1<html> 2<head> 3<title>The Scanner and Parsing</title> 4<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> 5<link rel="stylesheet" href="theme/style.css" type="text/css"> 6</head> 7 8<body> 9<table width="100%" border="0" background="theme/bkd2.gif" cellspacing="2"> 10 <tr> 11 <td width="10"> 12 </td> 13 <td width="85%"> 14 <font size="6" face="Verdana, Arial, Helvetica, sans-serif"><b>The Scanner and Parsing</b></font> 15 </td> 16 <td width="112"><a href="http://spirit.sf.net"><img src="theme/spirit.gif" width="112" height="48" align="right" border="0"></a></td> 17 </tr> 18</table> 19<br> 20<table border="0"> 21 <tr> 22 <td width="10"></td> 23 <td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td> 24 <td width="30"><a href="directives.html"><img src="theme/l_arr.gif" border="0"></a></td> 25 <td width="30"><a href="grammar.html"><img src="theme/r_arr.gif" border="0"></a></td> 26 </tr> 27</table> 28<p>The <b>scanner</b>'s task is to feed the sequential input data stream to the 29 parser. The scanner extracts data from the input, parceling, potentially modifying 30 or filtering, and then finally relegating the result to individual parser elements 31 on demand until the input is exhausted. The scanner is composed of two STL conforming 32 forward iterators, first and last, where first is held by reference and last, 33 by value. The first iterator is held by reference to allow it to be re-positioned. 34 The following diagram illustrates what's happening:</p> 35<table width="62%" border="0" align="center"> 36 <tr> 37 <td><img src="theme/scanner1.png"></td> 38 </tr> 39</table> 40<p>The scanner manages various aspects of the parsing process through a set of 41 policies. There are three sets of policies that govern:</p> 42<blockquote> 43 <p><img src="theme/bullet.gif" width="12" height="12"> Iteration and filtering<br> 44 <img src="theme/bullet.gif" width="12" height="12"> Recognition and matching<br> 45 <img src="theme/bullet.gif" width="12" height="12"> Handling semantic actions</p> 46</blockquote> 47<p>These policies are mostly hidden from view and users generally need not know 48 about them. Advanced users might however provide their own policies that override 49 the ones that are already in place to fine tune the parsing process 50 to fit their own needs. We shall see how this can be done. This will be covered 51 in further detail later.</p> 52<p>The <tt>scanner</tt> is a template class expecting two parameters: <tt>IteratorT</tt>, 53 the iterator type and <tt>PoliciesT</tt>, its set of policies. <tt>IteratorT</tt> 54 defaults to <tt>char const*</tt> while <tt>PoliciesT</tt> defaults to <tt>scanner_policies<></tt>, 55 a predefined set of scanner policies that we can use straight out of the box.</p> 56<pre><code><font color="#000000"><span class=keyword> template</span><span class=special>< 57 </span><span class=keyword>typename </span><span class=identifier>IteratorT </span><span class=special>= </span><span class=keyword>char </span><span class=keyword>const</span><span class=special>*, 58 </span><span class=keyword>typename </span><span class=identifier>PoliciesT </span><span class=special>= </span><span class=identifier>scanner_policies</span><span class=special><> </span><span class=special>> 59 </span><span class=keyword>class </span><span class=identifier>scanner</span><span class=special>;</span></font></code></pre> 60<p>Spirit uses the same iterator concepts and interface formally defined by the 61 C++ Standard Template Library (STL). We can use iterators supplied by STL's 62 containers (e.g. <tt>list</tt>, <tt>vector</tt>, <tt>string</tt>, etc.) as is, 63 or perhaps write our own. Iterators can be as simple as a pointer (e.g. <tt>char 64 const<span class="operators">*</span></tt>). At the other end of the spectrum, 65 iterators can be quite complex; for instance, an iterator adapter that wraps 66 a lexer such as LEX.</p> 67<h2>The Free Parse Functions</h2> 68<p>The framework provides a couple of free functions to make parsing a snap. These 69 parser functions have two forms. The first form works on the <b>character level</b>. 70 The second works on the <b>phrase level</b> and asks for a <b>skip parser</b>.</p> 71<p>The <b>skip parser</b> is just about any parser primitive or composite. Its 72 purpose is to move the scanner's <tt>first</tt> iterator to valid tokens by 73 skipping white spaces. In C for instance, the tab <tt class="quotes">'\t'</tt>, 74 the newline <tt class="quotes">'\n'</tt>, return <tt><span class="quotes">'\r'</span></tt>, 75 space <tt class="quotes">' '</tt> and characters inside comments <tt class="quotes">/*...*/</tt> 76 are considered as white spaces.