• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<title>Functional</title>
4<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
5<link rel="stylesheet" href="theme/style.css" type="text/css">
6</head>
7
8<body>
9<table width="100%" border="0" background="theme/bkd2.gif" cellspacing="2">
10  <tr>
11    <td width="10">
12    </td>
13    <td width="85%"> <font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>Functional</b></font>
14    </td>
15    <td width="112"><a href="http://spirit.sf.net"><img src="theme/spirit.gif" width="112" height="48" align="right" border="0"></a></td>
16  </tr>
17</table>
18<br>
19<table border="0">
20  <tr>
21    <td width="10"></td>
22    <td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
23    <td width="30"><a href="parametric_parsers.html"><img src="theme/l_arr.gif" border="0"></a></td>
24    <td width="30"><a href="phoenix.html"><img src="theme/r_arr.gif" border="0"></a></td>
25  </tr>
26</table>
27<p>If you look more closely, you'll notice that Spirit is all about composition
28  of <i>parser functions</i>. A parser is just a function that accepts a scanner
29  and returns a match. Parser <i>functions</i> are composed to form increasingly
30  complex <i>higher order forms</i>. Notice too that the parser, albeit an object,
31  is immutable and constant. All primitive and composite parser objects are <tt>const</tt>.
32  The parse member function is even declared as <tt>const</tt>:</p>
33<pre>
34    <code><span class=keyword>template </span><span class=special>&lt;</span><span class=keyword>typename </span><span class=identifier>ScannerT</span><span class=special>&gt;
35    </span><span class=keyword>typename </span><span class=identifier>parser_result</span><span class=special>&lt;</span><span class=identifier>self_t</span><span class=special>, </span><span class=identifier>ScannerT</span><span class=special>&gt;::</span><span class=identifier>type
36    </span><span class=identifier>parse</span><span class=special>(</span><span class=identifier>ScannerT </span><span class=keyword>const</span><span class=special>&amp; </span><span class=identifier>scan</span><span class=special>) </span><span class=keyword>const</span><span class=special>;</span></code></pre>
37<p> In all accounts, this looks and feels a lot like <b>Functional Programming</b>.
38  And indeed it is. Spirit is by all means an application of Functional programming
39  in the imperative C++ domain. In Haskell, for example, there is what are called
40  <a href="references.html#combinators">parser combinators</a> which are strikingly
41  similar to the approach taken by Spirit- parser functions which are composed
42  using various operators to create higher order parser functions that model a
43  top-down recursive descent parser. Those smart Haskell folks have been doing
44  this way before Spirit.</p>
45<p> Functional style programming (or FP) libraries are gaining momentum in the
46  C++ community. Certainly, we'll see more of FP in Spirit now and in the future.
47  Actually, if one looks more closely, even the C++ standard library has an FP
48  flavor. Stealthily beneath the core of the standard C++ library, a closer look
49  into STL gives us a glimpse of a truly FP paradigm already in place. It is obvious
50  that the authors of STL know and practice FP.</p>
51
52<h2>Semantic Actions in the FP Perspective</h2>
53
54<h3>STL style FP</h3>
55<p> A more obvious application of STL-style FP in Spirit is the semantic action.
56  What is STL-style FP? It is primarily the use of functors that can be composed
57  to form higher order functors.</p>
58<table width="80%" border="0" align="center">
59  <tr>
60    <td class="note_box"> <img src="theme/note.gif" width="16" height="16"> <strong>Functors</strong><br>
61      <br>
62      A Function Object, or Functor is simply any object that can be called as
63      if it is a function. An ordinary function is a function object, and so is
64      a function pointer; more generally, so is an object of a class that defines
65      operator(). </td>
66  </tr>
67</table>
68<p> This STL-style FP can be seen everywhere these days. The following example
69  is taken from <a href="https://www.boost.org/sgi/stl/">SGI's Standard Template
70  Library Programmer's Guide</a>:</p>
71<pre>
72    <code><span class=comment>//  Computes sin(x)/(x + DBL_MIN) for each element of a range.
