• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************//**
2  * @file     cmsis_armclang_ltm.h
3  * @brief    CMSIS compiler armclang (Arm Compiler 6) header file
4  * @version  V1.5.3
5  * @date     27. May 2021
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2018-2021 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26 
27 #ifndef __CMSIS_ARMCLANG_H
28 #define __CMSIS_ARMCLANG_H
29 
30 #pragma clang system_header   /* treat file as system include file */
31 
32 /* CMSIS compiler specific defines */
33 #ifndef   __ASM
34   #define __ASM                                  __asm
35 #endif
36 #ifndef   __INLINE
37   #define __INLINE                               __inline
38 #endif
39 #ifndef   __STATIC_INLINE
40   #define __STATIC_INLINE                        static __inline
41 #endif
42 #ifndef   __STATIC_FORCEINLINE
43   #define __STATIC_FORCEINLINE                   __attribute__((always_inline)) static __inline
44 #endif
45 #ifndef   __NO_RETURN
46   #define __NO_RETURN                            __attribute__((__noreturn__))
47 #endif
48 #ifndef   __USED
49   #define __USED                                 __attribute__((used))
50 #endif
51 #ifndef   __WEAK
52   #define __WEAK                                 __attribute__((weak))
53 #endif
54 #ifndef   __PACKED
55   #define __PACKED                               __attribute__((packed, aligned(1)))
56 #endif
57 #ifndef   __PACKED_STRUCT
58   #define __PACKED_STRUCT                        struct __attribute__((packed, aligned(1)))
59 #endif
60 #ifndef   __PACKED_UNION
61   #define __PACKED_UNION                         union __attribute__((packed, aligned(1)))
62 #endif
63 #ifndef   __UNALIGNED_UINT32        /* deprecated */
64   #pragma clang diagnostic push
65   #pragma clang diagnostic ignored "-Wpacked"
66 /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
67   struct __attribute__((packed)) T_UINT32 { uint32_t v; };
68   #pragma clang diagnostic pop
69   #define __UNALIGNED_UINT32(x)                  (((struct T_UINT32 *)(x))->v)
70 #endif
71 #ifndef   __UNALIGNED_UINT16_WRITE
72   #pragma clang diagnostic push
73   #pragma clang diagnostic ignored "-Wpacked"
74 /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
75   __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
76   #pragma clang diagnostic pop
77   #define __UNALIGNED_UINT16_WRITE(addr, val)    (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
78 #endif
79 #ifndef   __UNALIGNED_UINT16_READ
80   #pragma clang diagnostic push
81   #pragma clang diagnostic ignored "-Wpacked"
82 /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
83   __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
84   #pragma clang diagnostic pop
85   #define __UNALIGNED_UINT16_READ(addr)          (((const struct T_UINT16_READ *)(const void *)(addr))->v)
86 #endif
87 #ifndef   __UNALIGNED_UINT32_WRITE
88   #pragma clang diagnostic push
89   #pragma clang diagnostic ignored "-Wpacked"
90 /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
91   __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
92   #pragma clang diagnostic pop
93   #define __UNALIGNED_UINT32_WRITE(addr, val)    (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
94 #endif
95 #ifndef   __UNALIGNED_UINT32_READ
96   #pragma clang diagnostic push
97   #pragma clang diagnostic ignored "-Wpacked"
98 /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
99   __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
100   #pragma clang diagnostic pop
101   #define __UNALIGNED_UINT32_READ(addr)          (((const struct T_UINT32_READ *)(const void *)(addr))->v)
102 #endif
103 #ifndef   __ALIGNED
104   #define __ALIGNED(x)                           __attribute__((aligned(x)))
105 #endif
106 #ifndef   __RESTRICT
107   #define __RESTRICT                             __restrict
108 #endif
109 #ifndef   __COMPILER_BARRIER
110   #define __COMPILER_BARRIER()                   __ASM volatile("":::"memory")
111 #endif
112 
113 /* #########################  Startup and Lowlevel Init  ######################## */
114 
115 #ifndef __PROGRAM_START
116 #define __PROGRAM_START           __main
117 #endif
118 
119 #ifndef __INITIAL_SP
120 #define __INITIAL_SP              Image$$ARM_LIB_STACK$$ZI$$Limit
121 #endif
122 
123 #ifndef __STACK_LIMIT
124 #define __STACK_LIMIT             Image$$ARM_LIB_STACK$$ZI$$Base
125 #endif
126 
127 #ifndef __VECTOR_TABLE
128 #define __VECTOR_TABLE            __Vectors
129 #endif
130 
131 #ifndef __VECTOR_TABLE_ATTRIBUTE
132 #define __VECTOR_TABLE_ATTRIBUTE  __attribute__((used, section("RESET")))
133 #endif
134 
135 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
136 #ifndef __STACK_SEAL
137 #define __STACK_SEAL              Image$$STACKSEAL$$ZI$$Base
138 #endif
139 
140 #ifndef __TZ_STACK_SEAL_SIZE
141 #define __TZ_STACK_SEAL_SIZE      8U
142 #endif
143 
144 #ifndef __TZ_STACK_SEAL_VALUE
145 #define __TZ_STACK_SEAL_VALUE     0xFEF5EDA5FEF5EDA5ULL
146 #endif
147 
148 
__TZ_set_STACKSEAL_S(uint32_t * stackTop)149 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {
150   *((uint64_t *)stackTop) = __TZ_STACK_SEAL_VALUE;
151 }
152 #endif
153 
154 
155 /* ##########################  Core Instruction Access  ######################### */
156 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
157   Access to dedicated instructions
158   @{
159 */
160 
161 /* Define macros for porting to both thumb1 and thumb2.
