1 /**************************************************************************//**
2 * @file cmsis_armclang_ltm.h
3 * @brief CMSIS compiler armclang (Arm Compiler 6) header file
4 * @version V1.5.3
5 * @date 27. May 2021
6 ******************************************************************************/
7 /*
8 * Copyright (c) 2018-2021 Arm Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25 /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26
27 #ifndef __CMSIS_ARMCLANG_H
28 #define __CMSIS_ARMCLANG_H
29
30 #pragma clang system_header /* treat file as system include file */
31
32 /* CMSIS compiler specific defines */
33 #ifndef __ASM
34 #define __ASM __asm
35 #endif
36 #ifndef __INLINE
37 #define __INLINE __inline
38 #endif
39 #ifndef __STATIC_INLINE
40 #define __STATIC_INLINE static __inline
41 #endif
42 #ifndef __STATIC_FORCEINLINE
43 #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
44 #endif
45 #ifndef __NO_RETURN
46 #define __NO_RETURN __attribute__((__noreturn__))
47 #endif
48 #ifndef __USED
49 #define __USED __attribute__((used))
50 #endif
51 #ifndef __WEAK
52 #define __WEAK __attribute__((weak))
53 #endif
54 #ifndef __PACKED
55 #define __PACKED __attribute__((packed, aligned(1)))
56 #endif
57 #ifndef __PACKED_STRUCT
58 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
59 #endif
60 #ifndef __PACKED_UNION
61 #define __PACKED_UNION union __attribute__((packed, aligned(1)))
62 #endif
63 #ifndef __UNALIGNED_UINT32 /* deprecated */
64 #pragma clang diagnostic push
65 #pragma clang diagnostic ignored "-Wpacked"
66 /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
67 struct __attribute__((packed)) T_UINT32 { uint32_t v; };
68 #pragma clang diagnostic pop
69 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
70 #endif
71 #ifndef __UNALIGNED_UINT16_WRITE
72 #pragma clang diagnostic push
73 #pragma clang diagnostic ignored "-Wpacked"
74 /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
75 __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
76 #pragma clang diagnostic pop
77 #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
78 #endif
79 #ifndef __UNALIGNED_UINT16_READ
80 #pragma clang diagnostic push
81 #pragma clang diagnostic ignored "-Wpacked"
82 /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
83 __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
84 #pragma clang diagnostic pop
85 #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
86 #endif
87 #ifndef __UNALIGNED_UINT32_WRITE
88 #pragma clang diagnostic push
89 #pragma clang diagnostic ignored "-Wpacked"
90 /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
91 __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
92 #pragma clang diagnostic pop
93 #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
94 #endif
95 #ifndef __UNALIGNED_UINT32_READ
96 #pragma clang diagnostic push
97 #pragma clang diagnostic ignored "-Wpacked"
98 /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
99 __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
100 #pragma clang diagnostic pop
101 #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
102 #endif
103 #ifndef __ALIGNED
104 #define __ALIGNED(x) __attribute__((aligned(x)))
105 #endif
106 #ifndef __RESTRICT
107 #define __RESTRICT __restrict
108 #endif
109 #ifndef __COMPILER_BARRIER
110 #define __COMPILER_BARRIER() __ASM volatile("":::"memory")
111 #endif
112
113 /* ######################### Startup and Lowlevel Init ######################## */
114
115 #ifndef __PROGRAM_START
116 #define __PROGRAM_START __main
117 #endif
118
119 #ifndef __INITIAL_SP
120 #define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
121 #endif
122
123 #ifndef __STACK_LIMIT
124 #define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
125 #endif
126
127 #ifndef __VECTOR_TABLE
128 #define __VECTOR_TABLE __Vectors
129 #endif
130
131 #ifndef __VECTOR_TABLE_ATTRIBUTE
132 #define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section("RESET")))
133 #endif
134
135 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
136 #ifndef __STACK_SEAL
137 #define __STACK_SEAL Image$$STACKSEAL$$ZI$$Base
138 #endif
139
140 #ifndef __TZ_STACK_SEAL_SIZE
141 #define __TZ_STACK_SEAL_SIZE 8U
142 #endif
143
144 #ifndef __TZ_STACK_SEAL_VALUE
145 #define __TZ_STACK_SEAL_VALUE 0xFEF5EDA5FEF5EDA5ULL
146 #endif
147
148
__TZ_set_STACKSEAL_S(uint32_t * stackTop)149 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {
150 *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE;
151 }
152 #endif
153
154
155 /* ########################## Core Instruction Access ######################### */
156 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
157 Access to dedicated instructions
158 @{
159 */
160
161 /* Define macros for porting to both thumb1 and thumb2.
162 * For thumb1, use low register (r0-r7), specified by constraint "l"
163 * Otherwise, use general registers, specified by constraint "r" */
164 #if defined (__thumb__) && !defined (__thumb2__)
165 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
166 #define __CMSIS_GCC_USE_REG(r) "l" (r)
167 #else
168 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
169 #define __CMSIS_GCC_USE_REG(r) "r" (r)
170 #endif
171
172 /**
173 \brief No Operation
174 \details No Operation does nothing. This instruction can be used for code alignment purposes.
175 */
176 #define __NOP __builtin_arm_nop
177
178 /**
179 \brief Wait For Interrupt
180 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
181 */
182 #define __WFI __builtin_arm_wfi
183
184
185 /**
186 \brief Wait For Event
187 \details Wait For Event is a hint instruction that permits the processor to enter
188 a low-power state until one of a number of events occurs.
189 */
190 #define __WFE __builtin_arm_wfe
191
192
193 /**
194 \brief Send Event
195 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
196 */
197 #define __SEV __builtin_arm_sev
198
199
200 /**
201 \brief Instruction Synchronization Barrier
202 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
203 so that all instructions following the ISB are fetched from cache or memory,
204 after the instruction has been completed.