73
74    </span><span class=identifier>transform</span><span class=special>(</span><span class=identifier>first</span><span class=special>, </span><span class=identifier>last</span><span class=special>, </span><span class=identifier>first</span><span class=special>,
75              </span><span class=identifier>compose2</span><span class=special>(</span><span class=identifier>divides</span><span class=special>&lt;</span><span class=keyword>double</span><span class=special>&gt;(),
76                       </span><span class=identifier>ptr_fun</span><span class=special>(</span><span class=identifier>sin</span><span class=special>),
77                       </span><span class=identifier>bind2nd</span><span class=special>(</span><span class=identifier>plus</span><span class=special>&lt;</span><span class=keyword>double</span><span class=special>&gt;(), </span><span class=identifier>DBL_MIN</span><span class=special>)));</span></code></pre>
78<p align="left"> Really, this is just <i>currying</i> in FP terminology.</p>
79<table width="80%" border="0" align="center">
80  <tr>
81    <td class="note_box"> <img src="theme/lens.gif" width="15" height="16"> <strong>Currying</strong><br>
82      <br>
83      What is &quot;currying&quot;, and where does it come from?<br>
84      <br>
85      Currying has its origins in the mathematical study of functions. It was
86      observed by Frege in 1893 that it suffices to restrict attention to functions
87      of a single argument. For example, for any two parameter function <tt>f(x,y)</tt>,
88      there is a one parameter function <tt>f'</tt> such that <tt>f'(x)</tt> is
89      a function that can be applied to y to give <tt>(f'(x))(y) = f (x,y)</tt>.
90      This corresponds to the well known fact that the sets <tt>(AxB -&gt; C)</tt>
91      and <tt>(A -&gt; (B -&gt; C))</tt> are isomorphic, where <tt>&quot;x&quot;</tt>
92      is cartesian product and <tt>&quot;-&gt;&quot;</tt> is function space. In
93      functional programming, function application is denoted by juxtaposition,
94      and assumed to associate to the left, so that the equation above becomes
95      <tt>f' x y = f(x,y)</tt>. </td>
96  </tr>
97</table>
98<p> In the context of Spirit, the same FP style functor composition may be applied
99  to semantic actions. <a href="../example/fundamental/full_calc.cpp">full_calc.cpp</a> is a good example. Here's a snippet from that sample:</p>
100<pre>
101    <code><span class=identifier>expression </span><span class=special>=
102        </span><span class=identifier>term
103        </span><span class=special>&gt;&gt; </span><span class=special>*(   </span><span class=special>(</span><span class=literal>'+' </span><span class=special>&gt;&gt; </span><span class=identifier>term</span><span class=special>)[</span><span class=identifier>make_op</span><span class=special>(</span><span class=identifier>plus</span><span class=special>&lt;</span><span class=keyword>long</span><span class=special>&gt;(), </span><span class=identifier>self</span><span class=special>.</span><span class=identifier>eval</span><span class=special>)]
104            </span><span class=special>|   </span><span class=special>(</span><span class=literal>'-' </span><span class=special>&gt;&gt; </span><span class=identifier>term</span><span class=special>)[</span><span class=identifier>make_op</span><span class=special>(</span><span class=identifier>minus</span><span class=special>&lt;</span><span class=keyword>long</span><span class=special>&gt;(), </span><span class=identifier>self</span><span class=special>.</span><span class=identifier>eval</span><span class=special>)]
105            </span><span class=special>)
106            </span><span class=special>;</span></code></pre>
107
108<p> <img height="16" width="15" src="theme/lens.gif"> The full source code can be <a href="../example/fundamental/full_calc.cpp">viewed here</a>. This is part of the Spirit distribution.</p>
109<h3>Boost style FP</h3>
110<p> Boost takes the FP paradigm further. There are libraries in boost that focus
111  specifically on Function objects and higher-order programming.</p>
112<table width="90%" border="0" align="center">
113  <tr>
114    <td class="table_title" colspan="14"> Boost FP libraries </td>
115  </tr>
116  <tr>
117    <td class="table_cells"><a href="http://www.boost.org/libs/bind/bind.html">bind</a>
118      and <a href="http://www.boost.org/libs/bind/mem_fn.html">mem_fn</a></td>
119    <td class="table_cells">Generalized binders for function/object/pointers and
120      member functions, from Peter Dimov</td>
121  </tr>
122  <td class="table_cells"><a href="http://www.boost.org/libs/function/index.html">function</a></td>
123  <td class="table_cells">Function object wrappers for deferred calls or callbacks,
124    from Doug Gregor</td>
125  </tr>
126  <td class="table_cells"><a href="http://www.boost.org/libs/functional/index.html">functional</a></td>