162  * For thumb1, use low register (r0-r7), specified by constraint "l"
163  * Otherwise, use general registers, specified by constraint "r" */
164 #if defined (__thumb__) && !defined (__thumb2__)
165 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
166 #define __CMSIS_GCC_USE_REG(r) "l" (r)
167 #else
168 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
169 #define __CMSIS_GCC_USE_REG(r) "r" (r)
170 #endif
171 
172 /**
173   \brief   No Operation
174   \details No Operation does nothing. This instruction can be used for code alignment purposes.
175  */
176 #define __NOP          __builtin_arm_nop
177 
178 /**
179   \brief   Wait For Interrupt
180   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
181  */
182 #define __WFI          __builtin_arm_wfi
183 
184 
185 /**
186   \brief   Wait For Event
187   \details Wait For Event is a hint instruction that permits the processor to enter
188            a low-power state until one of a number of events occurs.
189  */
190 #define __WFE          __builtin_arm_wfe
191 
192 
193 /**
194   \brief   Send Event
195   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
196  */
197 #define __SEV          __builtin_arm_sev
198 
199 
200 /**
201   \brief   Instruction Synchronization Barrier
202   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
203            so that all instructions following the ISB are fetched from cache or memory,
204            after the instruction has been completed.
205  */
206 #define __ISB()        __builtin_arm_isb(0xF)
207 
208 /**
209   \brief   Data Synchronization Barrier
210   \details Acts as a special kind of Data Memory Barrier.
211            It completes when all explicit memory accesses before this instruction complete.
212  */
213 #define __DSB()        __builtin_arm_dsb(0xF)
214 
215 
216 /**
217   \brief   Data Memory Barrier
218   \details Ensures the apparent order of the explicit memory operations before
219            and after the instruction, without ensuring their completion.
220  */
221 #define __DMB()        __builtin_arm_dmb(0xF)
222 
223 
224 /**
225   \brief   Reverse byte order (32 bit)
226   \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
227   \param [in]    value  Value to reverse
228   \return               Reversed value
229  */
230 #define __REV(value)   __builtin_bswap32(value)
231 
232 
233 /**
234   \brief   Reverse byte order (16 bit)
235   \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
236   \param [in]    value  Value to reverse
237   \return               Reversed value
238  */
239 #define __REV16(value) __ROR(__REV(value), 16)
240 
241 
242 /**
243   \brief   Reverse byte order (16 bit)
244   \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
245   \param [in]    value  Value to reverse
246   \return               Reversed value
247  */
248 #define __REVSH(value) (int16_t)__builtin_bswap16(value)
249 
250 
251 /**
252   \brief   Rotate Right in unsigned value (32 bit)
253   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
254   \param [in]    op1  Value to rotate
255   \param [in]    op2  Number of Bits to rotate
256   \return               Rotated value
257  */
__ROR(uint32_t op1,uint32_t op2)258 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
259 {
260   op2 %= 32U;
261   if (op2 == 0U)
262   {
263     return op1;
264   }
265   return (op1 >> op2) | (op1 << (32U - op2));
266 }
267 
268 
269 /**
270   \brief   Breakpoint
271   \details Causes the processor to enter Debug state.
272            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
273   \param [in]    value  is ignored by the processor.
274                  If required, a debugger can use it to store additional information about the breakpoint.
275  */
276 #define __BKPT(value)     __ASM volatile ("bkpt "#value)
277 
278 
279 /**
280   \brief   Reverse bit order of value
281   \details Reverses the bit order of the given value.
282   \param [in]    value  Value to reverse
283   \return               Reversed value
284  */
285 #define __RBIT            __builtin_arm_rbit
286 
287 /**
288   \brief   Count leading zeros
289   \details Counts the number of leading zeros of a data value.
290   \param [in]  value  Value to count the leading zeros
291   \return             number of leading zeros in value
292  */
__CLZ(uint32_t value)293 __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
294 {
295   /* Even though __builtin_clz produces a CLZ instruction on ARM, formally
296      __builtin_clz(0) is undefined behaviour, so handle this case specially.
297      This guarantees ARM-compatible results if happening to compile on a non-ARM
298      target, and ensures the compiler doesn't decide to activate any
299      optimisations using the logic "value was passed to __builtin_clz, so it
300      is non-zero".
301      ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a
302      single CLZ instruction.
303    */
304   if (value == 0U)
305   {
306     return 32U;
307   }
308   return __builtin_clz(value);
309 }
310 
311 
312 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
313      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
314      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
315      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
316 /**
317   \brief   LDR Exclusive (8 bit)
318   \details Executes a exclusive LDR instruction for 8 bit value.
319   \param [in]    ptr  Pointer to data
320   \return             value of type uint8_t at (*ptr)
321  */
322 #define __LDREXB        (uint8_t)__builtin_arm_ldrex
323 
324 
325 /**
326   \brief   LDR Exclusive (16 bit)
327   \details Executes a exclusive LDR instruction for 16 bit values.
328   \param [in]    ptr  Pointer to data
329   \return        value of type uint16_t at (*ptr)
330  */
331 #define __LDREXH        (uint16_t)__builtin_arm_ldrex
332 
333 
334 /**
335   \brief   LDR Exclusive (32 bit)
336   \details Executes a exclusive LDR instruction for 32 bit values.
337   \param [in]    ptr  Pointer to data
338   \return        value of type uint32_t at (*ptr)
339  */
340 #define __LDREXW        (uint32_t)__builtin_arm_ldrex
341 
342 
343 /**
344   \brief   STR Exclusive (8 bit)
345   \details Executes a exclusive STR instruction for 8 bit values.
346   \param [in]  value  Value to store
347   \param [in]    ptr  Pointer to location
348   \return          0  Function succeeded
349   \return          1  Function failed
350  */
351 #define __STREXB        (uint32_t)__builtin_arm_strex
352 
353 
354 /**
355   \brief   STR Exclusive (16 bit)
356   \details Executes a exclusive STR instruction for 16 bit values.