205 */
206 #define __ISB() __builtin_arm_isb(0xF)
207
208 /**
209 \brief Data Synchronization Barrier
210 \details Acts as a special kind of Data Memory Barrier.
211 It completes when all explicit memory accesses before this instruction complete.
212 */
213 #define __DSB() __builtin_arm_dsb(0xF)
214
215
216 /**
217 \brief Data Memory Barrier
218 \details Ensures the apparent order of the explicit memory operations before
219 and after the instruction, without ensuring their completion.
220 */
221 #define __DMB() __builtin_arm_dmb(0xF)
222
223
224 /**
225 \brief Reverse byte order (32 bit)
226 \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
227 \param [in] value Value to reverse
228 \return Reversed value
229 */
230 #define __REV(value) __builtin_bswap32(value)
231
232
233 /**
234 \brief Reverse byte order (16 bit)
235 \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
236 \param [in] value Value to reverse
237 \return Reversed value
238 */
239 #define __REV16(value) __ROR(__REV(value), 16)
240
241
242 /**
243 \brief Reverse byte order (16 bit)
244 \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
245 \param [in] value Value to reverse
246 \return Reversed value
247 */
248 #define __REVSH(value) (int16_t)__builtin_bswap16(value)
249
250
251 /**
252 \brief Rotate Right in unsigned value (32 bit)
253 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
254 \param [in] op1 Value to rotate
255 \param [in] op2 Number of Bits to rotate
256 \return Rotated value
257 */
__ROR(uint32_t op1,uint32_t op2)258 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
259 {
260 op2 %= 32U;
261 if (op2 == 0U)
262 {
263 return op1;
264 }
265 return (op1 >> op2) | (op1 << (32U - op2));
266 }
267
268
269 /**
270 \brief Breakpoint
271 \details Causes the processor to enter Debug state.
272 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
273 \param [in] value is ignored by the processor.
274 If required, a debugger can use it to store additional information about the breakpoint.
275 */
276 #define __BKPT(value) __ASM volatile ("bkpt "#value)
277
278
279 /**
280 \brief Reverse bit order of value
281 \details Reverses the bit order of the given value.
282 \param [in] value Value to reverse
283 \return Reversed value
284 */
285 #define __RBIT __builtin_arm_rbit
286
287 /**
288 \brief Count leading zeros
289 \details Counts the number of leading zeros of a data value.
290 \param [in] value Value to count the leading zeros
291 \return number of leading zeros in value
292 */
__CLZ(uint32_t value)293 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
294 {
295 /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
296 __builtin_clz(0) is undefined behaviour, so handle this case specially.
297 This guarantees ARM-compatible results if happening to compile on a non-ARM
298 target, and ensures the compiler doesn't decide to activate any
299 optimisations using the logic "value was passed to __builtin_clz, so it
300 is non-zero".
301 ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
302 single CLZ instruction.
303 */
304 if (value == 0U)
305 {
306 return 32U;
307 }
308 return __builtin_clz(value);
309 }
310
311
312 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
313 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
314 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
315 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
316 /**
317 \brief LDR Exclusive (8 bit)
318 \details Executes a exclusive LDR instruction for 8 bit value.
319 \param [in] ptr Pointer to data
320 \return value of type uint8_t at (*ptr)
321 */
322 #define __LDREXB (uint8_t)__builtin_arm_ldrex
323
324
325 /**
326 \brief LDR Exclusive (16 bit)
327 \details Executes a exclusive LDR instruction for 16 bit values.
328 \param [in] ptr Pointer to data
329 \return value of type uint16_t at (*ptr)
330 */
331 #define __LDREXH (uint16_t)__builtin_arm_ldrex
332
333
334 /**
335 \brief LDR Exclusive (32 bit)
336 \details Executes a exclusive LDR instruction for 32 bit values.
337 \param [in] ptr Pointer to data
338 \return value of type uint32_t at (*ptr)
339 */
340 #define __LDREXW (uint32_t)__builtin_arm_ldrex
341
342
343 /**
344 \brief STR Exclusive (8 bit)
345 \details Executes a exclusive STR instruction for 8 bit values.
346 \param [in] value Value to store
347 \param [in] ptr Pointer to location
348 \return 0 Function succeeded
349 \return 1 Function failed
350 */
351 #define __STREXB (uint32_t)__builtin_arm_strex
352
353
354 /**
355 \brief STR Exclusive (16 bit)
356 \details Executes a exclusive STR instruction for 16 bit values.
357 \param [in] value Value to store
358 \param [in] ptr Pointer to location
359 \return 0 Function succeeded
360 \return 1 Function failed
361 */
362 #define __STREXH (uint32_t)__builtin_arm_strex
363
364
365 /**
366 \brief STR Exclusive (32 bit)
367 \details Executes a exclusive STR instruction for 32 bit values.
368 \param [in] value Value to store
369 \param [in] ptr Pointer to location
370 \return 0 Function succeeded
371 \return 1 Function failed
372 */
373 #define __STREXW (uint32_t)__builtin_arm_strex
374
375
376 /**
377 \brief Remove the exclusive lock
378 \details Removes the exclusive lock which is created by LDREX.
379 */
380 #define __CLREX __builtin_arm_clrex
381
382 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
383 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
384 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
385 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
386
387
388 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
389 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
390 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
391
392 /**
393 \brief Signed Saturate
394 \details Saturates a signed value.
395 \param [in] value Value to be saturated
396 \param [in] sat Bit position to saturate to (1..32)
397 \return Saturated value
398 */
399 #define __SSAT __builtin_arm_ssat
400
401
402 /**
403 \brief Unsigned Saturate
404 \details Saturates an unsigned value.
405 \param [in] value Value to be saturated
406 \param [in] sat Bit position to saturate to (0..31)
407 \return Saturated value
408 */
409 #define __USAT __builtin_arm_usat
410
411
412 /**
413 \brief Rotate Right with Extend (32 bit)
414 \details Moves each bit of a bitstring right by one bit.