</p> 77<p><b>Character level parsing</b></p> 78<pre><code><font color="#000000"><span class=special> </span><span class=keyword>template </span><span class=special><</span><span class=keyword>typename </span><span class=identifier>IteratorT</span><span class=special>, </span><span class=keyword>typename </span><span class=identifier>DerivedT</span><span class=special>> 79 </span><span class=identifier>parse_info</span><span class=special><</span><span class=identifier>IteratorT</span><span class=special>> 80 </span><span class=identifier>parse 81 </span><span class=special>( 82 </span><span class=identifier>IteratorT </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>first</span><span class=special>, 83 </span><span class=identifier>IteratorT </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>last</span><span class=special>, 84 </span><span class=identifier>parser</span><span class=special><</span><span class=identifier>DerivedT</span><span class=special>> </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>p 85 </span><span class=special>);</span></font></code></pre> 86<pre><code><font color="#000000"><span class=special> </span><span class=keyword>template </span><span class=special><</span><span class=keyword>typename </span><span class=identifier>CharT</span><span class=special>, </span><span class=keyword>typename </span><span class=identifier>DerivedT</span><span class=special>> 87 </span><span class=identifier>parse_info</span><span class=special><</span><span class=identifier>CharT </span><span class=keyword>const</span><span class=special>*> 88 </span><span class=identifier>parse 89 </span><span class=special>( 90 </span><span class=identifier>CharT </span><span class=keyword>const</span><span class=special>* </span><span class=identifier>str</span><span class=special>, 91 </span><span class=identifier>parser</span><span class=special><</span><span class=identifier>DerivedT</span><span class=special>> </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>p 92 </span><span class=special>);</span></font></code></pre> 93<p>There are two variants. The first variant accepts a <tt>first</tt>, <tt>last</tt> 94 iterator pair like you do STL algorithms. The second variant accepts a null 95 terminated string. The last argument is a parser <tt>p</tt> which will be used 96 to parse the input.</p> 97<p><b>Phrase level parsing</b></p> 98<pre><code><font color="#000000"><span class=special> </span><span class=keyword>template </span><span class=special><</span><span class=keyword>typename </span><span class=identifier>IteratorT</span><span class=special>, </span><span class=keyword>typename </span><span class=identifier>ParserT</span><span class=special>, </span><span class=keyword>typename </span><span class=identifier>SkipT</span><span class=special>> 99 </span><span class=identifier>parse_info</span><span class=special><</span><span class=identifier>IteratorT</span><span class=special>> 100 </span><span class=identifier>parse 101 </span><span class=special>( 102 </span><span class=identifier>IteratorT </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>first</span><span class=special>, 103 </span><span class=identifier>IteratorT </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>last</span><span class=special>, 104 </span><span class=identifier>parser</span><span class=special><</span><span class=identifier>ParserT</span><span class=special>> </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>p</span><span class=special>, 105 </span><span class=identifier>parser</span><span class=special><</span><span class=identifier>SkipT</span><span class=special>> </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>skip 106 </span><span class=special>);</span></font></code></pre> 107<pre><code><font color="#000000"><span class=special> </span><span class=keyword>template </span><span class=special><</span><span class=keyword>typename </span><span class=identifier>CharT</span><span class=special>, </span><span class=keyword>typename </span><span class=identifier>ParserT</span><span class=special>, </span><span class=keyword>typename </span><span class=identifier>SkipT</span><span class=special>> 108 </span><span class=identifier>parse_info</span><span class=special><</span><span class=identifier>CharT </span><span class=keyword>const</span><span class=special>*> 109 </span><span class=identifier>parse 110 </span><span class=special>( 111 </span><span class=identifier>CharT </span><span class=keyword>const</span><span class=special>* </span><span class=identifier>str</span><span class=special>, 112 </span><span class=identifier>parser</span><span class=special><</span><span