357   \param [in]  value  Value to store
358   \param [in]    ptr  Pointer to location
359   \return          0  Function succeeded
360   \return          1  Function failed
361  */
362 #define __STREXH        (uint32_t)__builtin_arm_strex
363 
364 
365 /**
366   \brief   STR Exclusive (32 bit)
367   \details Executes a exclusive STR instruction for 32 bit values.
368   \param [in]  value  Value to store
369   \param [in]    ptr  Pointer to location
370   \return          0  Function succeeded
371   \return          1  Function failed
372  */
373 #define __STREXW        (uint32_t)__builtin_arm_strex
374 
375 
376 /**
377   \brief   Remove the exclusive lock
378   \details Removes the exclusive lock which is created by LDREX.
379  */
380 #define __CLREX             __builtin_arm_clrex
381 
382 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
383            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
384            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
385            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
386 
387 
388 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
389      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
390      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
391 
392 /**
393   \brief   Signed Saturate
394   \details Saturates a signed value.
395   \param [in]  value  Value to be saturated
396   \param [in]    sat  Bit position to saturate to (1..32)
397   \return             Saturated value
398  */
399 #define __SSAT             __builtin_arm_ssat
400 
401 
402 /**
403   \brief   Unsigned Saturate
404   \details Saturates an unsigned value.
405   \param [in]  value  Value to be saturated
406   \param [in]    sat  Bit position to saturate to (0..31)
407   \return             Saturated value
408  */
409 #define __USAT             __builtin_arm_usat
410 
411 
412 /**
413   \brief   Rotate Right with Extend (32 bit)
414   \details Moves each bit of a bitstring right by one bit.
415            The carry input is shifted in at the left end of the bitstring.
416   \param [in]    value  Value to rotate
417   \return               Rotated value
418  */
__RRX(uint32_t value)419 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
420 {
421   uint32_t result;
422 
423   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
424   return(result);
425 }
426 
427 
428 /**
429   \brief   LDRT Unprivileged (8 bit)
430   \details Executes a Unprivileged LDRT instruction for 8 bit value.
431   \param [in]    ptr  Pointer to data
432   \return             value of type uint8_t at (*ptr)
433  */
__LDRBT(volatile uint8_t * ptr)434 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
435 {
436   uint32_t result;
437 
438   __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
439   return ((uint8_t) result);    /* Add explicit type cast here */
440 }
441 
442 
443 /**
444   \brief   LDRT Unprivileged (16 bit)
445   \details Executes a Unprivileged LDRT instruction for 16 bit values.
446   \param [in]    ptr  Pointer to data
447   \return        value of type uint16_t at (*ptr)
448  */
__LDRHT(volatile uint16_t * ptr)449 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
450 {
451   uint32_t result;
452 
453   __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
454   return ((uint16_t) result);    /* Add explicit type cast here */
455 }
456 
457 
458 /**
459   \brief   LDRT Unprivileged (32 bit)
460   \details Executes a Unprivileged LDRT instruction for 32 bit values.
461   \param [in]    ptr  Pointer to data
462   \return        value of type uint32_t at (*ptr)
463  */
__LDRT(volatile uint32_t * ptr)464 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
465 {
466   uint32_t result;
467 
468   __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
469   return(result);
470 }
471 
472 
473 /**
474   \brief   STRT Unprivileged (8 bit)
475   \details Executes a Unprivileged STRT instruction for 8 bit values.
476   \param [in]  value  Value to store
477   \param [in]    ptr  Pointer to location
478  */
__STRBT(uint8_t value,volatile uint8_t * ptr)479 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
480 {
481   __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
482 }
483 
484 
485 /**
486   \brief   STRT Unprivileged (16 bit)
487   \details Executes a Unprivileged STRT instruction for 16 bit values.
488   \param [in]  value  Value to store
489   \param [in]    ptr  Pointer to location
490  */
__STRHT(uint16_t value,volatile uint16_t * ptr)491 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
492 {
493   __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
494 }
495 
496 
497 /**
498   \brief   STRT Unprivileged (32 bit)
499   \details Executes a Unprivileged STRT instruction for 32 bit values.
500   \param [in]  value  Value to store
501   \param [in]    ptr  Pointer to location
502  */
__STRT(uint32_t value,volatile uint32_t * ptr)503 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
504 {
505   __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
506 }
507 
508 #else  /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
509            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
510            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
511 
512 /**
513   \brief   Signed Saturate
514   \details Saturates a signed value.
515   \param [in]  value  Value to be saturated
516   \param [in]    sat  Bit position to saturate to (1..32)
517   \return             Saturated value
518  */
__SSAT(int32_t val,uint32_t sat)519 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
520 {
521   if ((sat >= 1U) && (sat <= 32U))
522   {
523     const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
524     const int32_t min = -1 - max ;
525     if (val > max)
526     {
527       return max;
528     }
529     else if (val < min)
530     {
531       return min;
532     }
533   }
534   return val;
535 }
536 
537 /**
538   \brief   Unsigned Saturate
539   \details Saturates an unsigned value.
540   \param [in]  value  Value to be saturated
541   \param [in]    sat  Bit position to saturate to (0..31)
542   \return             Saturated value
543  */
__USAT(int32_t val,uint32_t sat)544 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
545 {
546   if (sat <= 31U)
547   {
548     const uint32_t max = ((1U << sat) - 1U);
549     if (val > (int32_t)max)
550     {
551       return max;
552     }
553     else if (val < 0)
554     {
555       return 0U;
556     }
557   }
558   return (uint32_t)val;
559 }
560 
561 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
562            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
563            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
564 
565 
566 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
567      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
568 /**
569   \brief   Load-Acquire (8 bit)
570   \details Executes a LDAB instruction for 8 bit value.
571   \param [in]    ptr  Pointer to data
572   \return             value of type uint8_t at (*ptr)
573  */
__LDAB(volatile uint8_t * ptr)574 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
575 {
576   uint32_t result;
577 
578   __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
579   return ((uint8_t) result);
580 }
581 
582 
583 /**
584   \brief   Load-Acquire (16 bit)
585   \details Executes a LDAH instruction for 16 bit values.