415 The carry input is shifted in at the left end of the bitstring.
416 \param [in] value Value to rotate
417 \return Rotated value
418 */
__RRX(uint32_t value)419 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
420 {
421 uint32_t result;
422
423 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
424 return(result);
425 }
426
427
428 /**
429 \brief LDRT Unprivileged (8 bit)
430 \details Executes a Unprivileged LDRT instruction for 8 bit value.
431 \param [in] ptr Pointer to data
432 \return value of type uint8_t at (*ptr)
433 */
__LDRBT(volatile uint8_t * ptr)434 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
435 {
436 uint32_t result;
437
438 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
439 return ((uint8_t) result); /* Add explicit type cast here */
440 }
441
442
443 /**
444 \brief LDRT Unprivileged (16 bit)
445 \details Executes a Unprivileged LDRT instruction for 16 bit values.
446 \param [in] ptr Pointer to data
447 \return value of type uint16_t at (*ptr)
448 */
__LDRHT(volatile uint16_t * ptr)449 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
450 {
451 uint32_t result;
452
453 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
454 return ((uint16_t) result); /* Add explicit type cast here */
455 }
456
457
458 /**
459 \brief LDRT Unprivileged (32 bit)
460 \details Executes a Unprivileged LDRT instruction for 32 bit values.
461 \param [in] ptr Pointer to data
462 \return value of type uint32_t at (*ptr)
463 */
__LDRT(volatile uint32_t * ptr)464 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
465 {
466 uint32_t result;
467
468 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
469 return(result);
470 }
471
472
473 /**
474 \brief STRT Unprivileged (8 bit)
475 \details Executes a Unprivileged STRT instruction for 8 bit values.
476 \param [in] value Value to store
477 \param [in] ptr Pointer to location
478 */
__STRBT(uint8_t value,volatile uint8_t * ptr)479 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
480 {
481 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
482 }
483
484
485 /**
486 \brief STRT Unprivileged (16 bit)
487 \details Executes a Unprivileged STRT instruction for 16 bit values.
488 \param [in] value Value to store
489 \param [in] ptr Pointer to location
490 */
__STRHT(uint16_t value,volatile uint16_t * ptr)491 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
492 {
493 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
494 }
495
496
497 /**
498 \brief STRT Unprivileged (32 bit)
499 \details Executes a Unprivileged STRT instruction for 32 bit values.
500 \param [in] value Value to store
501 \param [in] ptr Pointer to location
502 */
__STRT(uint32_t value,volatile uint32_t * ptr)503 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
504 {
505 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
506 }
507
508 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
509 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
510 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
511
512 /**
513 \brief Signed Saturate
514 \details Saturates a signed value.
515 \param [in] value Value to be saturated
516 \param [in] sat Bit position to saturate to (1..32)
517 \return Saturated value
518 */
__SSAT(int32_t val,uint32_t sat)519 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
520 {
521 if ((sat >= 1U) && (sat <= 32U))
522 {
523 const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
524 const int32_t min = -1 - max ;
525 if (val > max)
526 {
527 return max;
528 }
529 else if (val < min)
530 {
531 return min;
532 }
533 }
534 return val;
535 }
536
537 /**
538 \brief Unsigned Saturate
539 \details Saturates an unsigned value.
540 \param [in] value Value to be saturated
541 \param [in] sat Bit position to saturate to (0..31)
542 \return Saturated value
543 */
__USAT(int32_t val,uint32_t sat)544 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
545 {
546 if (sat <= 31U)
547 {
548 const uint32_t max = ((1U << sat) - 1U);
549 if (val > (int32_t)max)
550 {
551 return max;
552 }
553 else if (val < 0)
554 {
555 return 0U;
556 }
557 }
558 return (uint32_t)val;
559 }
560
561 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
562 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
563 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
564
565
566 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
567 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
568 /**
569 \brief Load-Acquire (8 bit)
570 \details Executes a LDAB instruction for 8 bit value.
571 \param [in] ptr Pointer to data
572 \return value of type uint8_t at (*ptr)
573 */
__LDAB(volatile uint8_t * ptr)574 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
575 {
576 uint32_t result;
577
578 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
579 return ((uint8_t) result);
580 }
581
582
583 /**
584 \brief Load-Acquire (16 bit)
585 \details Executes a LDAH instruction for 16 bit values.
586 \param [in] ptr Pointer to data
587 \return value of type uint16_t at (*ptr)
588 */
__LDAH(volatile uint16_t * ptr)589 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
590 {
591 uint32_t result;
592
593 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
594 return ((uint16_t) result);
595 }
596
597
598 /**
599 \brief Load-Acquire (32 bit)
600 \details Executes a LDA instruction for 32 bit values.
601 \param [in] ptr Pointer to data
602 \return value of type uint32_t at (*ptr)
603 */
__LDA(volatile uint32_t * ptr)604 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
605 {
606 uint32_t result;
607
608 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
609 return(result);
610 }
611
612
613 /**
614 \brief Store-Release (8 bit)
615 \details Executes a STLB instruction for 8 bit values.
616 \param [in] value Value to store
617 \param [in] ptr Pointer to location
618 */
__STLB(uint8_t value,volatile uint8_t * ptr)619 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
620 {
621 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
622 }
623
624
625 /**
626 \brief Store-Release (16 bit)
627 \details Executes a STLH instruction for 16 bit values.
628 \param [in] value Value to store
629 \param [in] ptr Pointer to location
630 */
__STLH(uint16_t value,volatile uint16_t * ptr)631 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
632 {
633 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
634 }
635
636
637 /**
638 \brief Store-Release (32 bit)
639 \details Executes a STL instruction for 32 bit values.