class=identifier>ParserT</span><span class=special>> </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>p</span><span class=special>, 113 </span><span class=identifier>parser</span><span class=special><</span><span class=identifier>SkipT</span><span class=special>> </span><span class=keyword>const</span><span class=special>& </span><span class=identifier>skip 114 </span><span class=special>);</span></font></code></pre> 115<p>Like above, there are two variants. The first variant accepts a <tt>first</tt>, 116 <tt>last</tt> iterator pair like you do STL algorithms. The second variant accepts 117 a null terminated string. The argument <tt>p</tt> is the parser which will be 118 used to parse the input. The last argument <tt>skip</tt> is the skip parser.</p> 119<p><b>The parse_info structure</b></p> 120<p>The functions above return a <tt>parse_info</tt> structure parameterized by 121 the iterator type passed in. The parse_info struct has these members:</p> 122<table width="90%" border="0" align="center"> 123 <tr> 124 <td colspan="2" class="table_title"><b>parse_info</b></td> 125 </tr> 126 <tr> 127 <td width="14%" class="table_cells"><b>stop</b></td> 128 <td width="86%" class="table_cells">Points to the final parse position (i.e 129 The parser recognized and processed the input up to this point)</td> 130 </tr> 131 <tr> 132 <td width="14%" class="table_cells"><b>hit</b></td> 133 <td width="86%" class="table_cells">True if parsing is successful. This may 134 be full: the parser consumed all the input, or partial: the parser consumed 135 only a portion of the input.</td> 136 </tr> 137 <tr> 138 <td width="14%" class="table_cells"><b>full</b></td> 139 <td width="86%" class="table_cells">True when we have a full match (i.e The 140 parser consumed all the input).</td> 141 </tr> 142 <tr> 143 <td width="14%" class="table_cells"><b>length</b></td> 144 <td width="86%" class="table_cells">The number of characters consumed by the 145 parser. This is valid only if we have a successful match (either partial 146 or full). </td> 147 </tr> 148</table> 149<h2><a name="phrase_scanner_t" id="phrase_scanner_t"></a><img src="theme/lens.gif" width="15" height="16"> 150 The phrase_scanner_t and wide_phrase_scanner_t</h2> 151<p>For convenience, Spirit declares these typedefs:</p> 152<pre> 153 <span class="keyword">typedef</span> scanner<span class="special"><</span><span class="keyword">char const</span><span class="special">*,</span> unspecified<span class="special">></span> phrase_scanner_t<span class="special">;</span> 154 <span class="keyword">typedef</span> scanner<span class="special"><</span><span class="keyword">wchar_t const</span><span class="special">*,</span> <span class="identifier">unspecified</span><span class="special">></span> wide_phrase_scanner_t<span class="special">;</span> 155</pre> 156<p>These are the exact scanner types used by Spirit on calls to the parse function 157 passing in a <tt>char const*</tt> (C string) or a <tt>wchar_t const*</tt> (wide 158 string) as the first parameter and a <tt>space_p</tt> as skip-parser (the third 159 parameter). For instance, we can use these typedefs to declare some rules. Example:</p> 160<pre> rule<span class="special"><</span>phrase_scanner_t<span class="special">> </span><span class="identifier">my_rule</span><span class="special">; 161 </span><span class="identifier">parse</span><span class="special">(</span><span class="string">"abrakadabra"</span><span class="special">, </span><span class="identifier">my_rule</span><span class="special">,</span> <span class="identifier">space_p</span><span class="special">);</span></pre> 162<h2><img src="theme/lens.gif" width="15" height="16"> Direct parsing with Iterators</h2> 163<p>The free parse functions make it easy for us. By using them, we need not bother 164 with the scanner intricacies. The free parse functions hide the dirty details. 165 However, sometime in the future, we will need to get under the hood. It's nice 166 that we know what we are dealing with when that need comes. We will need to 167 go low-level and call the parser's parse member function directly. </p> 168<p>If we wish to work on the <b>character level</b>, the procedure is quite simple:</p> 169<pre><span class=identifier> </span><span class=identifier>scanner</span><span class=special><</span><span class=identifier>IteratorT</span><span class=special>> </span><span class=identifier>scan</span><span class=special>(</span><span class=identifier>first</span><span class=special>, </span><span class=identifier>last</span><span class=special>); 170 171 </span><span class=keyword>if </span><span class=special>(</span><span class=identifier>p</span><span class=special>.