586   \param [in]    ptr  Pointer to data
587   \return        value of type uint16_t at (*ptr)
588  */
__LDAH(volatile uint16_t * ptr)589 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
590 {
591   uint32_t result;
592 
593   __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
594   return ((uint16_t) result);
595 }
596 
597 
598 /**
599   \brief   Load-Acquire (32 bit)
600   \details Executes a LDA instruction for 32 bit values.
601   \param [in]    ptr  Pointer to data
602   \return        value of type uint32_t at (*ptr)
603  */
__LDA(volatile uint32_t * ptr)604 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
605 {
606   uint32_t result;
607 
608   __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) : "memory" );
609   return(result);
610 }
611 
612 
613 /**
614   \brief   Store-Release (8 bit)
615   \details Executes a STLB instruction for 8 bit values.
616   \param [in]  value  Value to store
617   \param [in]    ptr  Pointer to location
618  */
__STLB(uint8_t value,volatile uint8_t * ptr)619 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
620 {
621   __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
622 }
623 
624 
625 /**
626   \brief   Store-Release (16 bit)
627   \details Executes a STLH instruction for 16 bit values.
628   \param [in]  value  Value to store
629   \param [in]    ptr  Pointer to location
630  */
__STLH(uint16_t value,volatile uint16_t * ptr)631 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
632 {
633   __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
634 }
635 
636 
637 /**
638   \brief   Store-Release (32 bit)
639   \details Executes a STL instruction for 32 bit values.
640   \param [in]  value  Value to store
641   \param [in]    ptr  Pointer to location
642  */
__STL(uint32_t value,volatile uint32_t * ptr)643 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
644 {
645   __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) : "memory" );
646 }
647 
648 
649 /**
650   \brief   Load-Acquire Exclusive (8 bit)
651   \details Executes a LDAB exclusive instruction for 8 bit value.
652   \param [in]    ptr  Pointer to data
653   \return             value of type uint8_t at (*ptr)
654  */
655 #define     __LDAEXB                 (uint8_t)__builtin_arm_ldaex
656 
657 
658 /**
659   \brief   Load-Acquire Exclusive (16 bit)
660   \details Executes a LDAH exclusive instruction for 16 bit values.
661   \param [in]    ptr  Pointer to data
662   \return        value of type uint16_t at (*ptr)
663  */
664 #define     __LDAEXH                 (uint16_t)__builtin_arm_ldaex
665 
666 
667 /**
668   \brief   Load-Acquire Exclusive (32 bit)
669   \details Executes a LDA exclusive instruction for 32 bit values.
670   \param [in]    ptr  Pointer to data
671   \return        value of type uint32_t at (*ptr)
672  */
673 #define     __LDAEX                  (uint32_t)__builtin_arm_ldaex
674 
675 
676 /**
677   \brief   Store-Release Exclusive (8 bit)
678   \details Executes a STLB exclusive instruction for 8 bit values.
679   \param [in]  value  Value to store
680   \param [in]    ptr  Pointer to location
681   \return          0  Function succeeded
682   \return          1  Function failed
683  */
684 #define     __STLEXB                 (uint32_t)__builtin_arm_stlex
685 
686 
687 /**
688   \brief   Store-Release Exclusive (16 bit)
689   \details Executes a STLH exclusive instruction for 16 bit values.
690   \param [in]  value  Value to store
691   \param [in]    ptr  Pointer to location
692   \return          0  Function succeeded
693   \return          1  Function failed
694  */
695 #define     __STLEXH                 (uint32_t)__builtin_arm_stlex
696 
697 
698 /**
699   \brief   Store-Release Exclusive (32 bit)
700   \details Executes a STL exclusive instruction for 32 bit values.
701   \param [in]  value  Value to store
702   \param [in]    ptr  Pointer to location
703   \return          0  Function succeeded
704   \return          1  Function failed
705  */
706 #define     __STLEX                  (uint32_t)__builtin_arm_stlex
707 
708 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
709            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
710 
711 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
712 
713 
714 /* ###########################  Core Function Access  ########################### */
715 /** \ingroup  CMSIS_Core_FunctionInterface
716     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
717   @{
718  */
719 
720 /**
721   \brief   Enable IRQ Interrupts
722   \details Enables IRQ interrupts by clearing special-purpose register PRIMASK.
723            Can only be executed in Privileged modes.
724  */
725 #ifndef __ARM_COMPAT_H
__enable_irq(void)726 __STATIC_FORCEINLINE void __enable_irq(void)
727 {
728   __ASM volatile ("cpsie i" : : : "memory");
729 }
730 #endif
731 
732 
733 /**
734   \brief   Disable IRQ Interrupts
735   \details Disables IRQ interrupts by setting special-purpose register PRIMASK.
736            Can only be executed in Privileged modes.
737  */
738 #ifndef __ARM_COMPAT_H
__disable_irq(void)739 __STATIC_FORCEINLINE void __disable_irq(void)
740 {
741   __ASM volatile ("cpsid i" : : : "memory");
742 }
743 #endif
744 
745 
746 /**
747   \brief   Get Control Register
748   \details Returns the content of the Control Register.
749   \return               Control Register value
750  */
__get_CONTROL(void)751 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
752 {
753   uint32_t result;
754 
755   __ASM volatile ("MRS %0, control" : "=r" (result) );
756   return(result);
757 }
758 
759 
760 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
761 /**
762   \brief   Get Control Register (non-secure)
763   \details Returns the content of the non-secure Control Register when in secure mode.
764   \return               non-secure Control Register value
765  */
__TZ_get_CONTROL_NS(void)766 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
767 {
768   uint32_t result;
769 
770   __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
771   return(result);
772 }
773 #endif
774 
775 
776 /**
777   \brief   Set Control Register
778   \details Writes the given value to the Control Register.