127  <td class="table_cells">Enhanced function object adaptors, from Mark Rodgers</td>
128  </tr>
129  <td class="table_cells"><a href="http://www.boost.org/libs/lambda/index.html">lambda</a></td>
130  <td class="table_cells">Define small unnamed function objects at the actual
131    call site, and more, from Jaakko J�rvi and Gary Powell</td>
132  </tr>
133  <td class="table_cells"><a href="http://www.boost.org/libs/bind/ref.html">ref</a></td>
134  <td class="table_cells">A utility library for passing references to generic
135    functions, from Jaako J�rvi, Peter Dimov, Doug Gregor, and Dave Abrahams</td>
136  </tr>
137</table>
138<p> The following is an example that uses boost <strong>Bind</strong> to use a
139  member function as a Spirit semantic action. You can see this example in full
140  in the file<a href="../example/fundamental/bind.cpp"> bind.cpp</a>.</p>
141<pre>
142    <code><span class=keyword>class </span><span class=identifier>list_parser
143    </span><span class=special>{
144    </span><span class=keyword>public</span><span class=special>:
145
146        </span><span class=keyword>typedef </span><span class=identifier>list_parser </span><span class=identifier>self_t</span><span class=special>;
147
148        </span><span class=keyword>bool
149        </span><span class=identifier>parse</span><span class=special>(</span><span class=keyword>char </span><span class=keyword>const</span><span class=special>* </span><span class=identifier>str</span><span class=special>)
150        </span><span class=special>{
151            </span><span class=keyword>return </span><span class=identifier>spirit</span><span class=special>::</span><span class=identifier>parse</span><span class=special>(</span><span class=identifier>str</span><span class=special>,
152
153                </span><span class=comment>//  Begin grammar
154                </span><span class=special>(
155                    </span><span class=identifier>real_p
156                    </span><span class=special>[
157                        </span><span class=identifier>bind</span><span class=special>(&amp;</span><span class=identifier>self_t</span><span class=special>::</span><span class=identifier>add</span><span class=special>, </span><span class=keyword>this</span><span class=special>, </span><span class=identifier>_1</span><span class=special>)
158                    </span><span class=special>]
159
160                    </span><span class=special>&gt;&gt; </span><span class=special>*(   </span><span class=literal>','
161                            </span><span class=special>&gt;&gt;  </span><span class=identifier>real_p
162                                </span><span class=special>[
163                                    </span><span class=identifier>bind</span><span class=special>(&amp;</span><span class=identifier>self_t</span><span class=special>::</span><span class=identifier>add</span><span class=special>, </span><span class=keyword>this</span><span class=special>, </span><span class=identifier>_1</span><span class=special>)
164                                </span><span class=special>]
165                        </span><span class=special>)
166                </span><span class=special>)
167                </span><span class=special>,
168                </span><span class=comment>//  End grammar
169
170                </span><span class=identifier>space_p</span><span class=special>).</span><span class=identifier>full</span><span class=special>;
171        </span><span class=special>}
172
173        </span><span class=keyword>void
174        </span><span class=identifier>add</span><span class=special>(</span><span class=keyword>double </span><span class=identifier>n</span><span class=special>)
175        </span><span class=special>{
176            </span><span class=identifier>v</span><span class=special>.</span><span class=identifier>push_back</span><span class=special>(</span><span class=identifier>n</span><span class=special>);
177        </span><span class=special>}
178
179        </span><span class=identifier>vector</span><span class=special>&lt;</span><span class=keyword>double</span><span class=special>&gt; </span><span class=identifier>v</span><span class=special>;
180    </span><span class=special>};
181</span></code></pre>
182<p>   <img height="16" width="15" src="theme/lens.gif"> The full source code can be <a href="../example/fundamental/bind.cpp">viewed here</a>. This is part of the Spirit distribution.</p>
183<p>This parser parses a comma separated list of real numbers and stores them
184  in a vector&lt;double&gt;. Boost.bind creates a Spirit conforming semantic action
185  from the <tt>list_parser</tt>'s member function <tt>add</tt>.</p>
186<h3>Lambda and Phoenix</h3>
187<p> There's a library, authored by yours truly, named <a href="../phoenix/index.html">Phoenix</a>.