640 \param [in] value Value to store
641 \param [in] ptr Pointer to location
642 */
__STL(uint32_t value,volatile uint32_t * ptr)643 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
644 {
645 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
646 }
647
648
649 /**
650 \brief Load-Acquire Exclusive (8 bit)
651 \details Executes a LDAB exclusive instruction for 8 bit value.
652 \param [in] ptr Pointer to data
653 \return value of type uint8_t at (*ptr)
654 */
655 #define __LDAEXB (uint8_t)__builtin_arm_ldaex
656
657
658 /**
659 \brief Load-Acquire Exclusive (16 bit)
660 \details Executes a LDAH exclusive instruction for 16 bit values.
661 \param [in] ptr Pointer to data
662 \return value of type uint16_t at (*ptr)
663 */
664 #define __LDAEXH (uint16_t)__builtin_arm_ldaex
665
666
667 /**
668 \brief Load-Acquire Exclusive (32 bit)
669 \details Executes a LDA exclusive instruction for 32 bit values.
670 \param [in] ptr Pointer to data
671 \return value of type uint32_t at (*ptr)
672 */
673 #define __LDAEX (uint32_t)__builtin_arm_ldaex
674
675
676 /**
677 \brief Store-Release Exclusive (8 bit)
678 \details Executes a STLB exclusive instruction for 8 bit values.
679 \param [in] value Value to store
680 \param [in] ptr Pointer to location
681 \return 0 Function succeeded
682 \return 1 Function failed
683 */
684 #define __STLEXB (uint32_t)__builtin_arm_stlex
685
686
687 /**
688 \brief Store-Release Exclusive (16 bit)
689 \details Executes a STLH exclusive instruction for 16 bit values.
690 \param [in] value Value to store
691 \param [in] ptr Pointer to location
692 \return 0 Function succeeded
693 \return 1 Function failed
694 */
695 #define __STLEXH (uint32_t)__builtin_arm_stlex
696
697
698 /**
699 \brief Store-Release Exclusive (32 bit)
700 \details Executes a STL exclusive instruction for 32 bit values.
701 \param [in] value Value to store
702 \param [in] ptr Pointer to location
703 \return 0 Function succeeded
704 \return 1 Function failed
705 */
706 #define __STLEX (uint32_t)__builtin_arm_stlex
707
708 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
709 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
710
711 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
712
713
714 /* ########################### Core Function Access ########################### */
715 /** \ingroup CMSIS_Core_FunctionInterface
716 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
717 @{
718 */
719
720 /**
721 \brief Enable IRQ Interrupts
722 \details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
723 Can only be executed in Privileged modes.
724 */
725 #ifndef __ARM_COMPAT_H
__enable_irq(void)726 __STATIC_FORCEINLINE void __enable_irq(void)
727 {
728 __ASM volatile ("cpsie i" : : : "memory");
729 }
730 #endif
731
732
733 /**
734 \brief Disable IRQ Interrupts
735 \details Disables IRQ interrupts by setting special-purpose register PRIMASK.
736 Can only be executed in Privileged modes.
737 */
738 #ifndef __ARM_COMPAT_H
__disable_irq(void)739 __STATIC_FORCEINLINE void __disable_irq(void)
740 {
741 __ASM volatile ("cpsid i" : : : "memory");
742 }
743 #endif
744
745
746 /**
747 \brief Get Control Register
748 \details Returns the content of the Control Register.
749 \return Control Register value
750 */
__get_CONTROL(void)751 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
752 {
753 uint32_t result;
754
755 __ASM volatile ("MRS %0, control" : "=r" (result) );
756 return(result);
757 }
758
759
760 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
761 /**
762 \brief Get Control Register (non-secure)
763 \details Returns the content of the non-secure Control Register when in secure mode.
764 \return non-secure Control Register value
765 */
__TZ_get_CONTROL_NS(void)766 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
767 {
768 uint32_t result;
769
770 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
771 return(result);
772 }
773 #endif
774
775
776 /**
777 \brief Set Control Register
778 \details Writes the given value to the Control Register.
779 \param [in] control Control Register value to set
780 */
__set_CONTROL(uint32_t control)781 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
782 {
783 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
784 __ISB();
785 }
786
787
788 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
789 /**
790 \brief Set Control Register (non-secure)
791 \details Writes the given value to the non-secure Control Register when in secure state.
792 \param [in] control Control Register value to set
793 */
__TZ_set_CONTROL_NS(uint32_t control)794 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
795 {
796 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
797 __ISB();
798 }
799 #endif
800
801
802 /**
803 \brief Get IPSR Register
804 \details Returns the content of the IPSR Register.
805 \return IPSR Register value
806 */
__get_IPSR(void)807 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
808 {
809 uint32_t result;
810
811 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
812 return(result);
813 }
814
815
816 /**
817 \brief Get APSR Register
818 \details Returns the content of the APSR Register.
819 \return APSR Register value
820 */
__get_APSR(void)821 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
822 {
823 uint32_t result;
824
825 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
826 return(result);
827 }
828
829
830 /**
831 \brief Get xPSR Register
832 \details Returns the content of the xPSR Register.
833 \return xPSR Register value
834 */
__get_xPSR(void)835 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
836 {
837 uint32_t result;
838
839 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
840 return(result);
841 }
842
843
844 /**
845 \brief Get Process Stack Pointer
846 \details Returns the current value of the Process Stack Pointer (PSP).
847 \return PSP Register value
848 */
__get_PSP(void)849 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
850 {
851 uint32_t result;
852
853 __ASM volatile ("MRS %0, psp" : "=r" (result) );
854 return(result);
855 }
856
857
858 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
859 /**
860 \brief Get Process Stack Pointer (non-secure)
861 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
862 \return PSP Register value
863 */
__TZ_get_PSP_NS(void)864 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
865 {
866 uint32_t result;
867
868 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
869 return(result);
870 }
871 #endif
872
873
874 /**
875 \brief Set Process Stack Pointer
876 \details Assigns the given value to the Process Stack Pointer (PSP).