779   \param [in]    control  Control Register value to set
780  */
__set_CONTROL(uint32_t control)781 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
782 {
783   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
784   __ISB();
785 }
786 
787 
788 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
789 /**
790   \brief   Set Control Register (non-secure)
791   \details Writes the given value to the non-secure Control Register when in secure state.
792   \param [in]    control  Control Register value to set
793  */
__TZ_set_CONTROL_NS(uint32_t control)794 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
795 {
796   __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
797   __ISB();
798 }
799 #endif
800 
801 
802 /**
803   \brief   Get IPSR Register
804   \details Returns the content of the IPSR Register.
805   \return               IPSR Register value
806  */
__get_IPSR(void)807 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
808 {
809   uint32_t result;
810 
811   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
812   return(result);
813 }
814 
815 
816 /**
817   \brief   Get APSR Register
818   \details Returns the content of the APSR Register.
819   \return               APSR Register value
820  */
__get_APSR(void)821 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
822 {
823   uint32_t result;
824 
825   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
826   return(result);
827 }
828 
829 
830 /**
831   \brief   Get xPSR Register
832   \details Returns the content of the xPSR Register.
833   \return               xPSR Register value
834  */
__get_xPSR(void)835 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
836 {
837   uint32_t result;
838 
839   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
840   return(result);
841 }
842 
843 
844 /**
845   \brief   Get Process Stack Pointer
846   \details Returns the current value of the Process Stack Pointer (PSP).
847   \return               PSP Register value
848  */
__get_PSP(void)849 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
850 {
851   uint32_t result;
852 
853   __ASM volatile ("MRS %0, psp"  : "=r" (result) );
854   return(result);
855 }
856 
857 
858 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
859 /**
860   \brief   Get Process Stack Pointer (non-secure)
861   \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
862   \return               PSP Register value
863  */
__TZ_get_PSP_NS(void)864 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
865 {
866   uint32_t result;
867 
868   __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
869   return(result);
870 }
871 #endif
872 
873 
874 /**
875   \brief   Set Process Stack Pointer
876   \details Assigns the given value to the Process Stack Pointer (PSP).
877   \param [in]    topOfProcStack  Process Stack Pointer value to set
878  */
__set_PSP(uint32_t topOfProcStack)879 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
880 {
881   __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
882 }
883 
884 
885 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
886 /**
887   \brief   Set Process Stack Pointer (non-secure)
888   \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
889   \param [in]    topOfProcStack  Process Stack Pointer value to set
890  */
__TZ_set_PSP_NS(uint32_t topOfProcStack)891 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
892 {
893   __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
894 }
895 #endif
896 
897 
898 /**
899   \brief   Get Main Stack Pointer
900   \details Returns the current value of the Main Stack Pointer (MSP).
901   \return               MSP Register value
902  */
__get_MSP(void)903 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
904 {
905   uint32_t result;
906 
907   __ASM volatile ("MRS %0, msp" : "=r" (result) );
908   return(result);
909 }
910 
911 
912 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
913 /**
914   \brief   Get Main Stack Pointer (non-secure)
915   \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
916   \return               MSP Register value
917  */
__TZ_get_MSP_NS(void)918 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
919 {
920   uint32_t result;
921 
922   __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
923   return(result);
924 }
925 #endif
926 
927 
928 /**
929   \brief   Set Main Stack Pointer
930   \details Assigns the given value to the Main Stack Pointer (MSP).
931   \param [in]    topOfMainStack  Main Stack Pointer value to set
932  */
__set_MSP(uint32_t topOfMainStack)933 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
934 {
935   __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
936 }
937 
938 
939 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
940 /**
941   \brief   Set Main Stack Pointer (non-secure)
942   \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
943   \param [in]    topOfMainStack  Main Stack Pointer value to set
944  */
__TZ_set_MSP_NS(uint32_t topOfMainStack)945 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
946 {
947   __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
948 }
949 #endif
950 
951 
952 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
953 /**
954   \brief   Get Stack Pointer (non-secure)
955   \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
956   \return               SP Register value
957  */
__TZ_get_SP_NS(void)958 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
959 {
960   uint32_t result;
961 
962   __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
963   return(result);
964 }
965 
966 
967 /**
968   \brief   Set Stack Pointer (non-secure)
969   \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
970   \param [in]    topOfStack  Stack Pointer value to set
971  */
__TZ_set_SP_NS(uint32_t topOfStack)972 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
973 {
974   __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
975 }
976 #endif
977 
978 
979 /**
980   \brief   Get Priority Mask
981   \details Returns the current state of the priority mask bit from the Priority Mask Register.
982   \return               Priority Mask value
983  */
__get_PRIMASK(void)984 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
985 {
986   uint32_t result;
987 
988   __ASM volatile ("MRS %0, primask" : "=r" (result) );
989   return(result);
990 }
991 
992 
993 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
994 /**
995   \brief   Get Priority Mask (non-secure)
996   \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
997   \return               Priority Mask value
998  */
__TZ_get_PRIMASK_NS(void)999 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
1000 {
1001   uint32_t result;
1002 
1003   __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
1004   return(result);
1005 }
1006 #endif
1007 
1008 
1009 /**
1010   \brief   Set Priority Mask
1011   \details Assigns the given value to the Priority Mask Register.
1012   \param [in]    priMask  Priority Mask
1013  */
__set_PRIMASK(uint32_t priMask)1014 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
1015 {
1016   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
1017 }
1018 
1019 
1020 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1021 /**
1022   \brief   Set Priority Mask (non-secure)
1023   \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
1024   \param [in]    priMask  Priority Mask
1025  */
__TZ_set_PRIMASK_NS(uint32_t priMask)1026 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
1027 {
1028   __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
1029 }
1030 #endif
1031 
1032 
1033 #if ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1034      (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1035      (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    )
1036 /**
1037   \brief   Enable FIQ
1038   \details Enables FIQ interrupts by clearing special-purpose register FAULTMASK.