</span><span class=identifier>parse</span><span class=special>(</span><span class=identifier>scan</span><span class=special>)) 172 </span><span class=special>{ 173 </span><span class=comment>// Parsed successfully. If first == last, then we have 174 // a full parse, the parser recognized the input in whole. 175 </span><span class=special>} 176 </span><span class=keyword>else 177 </span><span class=special>{ 178 </span><span class=comment>// Parsing failure. The parser failed to recognize the input 179 </span><span class=special>}</span></pre> 180<table width="80%" border="0" align="center"> 181 <tr> 182 <td class="note_box"><img src="theme/alert.gif" width="16" height="16"> <strong>The 183 scanner position on an unsuccessful match</strong><br> <br> 184 On a successful match, the input is advanced accordingly. But what happens 185 on an unsuccessful match? Be warned. It might be intuitive to think that 186 the scanner position is reset to its initial position prior to parsing. 187 No, the position is not reset. On an unsuccessful match, the position of 188 the scanner is <strong>undefined</strong>! Usually, it is positioned at 189 the farthest point where the error was found somewhere down the recursive 190 descent. If this behavior is not desired, you may need to position the scanner 191 yourself. The <a href="numerics.html#scanner_save">example in the numerics 192 chapter</a> illustrates how the scanner position can be saved and later 193 restored.</td> 194 </tr> 195</table> 196<p>Where <tt>p</tt> is the parser we want to use, and <tt>first</tt>/<tt>last</tt> 197 are the iterator pairs referring to the input. We just create a scanner given 198 the iterators. The scanner type we will use here uses the default <tt>scanner_policies<></tt>.</p> 199<p>The situation is a bit more complex when we wish to work on the <b>phrase level</b>:</p> 200<pre><span class=special> </span><span class=keyword>typedef </span><span class=identifier>skip_parser_iteration_policy</span><span class=special><</span><span class=identifier>SkipT</span><span class=special>> </span><span class=identifier>iter_policy_t</span><span class=special>; 201 </span><span class=keyword>typedef </span><span class=identifier>scanner_policies</span><span class=special><</span><span class=identifier>iter_policy_t</span><span class=special>> </span><span class=identifier>scanner_policies_t</span><span class=special>; 202 </span><span class=keyword>typedef </span><span class=identifier>scanner</span><span class=special><</span><span class=identifier>IteratorT</span><span class=special>, </span><span class=identifier>scanner_policies_t</span><span class=special>> </span><span class=identifier>scanner_t</span><span class=special>; 203 204</span><span class=special> </span><span class=identifier>iter_policy_t </span><span class=identifier>iter_policy</span><span class=special>(</span><span class=identifier>skip</span><span class=special>); 205 </span><span class=identifier>scanner_policies_t </span><span class=identifier>policies</span><span class=special>(</span><span class=identifier>iter_policy</span><span class=special>); 206 </span><span class=identifier>scanner_t </span><span class=identifier>scan</span><span class=special>(</span><span class=identifier>first</span><span class=special>, </span><span class=identifier>last</span><span class=special>, </span><span class=identifier>policies</span><span class=special>); 207</span> 208 <span class=keyword>if </span><span class=special>(</span><span class=identifier>p</span><span class=special>.</span><span class=identifier>parse</span><span class=special>(</span><span class=identifier>scan</span><span class=special>)) 209 </span><span class=special>{ 210 </span><span class=comment>// Parsed successfully. If first == last, then we have 211 // a full parse, the parser recognized the input in whole. 212 </span><span class=special>} 213 </span><span class=keyword>else 214 </span><span class=special>{ 215 </span><span class=comment>// Parsing failure. The parser failed to recognize the input 216 </span><span class=special>}</span></pre> 217<p>Where <tt>SkipT</tt> is the type of the skip-parser, <tt>skip</tt>. Again, 218 <tt>p</tt> is the parser we want to use, and <tt>first</tt>/<tt>last</tt> are 219 the iterator pairs referring to the input. Given a skip-parser type <tt>SkipT</tt>, 220 <span class=identifier><tt>skip_parser_iteration_policy</tt></span> creates 221 a scanner iteration policy that skips over portions that are recognized by the 222 skip-parser. This may then be used to create a scanner. The <tt>scanner_policies</tt> 223 class wraps all scanner related policies including the iteration policies.