877 \param [in] topOfProcStack Process Stack Pointer value to set
878 */
__set_PSP(uint32_t topOfProcStack)879 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
880 {
881 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
882 }
883
884
885 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
886 /**
887 \brief Set Process Stack Pointer (non-secure)
888 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
889 \param [in] topOfProcStack Process Stack Pointer value to set
890 */
__TZ_set_PSP_NS(uint32_t topOfProcStack)891 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
892 {
893 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
894 }
895 #endif
896
897
898 /**
899 \brief Get Main Stack Pointer
900 \details Returns the current value of the Main Stack Pointer (MSP).
901 \return MSP Register value
902 */
__get_MSP(void)903 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
904 {
905 uint32_t result;
906
907 __ASM volatile ("MRS %0, msp" : "=r" (result) );
908 return(result);
909 }
910
911
912 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
913 /**
914 \brief Get Main Stack Pointer (non-secure)
915 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
916 \return MSP Register value
917 */
__TZ_get_MSP_NS(void)918 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
919 {
920 uint32_t result;
921
922 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
923 return(result);
924 }
925 #endif
926
927
928 /**
929 \brief Set Main Stack Pointer
930 \details Assigns the given value to the Main Stack Pointer (MSP).
931 \param [in] topOfMainStack Main Stack Pointer value to set
932 */
__set_MSP(uint32_t topOfMainStack)933 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
934 {
935 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
936 }
937
938
939 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
940 /**
941 \brief Set Main Stack Pointer (non-secure)
942 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
943 \param [in] topOfMainStack Main Stack Pointer value to set
944 */
__TZ_set_MSP_NS(uint32_t topOfMainStack)945 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
946 {
947 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
948 }
949 #endif
950
951
952 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
953 /**
954 \brief Get Stack Pointer (non-secure)
955 \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
956 \return SP Register value
957 */
__TZ_get_SP_NS(void)958 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
959 {
960 uint32_t result;
961
962 __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
963 return(result);
964 }
965
966
967 /**
968 \brief Set Stack Pointer (non-secure)
969 \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
970 \param [in] topOfStack Stack Pointer value to set
971 */
__TZ_set_SP_NS(uint32_t topOfStack)972 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
973 {
974 __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
975 }
976 #endif
977
978
979 /**
980 \brief Get Priority Mask
981 \details Returns the current state of the priority mask bit from the Priority Mask Register.
982 \return Priority Mask value
983 */
__get_PRIMASK(void)984 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
985 {
986 uint32_t result;
987
988 __ASM volatile ("MRS %0, primask" : "=r" (result) );
989 return(result);
990 }
991
992
993 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
994 /**
995 \brief Get Priority Mask (non-secure)
996 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
997 \return Priority Mask value
998 */
__TZ_get_PRIMASK_NS(void)999 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
1000 {
1001 uint32_t result;
1002
1003 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
1004 return(result);
1005 }
1006 #endif
1007
1008
1009 /**
1010 \brief Set Priority Mask
1011 \details Assigns the given value to the Priority Mask Register.
1012 \param [in] priMask Priority Mask
1013 */
__set_PRIMASK(uint32_t priMask)1014 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
1015 {
1016 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
1017 }
1018
1019
1020 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1021 /**
1022 \brief Set Priority Mask (non-secure)
1023 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
1024 \param [in] priMask Priority Mask
1025 */
__TZ_set_PRIMASK_NS(uint32_t priMask)1026 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
1027 {
1028 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
1029 }
1030 #endif
1031
1032
1033 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1034 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1035 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
1036 /**
1037 \brief Enable FIQ
1038 \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
1039 Can only be executed in Privileged modes.
1040 */
__enable_fault_irq(void)1041 __STATIC_FORCEINLINE void __enable_fault_irq(void)
1042 {
1043 __ASM volatile ("cpsie f" : : : "memory");
1044 }
1045
1046
1047 /**
1048 \brief Disable FIQ
1049 \details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
1050 Can only be executed in Privileged modes.
1051 */
__disable_fault_irq(void)1052 __STATIC_FORCEINLINE void __disable_fault_irq(void)
1053 {
1054 __ASM volatile ("cpsid f" : : : "memory");
1055 }
1056
1057
1058 /**
1059 \brief Get Base Priority
1060 \details Returns the current value of the Base Priority register.
1061 \return Base Priority register value
1062 */
__get_BASEPRI(void)1063 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
1064 {
1065 uint32_t result;
1066
1067 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
1068 return(result);
1069 }
1070
1071
1072 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1073 /**
1074 \brief Get Base Priority (non-secure)
1075 \details Returns the current value of the non-secure Base Priority register when in secure state.
1076 \return Base Priority register value
1077 */
__TZ_get_BASEPRI_NS(void)1078 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
1079 {
1080 uint32_t result;
1081
1082 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
1083 return(result);
1084 }
1085 #endif
1086
1087
1088 /**
1089 \brief Set Base Priority
1090 \details Assigns the given value to the Base Priority register.
1091 \param [in] basePri Base Priority value to set
1092 */
__set_BASEPRI(uint32_t basePri)1093 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
1094 {
1095 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
1096 }
1097
1098
1099 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1100 /**
1101 \brief Set Base Priority (non-secure)
1102 \details Assigns the given value to the non-secure Base Priority register when in secure state.
1103 \param [in] basePri Base Priority value to set
1104 */
__TZ_set_BASEPRI_NS(uint32_t basePri)1105 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
1106 {
1107 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
1108 }
1109 #endif
1110
1111
1112 /**
1113 \brief Set Base Priority with condition
1114 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
1115 or the new value increases the BASEPRI priority level.