1039            Can only be executed in Privileged modes.
1040  */
__enable_fault_irq(void)1041 __STATIC_FORCEINLINE void __enable_fault_irq(void)
1042 {
1043   __ASM volatile ("cpsie f" : : : "memory");
1044 }
1045 
1046 
1047 /**
1048   \brief   Disable FIQ
1049   \details Disables FIQ interrupts by setting special-purpose register FAULTMASK.
1050            Can only be executed in Privileged modes.
1051  */
__disable_fault_irq(void)1052 __STATIC_FORCEINLINE void __disable_fault_irq(void)
1053 {
1054   __ASM volatile ("cpsid f" : : : "memory");
1055 }
1056 
1057 
1058 /**
1059   \brief   Get Base Priority
1060   \details Returns the current value of the Base Priority register.
1061   \return               Base Priority register value
1062  */
__get_BASEPRI(void)1063 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
1064 {
1065   uint32_t result;
1066 
1067   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
1068   return(result);
1069 }
1070 
1071 
1072 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1073 /**
1074   \brief   Get Base Priority (non-secure)
1075   \details Returns the current value of the non-secure Base Priority register when in secure state.
1076   \return               Base Priority register value
1077  */
__TZ_get_BASEPRI_NS(void)1078 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
1079 {
1080   uint32_t result;
1081 
1082   __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
1083   return(result);
1084 }
1085 #endif
1086 
1087 
1088 /**
1089   \brief   Set Base Priority
1090   \details Assigns the given value to the Base Priority register.
1091   \param [in]    basePri  Base Priority value to set
1092  */
__set_BASEPRI(uint32_t basePri)1093 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
1094 {
1095   __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
1096 }
1097 
1098 
1099 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1100 /**
1101   \brief   Set Base Priority (non-secure)
1102   \details Assigns the given value to the non-secure Base Priority register when in secure state.
1103   \param [in]    basePri  Base Priority value to set
1104  */
__TZ_set_BASEPRI_NS(uint32_t basePri)1105 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
1106 {
1107   __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
1108 }
1109 #endif
1110 
1111 
1112 /**
1113   \brief   Set Base Priority with condition
1114   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
1115            or the new value increases the BASEPRI priority level.
1116   \param [in]    basePri  Base Priority value to set
1117  */
__set_BASEPRI_MAX(uint32_t basePri)1118 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
1119 {
1120   __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
1121 }
1122 
1123 
1124 /**
1125   \brief   Get Fault Mask
1126   \details Returns the current value of the Fault Mask register.
1127   \return               Fault Mask register value
1128  */
__get_FAULTMASK(void)1129 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
1130 {
1131   uint32_t result;
1132 
1133   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
1134   return(result);
1135 }
1136 
1137 
1138 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1139 /**
1140   \brief   Get Fault Mask (non-secure)
1141   \details Returns the current value of the non-secure Fault Mask register when in secure state.
1142   \return               Fault Mask register value
1143  */
__TZ_get_FAULTMASK_NS(void)1144 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
1145 {
1146   uint32_t result;
1147 
1148   __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
1149   return(result);
1150 }
1151 #endif
1152 
1153 
1154 /**
1155   \brief   Set Fault Mask
1156   \details Assigns the given value to the Fault Mask register.
1157   \param [in]    faultMask  Fault Mask value to set
1158  */
__set_FAULTMASK(uint32_t faultMask)1159 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
1160 {
1161   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
1162 }
1163 
1164 
1165 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
1166 /**
1167   \brief   Set Fault Mask (non-secure)
1168   \details Assigns the given value to the non-secure Fault Mask register when in secure state.
1169   \param [in]    faultMask  Fault Mask value to set
1170  */
__TZ_set_FAULTMASK_NS(uint32_t faultMask)1171 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
1172 {
1173   __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
1174 }
1175 #endif
1176 
1177 #endif /* ((defined (__ARM_ARCH_7M__      ) && (__ARM_ARCH_7M__      == 1)) || \
1178            (defined (__ARM_ARCH_7EM__     ) && (__ARM_ARCH_7EM__     == 1)) || \
1179            (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))    ) */
1180 
1181 
1182 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1183      (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    )
1184 
1185 /**
1186   \brief   Get Process Stack Pointer Limit
1187   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1188   Stack Pointer Limit register hence zero is returned always in non-secure
1189   mode.
1190 
1191   \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
1192   \return               PSPLIM Register value
1193  */
__get_PSPLIM(void)1194 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
1195 {
1196 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1197     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1198     // without main extensions, the non-secure PSPLIM is RAZ/WI
1199   return 0U;
1200 #else
1201   uint32_t result;
1202   __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
1203   return result;
1204 #endif
1205 }
1206 
1207 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
1208 /**
1209   \brief   Get Process Stack Pointer Limit (non-secure)
1210   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1211   Stack Pointer Limit register hence zero is returned always in non-secure
1212   mode.
1213 
1214   \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1215   \return               PSPLIM Register value
1216  */
__TZ_get_PSPLIM_NS(void)1217 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
1218 {
1219 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1220   // without main extensions, the non-secure PSPLIM is RAZ/WI
1221   return 0U;
1222 #else
1223   uint32_t result;
1224   __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
1225   return result;
1226 #endif
1227 }
1228 #endif
1229 
1230 
1231 /**
1232   \brief   Set Process Stack Pointer Limit
1233   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1234   Stack Pointer Limit register hence the write is silently ignored in non-secure
1235   mode.
1236 
1237   \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
1238   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
1239  */
__set_PSPLIM(uint32_t ProcStackPtrLimit)1240 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
1241 {
1242 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1243     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1244   // without main extensions, the non-secure PSPLIM is RAZ/WI
1245   (void)ProcStackPtrLimit;
1246 #else
1247   __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
1248 #endif
1249 }
1250 
1251 
1252 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1253 /**
1254   \brief   Set Process Stack Pointer (non-secure)
1255   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1256   Stack Pointer Limit register hence the write is silently ignored in non-secure
1257   mode.