188  While this is not officially part of the Spirit distribution, this library has
189  been used extensively to experiment on advanced FP techniques in C++. This library
190  is highly influenced by <a href="https://people.cs.umass.edu/~yannis/fc++/">FC++</a>
191  and boost Lambda (<a href="http://www.boost.org/libs/lambda/index.html">BLL</a>).</p>
192<table width="80%" border="0" align="center">
193  <tr>
194    <td class="note_box"> <b><img src="theme/lens.gif" width="15" height="16">
195      BLL</b><br>
196      <br>
197      In as much as Phoenix is influenced by boost Lambda (<a href="http://www.boost.org/libs/lambda/index.html">BLL</a>),
198      Phoenix innovations such as local variables, local functions and adaptable
199      closures, in turn influenced BLL. Currently, BLL is very similar to Phoenix.
200      Most importantly, BLL incorporated Phoenix's adaptable closures. In the
201      future, Spirit will fully support BLL. </td>
202  </tr>
203</table>
204<p> Phoenix allows one to write semantic actions inline in C++ through lambda
205  (an unnamed function) expressions. Here's a snippet from the <a href="../example/fundamental/phoenix_calc.cpp">phoenix_calc.cpp</a>  example:</p>
206<pre>
207    <code><span class=identifier>expression
208        </span><span class=special>=   </span><span class=identifier>term</span><span class=special>[</span><span class=identifier>expression</span><span class=special>.</span><span class=identifier>val </span><span class=special>= </span><span class=identifier>arg1</span><span class=special>]
209            </span><span class=special>&gt;&gt; </span><span class=special>*(   </span><span class=special>(</span><span class=literal>'+' </span><span class=special>&gt;&gt; </span><span class=identifier>term</span><span class=special>[</span><span class=identifier>expression</span><span class=special>.</span><span class=identifier>val </span><span class=special>+= </span><span class=identifier>arg1</span><span class=special>])
210                </span><span class=special>|   </span><span class=special>(</span><span class=literal>'-' </span><span class=special>&gt;&gt; </span><span class=identifier>term</span><span class=special>[</span><span class=identifier>expression</span><span class=special>.</span><span class=identifier>val </span><span class=special>-= </span><span class=identifier>arg1</span><span class=special>])
211                </span><span class=special>)
212        </span><span class=special>;
213
214    </span><span class=identifier>term
215        </span><span class=special>=   </span><span class=identifier>factor</span><span class=special>[</span><span class=identifier>term</span><span class=special>.</span><span class=identifier>val </span><span class=special>= </span><span class=identifier>arg1</span><span class=special>]
216            </span><span class=special>&gt;&gt; </span><span class=special>*(   </span><span class=special>(</span><span class=literal>'*' </span><span class=special>&gt;&gt; </span><span class=identifier>factor</span><span class=special>[</span><span class=identifier>term</span><span class=special>.</span><span class=identifier>val </span><span class=special>*= </span><span class=identifier>arg1</span><span class=special>])
217                </span><span class=special>|   </span><span class=special>(</span><span class=literal>'/' </span><span class=special>&gt;&gt; </span><span class=identifier>factor</span><span class=special>[</span><span class=identifier>term</span><span class=special>.</span><span class=identifier>val </span><span class=special>/= </span><span class=identifier>arg1</span><span class=special>])
218                </span><span class=special>)
219        </span><span class=special>;
220
221    </span><span class=identifier>factor