1116 \param [in] basePri Base Priority value to set
1117 */
__set_BASEPRI_MAX(uint32_t basePri)1118 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
1119 {
1120 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
1121 }
1122
1123
1124 /**
1125 \brief Get Fault Mask
1126 \details Returns the current value of the Fault Mask register.
1127 \return Fault Mask register value
1128 */
__get_FAULTMASK(void)1129 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
1130 {
1131 uint32_t result;
1132
1133 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
1134 return(result);
1135 }
1136
1137
1138 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1139 /**
1140 \brief Get Fault Mask (non-secure)
1141 \details Returns the current value of the non-secure Fault Mask register when in secure state.
1142 \return Fault Mask register value
1143 */
__TZ_get_FAULTMASK_NS(void)1144 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
1145 {
1146 uint32_t result;
1147
1148 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
1149 return(result);
1150 }
1151 #endif
1152
1153
1154 /**
1155 \brief Set Fault Mask
1156 \details Assigns the given value to the Fault Mask register.
1157 \param [in] faultMask Fault Mask value to set
1158 */
__set_FAULTMASK(uint32_t faultMask)1159 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
1160 {
1161 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
1162 }
1163
1164
1165 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1166 /**
1167 \brief Set Fault Mask (non-secure)
1168 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
1169 \param [in] faultMask Fault Mask value to set
1170 */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)1171 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
1172 {
1173 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
1174 }
1175 #endif
1176
1177 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1178 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1179 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1180
1181
1182 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1183 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1184
1185 /**
1186 \brief Get Process Stack Pointer Limit
1187 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1188 Stack Pointer Limit register hence zero is returned always in non-secure
1189 mode.
1190
1191 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
1192 \return PSPLIM Register value
1193 */
__get_PSPLIM(void)1194 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
1195 {
1196 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1197 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1198 // without main extensions, the non-secure PSPLIM is RAZ/WI
1199 return 0U;
1200 #else
1201 uint32_t result;
1202 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
1203 return result;
1204 #endif
1205 }
1206
1207 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
1208 /**
1209 \brief Get Process Stack Pointer Limit (non-secure)
1210 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1211 Stack Pointer Limit register hence zero is returned always in non-secure
1212 mode.
1213
1214 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1215 \return PSPLIM Register value
1216 */
__TZ_get_PSPLIM_NS(void)1217 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
1218 {
1219 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1220 // without main extensions, the non-secure PSPLIM is RAZ/WI
1221 return 0U;
1222 #else
1223 uint32_t result;
1224 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
1225 return result;
1226 #endif
1227 }
1228 #endif
1229
1230
1231 /**
1232 \brief Set Process Stack Pointer Limit
1233 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1234 Stack Pointer Limit register hence the write is silently ignored in non-secure
1235 mode.
1236
1237 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
1238 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
1239 */
__set_PSPLIM(uint32_t ProcStackPtrLimit)1240 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
1241 {
1242 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1243 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1244 // without main extensions, the non-secure PSPLIM is RAZ/WI
1245 (void)ProcStackPtrLimit;
1246 #else
1247 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
1248 #endif
1249 }
1250
1251
1252 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1253 /**
1254 \brief Set Process Stack Pointer (non-secure)
1255 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1256 Stack Pointer Limit register hence the write is silently ignored in non-secure
1257 mode.
1258
1259 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1260 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
1261 */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)1262 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
1263 {
1264 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1265 // without main extensions, the non-secure PSPLIM is RAZ/WI
1266 (void)ProcStackPtrLimit;
1267 #else
1268 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
1269 #endif
1270 }
1271 #endif
1272
1273
1274 /**
1275 \brief Get Main Stack Pointer Limit
1276 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1277 Stack Pointer Limit register hence zero is returned always.
1278
1279 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
1280 \return MSPLIM Register value
1281 */
__get_MSPLIM(void)1282 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
1283 {
1284 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1285 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1286 // without main extensions, the non-secure MSPLIM is RAZ/WI
1287 return 0U;
1288 #else
1289 uint32_t result;
1290 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
1291 return result;
1292 #endif
1293 }
1294
1295
1296 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1297 /**
1298 \brief Get Main Stack Pointer Limit (non-secure)
1299 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1300 Stack Pointer Limit register hence zero is returned always.
1301
1302 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
1303 \return MSPLIM Register value
1304 */
__TZ_get_MSPLIM_NS(void)1305 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
1306 {
1307 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1308 // without main extensions, the non-secure MSPLIM is RAZ/WI
1309 return 0U;
1310 #else
1311 uint32_t result;
1312 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
1313 return result;
1314 #endif
1315 }
1316 #endif
1317
1318
1319 /**
1320 \brief Set Main Stack Pointer Limit
1321 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1322 Stack Pointer Limit register hence the write is silently ignored.
1323
1324 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
1325 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
1326 */
__set_MSPLIM(uint32_t MainStackPtrLimit)1327 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
1328 {
1329 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1330 (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1331 // without main extensions, the non-secure MSPLIM is RAZ/WI
1332 (void)MainStackPtrLimit;
1333 #else
1334 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
1335 #endif
1336 }
1337
1338
1339 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1340 /**
1341 \brief Set Main Stack Pointer Limit (non-secure)
1342 Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1343 Stack Pointer Limit register hence the write is silently ignored.
1344
1345 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
1346 \param [in] MainStackPtrLimit Main Stack Pointer value to set
1347 */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)1348 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
1349 {
1350 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1351 // without main extensions, the non-secure MSPLIM is RAZ/WI
1352 (void)MainStackPtrLimit;
1353 #else
1354 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
1355 #endif
1356 }
1357 #endif
1358
1359 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1360 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1361
1362 /**
1363 \brief Get FPSCR
1364 \details Returns the current value of the Floating Point Status/Control register.
1365 \return Floating Point Status/Control register value
1366 */
1367 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1368 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
1369 #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr
1370 #else
1371 #define __get_FPSCR() ((uint32_t)0U)
1372 #endif
1373
1374 /**
1375 \brief Set FPSCR
1376 \details Assigns the given value to the Floating Point Status/Control register.