1258 
1259   \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
1260   \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
1261  */
__TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)1262 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
1263 {
1264 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1265   // without main extensions, the non-secure PSPLIM is RAZ/WI
1266   (void)ProcStackPtrLimit;
1267 #else
1268   __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
1269 #endif
1270 }
1271 #endif
1272 
1273 
1274 /**
1275   \brief   Get Main Stack Pointer Limit
1276   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1277   Stack Pointer Limit register hence zero is returned always.
1278 
1279   \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
1280   \return               MSPLIM Register value
1281  */
__get_MSPLIM(void)1282 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
1283 {
1284 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1285     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1286   // without main extensions, the non-secure MSPLIM is RAZ/WI
1287   return 0U;
1288 #else
1289   uint32_t result;
1290   __ASM volatile ("MRS %0, msplim" : "=r" (result) );
1291   return result;
1292 #endif
1293 }
1294 
1295 
1296 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1297 /**
1298   \brief   Get Main Stack Pointer Limit (non-secure)
1299   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1300   Stack Pointer Limit register hence zero is returned always.
1301 
1302   \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
1303   \return               MSPLIM Register value
1304  */
__TZ_get_MSPLIM_NS(void)1305 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
1306 {
1307 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1308   // without main extensions, the non-secure MSPLIM is RAZ/WI
1309   return 0U;
1310 #else
1311   uint32_t result;
1312   __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
1313   return result;
1314 #endif
1315 }
1316 #endif
1317 
1318 
1319 /**
1320   \brief   Set Main Stack Pointer Limit
1321   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1322   Stack Pointer Limit register hence the write is silently ignored.
1323 
1324   \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
1325   \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
1326  */
__set_MSPLIM(uint32_t MainStackPtrLimit)1327 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
1328 {
1329 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
1330     (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
1331   // without main extensions, the non-secure MSPLIM is RAZ/WI
1332   (void)MainStackPtrLimit;
1333 #else
1334   __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
1335 #endif
1336 }
1337 
1338 
1339 #if (defined (__ARM_FEATURE_CMSE  ) && (__ARM_FEATURE_CMSE   == 3))
1340 /**
1341   \brief   Set Main Stack Pointer Limit (non-secure)
1342   Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
1343   Stack Pointer Limit register hence the write is silently ignored.
1344 
1345   \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
1346   \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
1347  */
__TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)1348 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
1349 {
1350 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
1351   // without main extensions, the non-secure MSPLIM is RAZ/WI
1352   (void)MainStackPtrLimit;
1353 #else
1354   __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
1355 #endif
1356 }
1357 #endif
1358 
1359 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1360            (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1))    ) */
1361 
1362 /**
1363   \brief   Get FPSCR
1364   \details Returns the current value of the Floating Point Status/Control register.
1365   \return               Floating Point Status/Control register value
1366  */
1367 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1368      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
1369 #define __get_FPSCR      (uint32_t)__builtin_arm_get_fpscr
1370 #else
1371 #define __get_FPSCR()      ((uint32_t)0U)
1372 #endif
1373 
1374 /**
1375   \brief   Set FPSCR
1376   \details Assigns the given value to the Floating Point Status/Control register.
1377   \param [in]    fpscr  Floating Point Status/Control value to set
1378  */
1379 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
1380      (defined (__FPU_USED   ) && (__FPU_USED    == 1U))     )
1381 #define __set_FPSCR      __builtin_arm_set_fpscr
1382 #else
1383 #define __set_FPSCR(x)      ((void)(x))
1384 #endif
1385 
1386 
1387 /*@} end of CMSIS_Core_RegAccFunctions */
1388 
1389 
1390 /* ###################  Compiler specific Intrinsics  ########################### */
1391 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1392   Access to dedicated SIMD instructions
1393   @{
1394 */
1395 
1396 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1397 
__SADD8(uint32_t op1,uint32_t op2)1398 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1399 {
1400   uint32_t result;
1401 
1402   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1403   return(result);
1404 }
1405 
__QADD8(uint32_t op1,uint32_t op2)1406 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1407 {
1408   uint32_t result;
1409 
1410   __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1411   return(result);
1412 }
1413 
__SHADD8(uint32_t op1,uint32_t op2)1414 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1415 {
1416   uint32_t result;
1417 
1418   __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1419   return(result);
1420 }
1421 
__UADD8(uint32_t op1,uint32_t op2)1422 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1423 {
1424   uint32_t result;
1425 
1426   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1427   return(result);
1428 }
1429 
__UQADD8(uint32_t op1,uint32_t op2)1430 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1431 {
1432   uint32_t result;
1433 
1434   __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1435   return(result);
1436 }
1437 
__UHADD8(uint32_t op1,uint32_t op2)1438 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1439 {
1440   uint32_t result;
1441 
1442   __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1443   return(result);
1444 }
1445 
1446 
__SSUB8(uint32_t op1,uint32_t op2)1447 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1448 {
1449   uint32_t result;
1450 
1451   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1452   return(result);
1453 }
1454 
__QSUB8(uint32_t op1,uint32_t op2)1455 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1456 {
1457   uint32_t result;
1458 
1459   __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1460   return(result);
1461 }
1462 
__SHSUB8(uint32_t op1,uint32_t op2)1463 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1464 {
1465   uint32_t result;
1466 
1467   __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1468   return(result);
1469 }
1470 
__USUB8(uint32_t op1,uint32_t op2)1471 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1472 {
1473   uint32_t result;
1474 
1475   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1476   return(result);
1477 }
1478 
__UQSUB8(uint32_t op1,uint32_t op2)1479 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1480 {
1481   uint32_t result;
1482 
1483   __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1484   return(result);
1485 }
1486 
__UHSUB8(uint32_t op1,uint32_t op2)1487 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1488 {
1489   uint32_t result;
1490 
1491   __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1492   return(result);
