantics][Default]]
12[[Container][`[c.begin(),c.end()`) is a valid Iterator range.][The result will convert its argument to c and call c.begin() and c.end() to acquire iterators. To invoke Container's const `begin()` and `end()` functions, make it const.][ ]]
13[[NextPolicies][A default-constructible model of [link concepts.callpolicies CallPolicies].][Applied to the resulting iterators' `next()` method.][An unspecified model of [link concepts.callpolicies CallPolicies] which always makes a copy of the result of deferencing the underlying C++ iterator]]
14]
15
16``
17namespace boost { namespace python
18  {
19    template <class Container, class NextPolicies = unspecified>
20    struct iterator : object
21    {
22      iterator();
23    };
24  }}
25``
26[endsect]
27[section Class template iterator constructors]
28``iterator()``
29
30[variablelist
31[[Effects][Initializes its base class with the result of:
32``range<NextPolicies>(&iterators<Container>::begin, &iterators<Container>::end)``]]
33[[Postconditions][`this->get()` points to a Python callable object which creates a Python iterator as described above.]]
34[[Rationale][Provides an easy way to create iterators for the common case where a C++ class being wrapped provides `begin()` and `end()`.]]
35]
36[endsect]
37[section Class template `iterators`]
38A utility class template which provides a way to reliably call its argument's `begin()` and `end()` member functions. Note that there is no portable way to take the address of a member function of a C++ standard library container, so `iterators<>` can be particularly helpful when wrapping them.
39
40In the table below, x is an instance of C.
41[table
42[[Required Valid Expression][Type]]
43[[x.begin()][Convertible to C::const_iterator if C is a const type; convertible to C::iterator otherwise.]]
44[[x.end()][Convertible to C::const_iterator if C is a const type; convertible to C::iterator otherwise.]]
45]
46``
47namespace boost { namespace python
48{
49  template <class C>
50  struct iterators
51  {
52      typedef typename C::const_iterator iterator;
53      static iterator begin(C& x);
54      static iterator end(C& x);
55  };
56}}
57``
58[endsect]
59[section Class template iterators nested types]
60If C is a const type,``typedef typename C::const_iterator iterator;``
61Otherwise: ``typedef typename C::iterator iterator;``
62[endsect]
63[section Class template iterators static functions]
64``static iterator begin(C&);``
65[variablelist [[Returns][`x.begin()`]]]
66``static iterator end(C&);``
67[variablelist [[Returns][`x.end()`]]]
68[endsect]
69[section Functions]
70``
71template <class NextPolicies, class Target, class Accessor1, class Accessor2>
72object range(Accessor1 start, Accessor2 finish);
73
74template <class NextPolicies, class Accessor1, class Accessor2>
75object range(Accessor1 start, Accessor2 finish);
76
77template <class Accessor1, class Accessor2>
78object range(Accessor1 start, Accessor2 finish);
79``
80[variablelist
81[[Requires][ NextPolicies is a default-constructible model of [link concepts.callpolicies CallPolicies].]]
82[[Effects][The first form creates a Python callable object which, when invoked, converts its argument to a Target object x, and creates a Python iterator which traverses `[bind(start,_1)(x), bind(finish,_1)(x))`, applying NextPolicies to the iterator's `next()` function.
83The second form is identical to the first, except that Target is deduced from Accessor1 as follows:
84
85# If Accessor1 is a function type, Target is the type of its first argument.
86# If Accessor1 is a data member pointer of the form `R (T::*)`, Target is identical to `T`.
87# If Accessor1 is a member function pointer of the form `R (T::*)(arguments...)  cv-opt`, where cv-opt is an optional cv-qualifier, Target is identical to `T`.
88
89The third form is identical to the second, except that NextPolicies is an unspecified model of [link concepts.callpolicies CallPolicies] which always makes a copy of the result of deferencing the underlying C++ iterator
90
91]]
92[[Rationale][The use of `boost::bind()` allows C++ iterators to be accessed through functions, member functions or data member pointers. Customization of NextPolicies (e.g. using [link function_invocation_and_creation.models_of_callpolicies.boost_python_return_internal_ref.class_template_return_internal_r return_internal_reference]) is useful when it is expensive to copy sequence elements of a wrapped class type. Customization of Target is useful when Accessor1 is a function object, or when a base class of the intended target type would otherwise be deduced.]]
93]
94[endsect]
95[section Example]
96``
97#include <boost/python/module.hpp>
98#include <boost/python/class.hpp>
99
100#include <vector>
101
102using namespace boost::python;
103BOOST_PYTHON_MODULE(demo)
104{
105    class_<std::vector<double> >("dvec")
106        .def("__iter__", iterator<std::vector<double> >())
107        ;
108}
109``
110[endsect]
111[endsect]
112