1377 \param [in] fpscr Floating Point Status/Control value to set
1378 */
1379 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1380 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
1381 #define __set_FPSCR __builtin_arm_set_fpscr
1382 #else
1383 #define __set_FPSCR(x) ((void)(x))
1384 #endif
1385
1386
1387 /*@} end of CMSIS_Core_RegAccFunctions */
1388
1389
1390 /* ################### Compiler specific Intrinsics ########################### */
1391 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1392 Access to dedicated SIMD instructions
1393 @{
1394 */
1395
1396 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1397
__SADD8(uint32_t op1,uint32_t op2)1398 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1399 {
1400 uint32_t result;
1401
1402 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1403 return(result);
1404 }
1405
__QADD8(uint32_t op1,uint32_t op2)1406 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1407 {
1408 uint32_t result;
1409
1410 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1411 return(result);
1412 }
1413
__SHADD8(uint32_t op1,uint32_t op2)1414 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1415 {
1416 uint32_t result;
1417
1418 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1419 return(result);
1420 }
1421
__UADD8(uint32_t op1,uint32_t op2)1422 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1423 {
1424 uint32_t result;
1425
1426 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1427 return(result);
1428 }
1429
__UQADD8(uint32_t op1,uint32_t op2)1430 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1431 {
1432 uint32_t result;
1433
1434 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1435 return(result);
1436 }
1437
__UHADD8(uint32_t op1,uint32_t op2)1438 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1439 {
1440 uint32_t result;
1441
1442 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1443 return(result);
1444 }
1445
1446
__SSUB8(uint32_t op1,uint32_t op2)1447 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1448 {
1449 uint32_t result;
1450
1451 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1452 return(result);
1453 }
1454
__QSUB8(uint32_t op1,uint32_t op2)1455 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1456 {
1457 uint32_t result;
1458
1459 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1460 return(result);
1461 }
1462
__SHSUB8(uint32_t op1,uint32_t op2)1463 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1464 {
1465 uint32_t result;
1466
1467 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1468 return(result);
1469 }
1470
__USUB8(uint32_t op1,uint32_t op2)1471 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1472 {
1473 uint32_t result;
1474
1475 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1476 return(result);
1477 }
1478
__UQSUB8(uint32_t op1,uint32_t op2)1479 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1480 {
1481 uint32_t result;
1482
1483 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1484 return(result);
1485 }
1486
__UHSUB8(uint32_t op1,uint32_t op2)1487 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1488 {
1489 uint32_t result;
1490
1491 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1492 return(result);
1493 }
1494
1495
__SADD16(uint32_t op1,uint32_t op2)1496 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1497 {
1498 uint32_t result;
1499
1500 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1501 return(result);
1502 }
1503
__QADD16(uint32_t op1,uint32_t op2)1504 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1505 {
1506 uint32_t result;
1507
1508 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1509 return(result);
1510 }
1511
__SHADD16(uint32_t op1,uint32_t op2)1512 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1513 {
1514 uint32_t result;
1515
1516 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1517 return(result);
1518 }
1519
__UADD16(uint32_t op1,uint32_t op2)1520 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1521 {
1522 uint32_t result;
1523
1524 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1525 return(result);
1526 }
1527
__UQADD16(uint32_t op1,uint32_t op2)1528 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1529 {
1530 uint32_t result;
1531
1532 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1533 return(result);
1534 }
1535
__UHADD16(uint32_t op1,uint32_t op2)1536 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1537 {
1538 uint32_t result;
1539
1540 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1541 return(result);
1542 }
1543
__SSUB16(uint32_t op1,uint32_t op2)1544 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1545 {
1546 uint32_t result;
1547
1548 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1549 return(result);
1550 }
1551
__QSUB16(uint32_t op1,uint32_t op2)1552 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1553 {
1554 uint32_t result;
1555
1556 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1557 return(result);
1558 }
1559
__SHSUB16(uint32_t op1,uint32_t op2)1560 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1561 {
1562 uint32_t result;
1563
1564 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1565 return(result);
1566 }
1567
__USUB16(uint32_t op1,uint32_t op2)1568 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1569 {
1570 uint32_t result;
1571
1572 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1573 return(result);
1574 }
1575
__UQSUB16(uint32_t op1,uint32_t op2)1576 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1577 {
1578 uint32_t result;
1579
1580 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1581 return(result);
1582 }
1583
__UHSUB16(uint32_t op1,uint32_t op2)1584 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1585 {
1586 uint32_t result;
1587
1588 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1589 return(result);
1590 }
1591
__SASX(uint32_t op1,uint32_t op2)1592 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1593 {
1594 uint32_t result;
1595
1596 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1597 return(result);
1598 }
1599
__QASX(uint32_t op1,uint32_t op2)1600 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1601 {
1602 uint32_t result;
1603
1604 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1605 return(result);
1606 }
1607
__SHASX(uint32_t op1,uint32_t op2)1608 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1609 {
1610 uint32_t result;
1611
1612 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1613 return(result);
1614 }
1615
__UASX(uint32_t op1,uint32_t op2)1616 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1617 {
1618 uint32_t result;
1619
1620 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1621 return(result);
1622 }
1623
__UQASX(uint32_t op1,uint32_t op2)1624 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1625 {
1626 uint32_t result;
1627
1628 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1629 return(result);
1630 }
1631
__UHASX(uint32_t op1,uint32_t op2)1632 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1633 {
1634 uint32_t result;
1635
1636 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1637 return(result);
1638 }
1639
__SSAX(uint32_t op1,uint32_t op2)1640 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1641 {
1642 uint32_t result;
1643
1644 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1645 return(result);
1646 }
1647
__QSAX(uint32_t op1,uint32_t op2)1648 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1649 {
1650 uint32_t result;
1651
1652 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1653 return(result);
