• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Ankit Daftery 2011-2012.
2 // Distributed under the Boost Software License, Version 1.0.
3 //    (See accompanying file LICENSE_1_0.txt or copy at
4 //          http://www.boost.org/LICENSE_1_0.txt)
5 
6 /**
7  *  @brief An example to show how to create ndarrays using arbitrary Python sequences.
8  *
9  *  The Python sequence could be any object whose __array__ method returns an array, or any
10  *  (nested) sequence.  This example also shows how to create arrays using both unit and
11  *  non-unit strides.
12  */
13 
14 #include <boost/python/numpy.hpp>
15 #include <iostream>
16 
17 namespace p = boost::python;
18 namespace np = boost::python::numpy;
19 
20 #if _MSC_VER
21 using boost::uint8_t;
22 #endif
23 
main(int argc,char ** argv)24 int main(int argc, char **argv)
25 {
26   // Initialize the Python runtime.
27   Py_Initialize();
28   // Initialize NumPy
29   np::initialize();
30   // Create an ndarray from a simple tuple
31   p::object tu = p::make_tuple('a','b','c') ;
32   np::ndarray example_tuple = np::array (tu) ;
33   // and from a list
34   p::list l ;
35   np::ndarray example_list = np::array (l) ;
36   // Optionally, you can also specify a dtype
37   np::dtype dt = np::dtype::get_builtin<int>();
38   np::ndarray example_list1 = np::array (l,dt);
39   // You can also create an array by supplying data.First,create an integer array
40   int data[] = {1,2,3,4} ;
41   // Create a shape, and strides, needed by the function
42   p::tuple shape = p::make_tuple(4) ;
43   p::tuple stride = p::make_tuple(4) ;
44   // The function also needs an owner, to keep track of the data array passed. Passing none is dangerous
45   p::object own ;
46   // The from_data function takes the data array, datatype,shape,stride and owner as arguments
47   // and returns an ndarray
48   np::ndarray data_ex = np::from_data(data,dt,shape,stride,own);
49   // Print the ndarray we created
50   std::cout << "Single dimensional array ::" << std::endl << p::extract < char const * > (p::str(data_ex)) << std::endl ;
51   // Now lets make an 3x2 ndarray from a multi-dimensional array using non-unit strides
52   // First lets create a 3x4 array of 8-bit integers
53   uint8_t mul_data[][4] = {{1,2,3,4},{5,6,7,8},{1,3,5,7}};
54   // Now let's create an array of 3x2 elements, picking the first and third elements from each row
55   // For that, the shape will be 3x2
56   shape = p::make_tuple(3,2) ;
57   // The strides will be 4x2 i.e. 4 bytes to go to the next desired row, and 2 bytes to go to the next desired column
58   stride = p::make_tuple(4,2) ;
59   // Get the numpy dtype for the built-in 8-bit integer data type
60   np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
61   // First lets create and print out the ndarray as is
62   np::ndarray mul_data_ex = np::from_data(mul_data,dt1, p::make_tuple(3,4),p::make_tuple(4,1),p::object());
63   std::cout << "Original multi dimensional array :: " << std::endl << p::extract < char const * > (p::str(mul_data_ex)) << std::endl ;
64   // Now create the new ndarray using the shape and strides
65   mul_data_ex = np::from_data(mul_data,dt1, shape,stride,p::object());
66   // Print out the array we created using non-unit strides
67   std::cout << "Selective multidimensional array :: "<<std::endl << p::extract < char const * > (p::str(mul_data_ex)) << std::endl ;
68 
69 }
70 
71 
72