222        </span><span class=special>=   </span><span class=identifier>ureal_p</span><span class=special>[</span><span class=identifier>factor</span><span class=special>.</span><span class=identifier>val </span><span class=special>= </span><span class=identifier>arg1</span><span class=special>]
223        </span><span class=special>|   </span><span class=literal>'(' </span><span class=special>&gt;&gt; </span><span class=identifier>expression</span><span class=special>[</span><span class=identifier>factor</span><span class=special>.</span><span class=identifier>val </span><span class=special>= </span><span class=identifier>arg1</span><span class=special>] </span><span class=special>&gt;&gt; </span><span class=literal>')'
224        </span><span class=special>|   </span><span class=special>(</span><span class=literal>'-' </span><span class=special>&gt;&gt; </span><span class=identifier>factor</span><span class=special>[</span><span class=identifier>factor</span><span class=special>.</span><span class=identifier>val </span><span class=special>= </span><span class=special>-</span><span class=identifier>arg1</span><span class=special>])
225        </span><span class=special>|   </span><span class=special>(</span><span class=literal>'+' </span><span class=special>&gt;&gt; </span><span class=identifier>factor</span><span class=special>[</span><span class=identifier>factor</span><span class=special>.</span><span class=identifier>val </span><span class=special>= </span><span class=identifier>arg1</span><span class=special>])
226        </span><span class=special>;</span></code></pre>
227<p>  <img height="16" width="15" src="theme/lens.gif"> The full source code can be <a href="../example/fundamental/phoenix_calc.cpp">viewed here</a>. This is part of the Spirit distribution.</p>
228<p>You do not have to worry about the details for now. There is a lot going on here that needs to be explained. The succeeding chapters will be enlightening.</p>
229<p>Notice the use of lambda expressions such as:</p>
230<pre>
231    <code><span class=identifier>expression</span><span class=special>.</span><span class=identifier>val </span><span class=special>+= </span><span class=identifier>arg1</span></code></pre>
232<table width="80%" border="0" align="center">
233  <tr>
234    <td class="note_box"> <b><img src="theme/lens.gif" width="15" height="16">
235        <a name="lambda"></a>Lambda Expressions?</b><br>
236        <br>
237      Lambda expressions are actually unnamed partially applied functions where
238      placeholders (e.g. arg1, arg2) are provided in place of some of the arguments.
239      The reason this is called a lambda expression is that traditionally, such
240    placeholders are written using the Greek letter lambda <img src="theme/lambda.png" width="15" height="22">.</td>
241  </tr>
242</table>
243<p>where <tt>expression.val</tt> is a closure variable of the expression rule
244  (see <a href="closures.html">Closures</a>). <code><span class=identifier><tt>arg1</tt></span></code>
245  is a placeholder for the first argument that the semantic action will receive
246  (see <a href="../phoenix/doc/place_holders.html">Phoenix Place-holders</a>).
247  In Boost.Lambda (BLL), this corresponds to <tt>_1</tt>. </p>
248<table border="0">
249  <tr>
250    <td width="10"></td>
251    <td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td>
252    <td width="30"><a href="parametric_parsers.html"><img src="theme/l_arr.gif" border="0"></a></td>
253    <td width="30"><a href="phoenix.html"><img src="theme/r_arr.gif" border="0"></a></td>
254  </tr>
255</table>
256<br>
257<hr size="1">
258<p class="copyright">Copyright &copy; 1998-2003 Joel de Guzman<br>
259  <br>
260<font size="2">Use, modification and distribution is subject to the Boost Software
261    License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
262    http://www.boost.org/LICENSE_1_0.txt)</font></p>
263<p class="copyright">&nbsp;</p>
264</body>
265</html>
266