1654 }
1655
__SHSAX(uint32_t op1,uint32_t op2)1656 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1657 {
1658 uint32_t result;
1659
1660 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1661 return(result);
1662 }
1663
__USAX(uint32_t op1,uint32_t op2)1664 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1665 {
1666 uint32_t result;
1667
1668 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1669 return(result);
1670 }
1671
__UQSAX(uint32_t op1,uint32_t op2)1672 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1673 {
1674 uint32_t result;
1675
1676 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1677 return(result);
1678 }
1679
__UHSAX(uint32_t op1,uint32_t op2)1680 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1681 {
1682 uint32_t result;
1683
1684 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1685 return(result);
1686 }
1687
__USAD8(uint32_t op1,uint32_t op2)1688 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1689 {
1690 uint32_t result;
1691
1692 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1693 return(result);
1694 }
1695
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1696 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1697 {
1698 uint32_t result;
1699
1700 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1701 return(result);
1702 }
1703
1704 #define __SSAT16(ARG1,ARG2) \
1705 ({ \
1706 int32_t __RES, __ARG1 = (ARG1); \
1707 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1708 __RES; \
1709 })
1710
1711 #define __USAT16(ARG1,ARG2) \
1712 ({ \
1713 uint32_t __RES, __ARG1 = (ARG1); \
1714 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1715 __RES; \
1716 })
1717
__UXTB16(uint32_t op1)1718 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1719 {
1720 uint32_t result;
1721
1722 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1723 return(result);
1724 }
1725
__UXTAB16(uint32_t op1,uint32_t op2)1726 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1727 {
1728 uint32_t result;
1729
1730 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1731 return(result);
1732 }
1733
__SXTB16(uint32_t op1)1734 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1735 {
1736 uint32_t result;
1737
1738 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1739 return(result);
1740 }
1741
__SXTAB16(uint32_t op1,uint32_t op2)1742 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1743 {
1744 uint32_t result;
1745
1746 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1747 return(result);
1748 }
1749
__SMUAD(uint32_t op1,uint32_t op2)1750 __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1751 {
1752 uint32_t result;
1753
1754 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1755 return(result);
1756 }
1757
__SMUADX(uint32_t op1,uint32_t op2)1758 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1759 {
1760 uint32_t result;
1761
1762 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1763 return(result);
1764 }
1765
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1766 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1767 {
1768 uint32_t result;
1769
1770 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1771 return(result);
1772 }
1773
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1774 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1775 {
1776 uint32_t result;
1777
1778 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1779 return(result);
1780 }
1781
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1782 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1783 {
1784 union llreg_u{
1785 uint32_t w32[2];
1786 uint64_t w64;
1787 } llr;
1788 llr.w64 = acc;
1789
1790 #ifndef __ARMEB__ /* Little endian */
1791 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1792 #else /* Big endian */
1793 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1794 #endif
1795
1796 return(llr.w64);
1797 }
1798
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1799 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1800 {
1801 union llreg_u{
1802 uint32_t w32[2];
1803 uint64_t w64;
1804 } llr;
1805 llr.w64 = acc;
1806
1807 #ifndef __ARMEB__ /* Little endian */
1808 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1809 #else /* Big endian */
1810 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1811 #endif
1812
1813 return(llr.w64);
1814 }
1815
__SMUSD(uint32_t op1,uint32_t op2)1816 __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1817 {
1818 uint32_t result;
1819
1820 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1821 return(result);
1822 }
1823
__SMUSDX(uint32_t op1,uint32_t op2)1824 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1825 {
1826 uint32_t result;
1827
1828 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1829 return(result);
1830 }
1831
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1832 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1833 {
1834 uint32_t result;
1835
1836 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1837 return(result);
1838 }
1839
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1840 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1841 {
1842 uint32_t result;
1843
1844 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1845 return(result);
1846 }
1847
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)1848 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1849 {
1850 union llreg_u{
1851 uint32_t w32[2];
1852 uint64_t w64;
1853 } llr;
1854 llr.w64 = acc;
1855
1856 #ifndef __ARMEB__ /* Little endian */
1857 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1858 #else /* Big endian */
1859 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1860 #endif
1861
1862 return(llr.w64);
1863 }
1864
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)1865 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1866 {
1867 union llreg_u{
1868 uint32_t w32[2];
1869 uint64_t w64;
1870 } llr;
1871 llr.w64 = acc;
1872
1873 #ifndef __ARMEB__ /* Little endian */
1874 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1875 #else /* Big endian */
1876 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1877 #endif
1878
1879 return(llr.w64);
1880 }
1881
__SEL(uint32_t op1,uint32_t op2)1882 __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1883 {
1884 uint32_t result;
1885
1886 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1887 return(result);
1888 }
1889
__QADD(int32_t op1,int32_t op2)1890 __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
1891 {
1892 int32_t result;
1893
1894 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1895 return(result);
1896 }
1897
__QSUB(int32_t op1,int32_t op2)1898 __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
1899 {
1900 int32_t result;
1901
1902 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1903 return(result);
1904 }
1905
1906 #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
1907 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
1908
1909 #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
1910 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
1911
1912 #define __SXTB16_RORn(ARG1, ARG2) __SXTB16(__ROR(ARG1, ARG2))
1913
1914 #define __SXTAB16_RORn(ARG1, ARG2, ARG3) __SXTAB16(ARG1, __ROR(ARG2, ARG3))
1915
__SMMLA(int32_t op1,int32_t op2,int32_t op3)1916 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1917 {
1918 int32_t result;
1919
1920 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1921 return(result);
1922 }
1923
1924 #endif /* (__ARM_FEATURE_DSP == 1) */
1925 /*@} end of group CMSIS_SIMD_intrinsics */
1926
1927
1928 #endif /* __CMSIS_ARMCLANG_H */
1929