</p> 224<h2><a name="lexeme_scanner"></a>lexeme_scanner</h2> 225<p>When switching from phrase level to character level parsing, the <tt>lexeme_d</tt> 226 (see <a href="directives.html">directives.html</a>) does its magic by disabling 227 the skipping of white spaces. This is done by tweaking the <a href="scanner.html">scanner</a>. 228 However, when we do this, all parsers inside the lexeme gets a transformed scanner 229 type. This should not be a problem in most cases. However, when rules are called 230 inside the <tt>lexeme_d</tt>, the compiler will choke if the rule does not have 231 the proper scanner type. If a rule must be used inside a <tt>lexeme_d</tt>, 232 the rule's type must be:</p> 233<pre> <span class=identifier>rule</span><span class=special><</span><span class=identifier>lexeme_scanner</span><span class="special"><</span><span class=identifier>ScannerT</span><span class=special>>::</span><span class="identifier">type</span><span class=special>> </span>r<span class=special>;</span></pre> 234<p>where <span class=identifier><tt>ScannerT</tt></span> is the actual type of 235 the scanner used. Take note that <tt>lexeme_scanner</tt> will only work for phrase level scanners. </p> 236<h2><a name="as_lower_scanner"></a>as_lower_scanner</h2> 237<p>Similarly, the <tt>as_lower_d</tt> does its work by filtering and converting 238 all characters received from the scanner to lower case. This is also done by 239 tweaking the <a href="scanner.html">scanner</a>. Then again, all parsers inside 240 the <tt>as_lower_d</tt> gets a transformed scanner type. If a rule must be used 241 inside a <tt>as_lower_d</tt>, the rule's type must be:</p> 242<pre> <span class=identifier>rule</span><span class=special><</span><span class=identifier>as_lower_scanner</span><span class="special"><</span><span class=identifier>ScannerT</span><span class=special>>::</span><span class="identifier">type</span><span class=special>> </span>r<span class=special>;</span></pre> 243<p>where <span class=identifier><tt>ScannerT</tt></span> is the actual type of 244 the scanner used. </p> 245<table width="80%" border="0" align="center"> 246 <tr> 247 <td class="note_box"><img src="theme/bulb.gif" width="13" height="18"> See 248 the techniques section for an <a href="techniques.html#multiple_scanner_support">example</a> 249 of a <a href="grammar.html">grammar</a> using a <a href="rule.html#multiple_scanner_support">multiple 250 scanner enabled rule</a>, <a href="scanner.html#lexeme_scanner">lexeme_scanner</a> 251 and <a href="scanner.html#as_lower_scanner">as_lower_scanner.</a></td> 252 </tr> 253</table> 254<h3><a name="no_actions_scanner"></a>no_actions_scanner</h3> 255<p>Again, <tt>no_actions_d</tt> directive tweaks the scanner to disable firing 256 semantic actions. Like before, all parsers inside the <tt>no_actions_d</tt> 257 gets a transformed scanner type. If a rule must be used inside a <tt>no_actions_d</tt>, 258 the rule's type must be:</p> 259<pre> <span class=identifier>rule</span><span class=special><</span>no_actions_scanner<span class="special"><</span><span class=identifier>ScannerT</span><span class=special>>::</span><span class="identifier">type</span><span class=special>> </span>r<span class=special>;</span></pre> 260<p>where <tt>ScannerT</tt> is the actual type of the scanner used. <span class=special></span></p> 261<table width="80%" border="0" align="center"> 262 <tr> 263 <td class="note_box"><img src="theme/note.gif" width="16" height="16"> Be 264 sure to add "<tt>typename</tt>" before <tt><span class=identifier><tt>lexeme_scanner</tt>, 265 <tt>as_lower_scanner</tt></span></tt> and <tt>no_actions_scanner</tt> when 266 these are used inside a template class or function.</td> 267 </tr> 268</table> 269<p><img src="theme/lens.gif" width="15" height="16"> See <a href="../example/fundamental/no_actions.cpp">no_actions.cpp</a>. This is part of the Spirit distribution.</p> 270<table border="0"> 271 <tr> 272 <td width="10"></td> 273 <td width="30"><a href="../index.html"><img src="theme/u_arr.gif" border="0"></a></td> 274 <td width="30"><a href="directives.html"><img src="theme/l_arr.gif" border="0"></a></td> 275 <td width="30"><a href="grammar.html"><img src="theme/r_arr.gif" border="0"></a></td> 276 </tr> 277</table> 278<br> 279<hr size="1"> 280<p class="copyright">Copyright © 1998-2003 Joel de Guzman<br> 281 <br> 282 <font size="2">Use, modification and distribution is subject to the Boost Software 283 License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at 284 http://www.boost.org/LICENSE_1_0.txt)</font></p> 285<p> </p> 286<p> </p> 287</body> 288</html> 289