1493 }
1494 
1495 
__SADD16(uint32_t op1,uint32_t op2)1496 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1497 {
1498   uint32_t result;
1499 
1500   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1501   return(result);
1502 }
1503 
__QADD16(uint32_t op1,uint32_t op2)1504 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1505 {
1506   uint32_t result;
1507 
1508   __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1509   return(result);
1510 }
1511 
__SHADD16(uint32_t op1,uint32_t op2)1512 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1513 {
1514   uint32_t result;
1515 
1516   __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1517   return(result);
1518 }
1519 
__UADD16(uint32_t op1,uint32_t op2)1520 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1521 {
1522   uint32_t result;
1523 
1524   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1525   return(result);
1526 }
1527 
__UQADD16(uint32_t op1,uint32_t op2)1528 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1529 {
1530   uint32_t result;
1531 
1532   __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1533   return(result);
1534 }
1535 
__UHADD16(uint32_t op1,uint32_t op2)1536 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1537 {
1538   uint32_t result;
1539 
1540   __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1541   return(result);
1542 }
1543 
__SSUB16(uint32_t op1,uint32_t op2)1544 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1545 {
1546   uint32_t result;
1547 
1548   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1549   return(result);
1550 }
1551 
__QSUB16(uint32_t op1,uint32_t op2)1552 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1553 {
1554   uint32_t result;
1555 
1556   __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1557   return(result);
1558 }
1559 
__SHSUB16(uint32_t op1,uint32_t op2)1560 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1561 {
1562   uint32_t result;
1563 
1564   __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1565   return(result);
1566 }
1567 
__USUB16(uint32_t op1,uint32_t op2)1568 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1569 {
1570   uint32_t result;
1571 
1572   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1573   return(result);
1574 }
1575 
__UQSUB16(uint32_t op1,uint32_t op2)1576 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1577 {
1578   uint32_t result;
1579 
1580   __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1581   return(result);
1582 }
1583 
__UHSUB16(uint32_t op1,uint32_t op2)1584 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1585 {
1586   uint32_t result;
1587 
1588   __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1589   return(result);
1590 }
1591 
__SASX(uint32_t op1,uint32_t op2)1592 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1593 {
1594   uint32_t result;
1595 
1596   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1597   return(result);
1598 }
1599 
__QASX(uint32_t op1,uint32_t op2)1600 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1601 {
1602   uint32_t result;
1603 
1604   __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1605   return(result);
1606 }
1607 
__SHASX(uint32_t op1,uint32_t op2)1608 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1609 {
1610   uint32_t result;
1611 
1612   __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1613   return(result);
1614 }
1615 
__UASX(uint32_t op1,uint32_t op2)1616 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1617 {
1618   uint32_t result;
1619 
1620   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1621   return(result);
1622 }
1623 
__UQASX(uint32_t op1,uint32_t op2)1624 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1625 {
1626   uint32_t result;
1627 
1628   __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1629   return(result);
1630 }
1631 
__UHASX(uint32_t op1,uint32_t op2)1632 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1633 {
1634   uint32_t result;
1635 
1636   __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1637   return(result);
1638 }
1639 
__SSAX(uint32_t op1,uint32_t op2)1640 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1641 {
1642   uint32_t result;
1643 
1644   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1645   return(result);
1646 }
1647 
__QSAX(uint32_t op1,uint32_t op2)1648 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1649 {
1650   uint32_t result;
1651 
1652   __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1653   return(result);
1654 }
1655 
__SHSAX(uint32_t op1,uint32_t op2)1656 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1657 {
1658   uint32_t result;
1659 
1660   __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1661   return(result);
1662 }
1663 
__USAX(uint32_t op1,uint32_t op2)1664 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1665 {
1666   uint32_t result;
1667 
1668   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1669   return(result);
1670 }
1671 
__UQSAX(uint32_t op1,uint32_t op2)1672 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1673 {
1674   uint32_t result;
1675 
1676   __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1677   return(result);
1678 }
1679 
__UHSAX(uint32_t op1,uint32_t op2)1680 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1681 {
1682   uint32_t result;
1683 
1684   __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1685   return(result);
1686 }
1687 
__USAD8(uint32_t op1,uint32_t op2)1688 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1689 {
1690   uint32_t result;
1691 
1692   __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1693   return(result);
1694 }
1695 
__USADA8(uint32_t op1,uint32_t op2,uint32_t op3)1696 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1697 {
1698   uint32_t result;
1699 
1700   __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1701   return(result);
1702 }
1703 
1704 #define __SSAT16(ARG1,ARG2) \
1705 ({                          \
1706   int32_t __RES, __ARG1 = (ARG1); \
1707   __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1708   __RES; \
1709  })
1710 
1711 #define __USAT16(ARG1,ARG2) \
1712 ({                          \
1713   uint32_t __RES, __ARG1 = (ARG1); \
1714   __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1715   __RES; \
1716  })
1717 
__UXTB16(uint32_t op1)1718 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1719 {
1720   uint32_t result;
1721 
1722   __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1723   return(result);
1724 }
1725 
__UXTAB16(uint32_t op1,uint32_t op2)1726 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1727 {
1728   uint32_t result;
1729 
1730   __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1731   return(result);
1732 }
1733 
__SXTB16(uint32_t op1)1734 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1735 {
1736   uint32_t result;
1737 
1738   __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1739   return(result);
1740 }
1741 
__SXTAB16(uint32_t op1,uint32_t op2)1742 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1743 {
1744   uint32_t result;
1745 
1746   __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1747   return(result);
1748 }
1749 
__SMUAD(uint32_t op1,uint32_t op2)1750 __STATIC_FORCEINLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1751 {
1752   uint32_t result;
1753 
1754   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1755   return(result);
1756 }
1757 
__SMUADX(uint32_t op1,uint32_t op2)1758 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1759 {
1760   uint32_t result;
1761 
1762   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1763   return(result);
1764 }
1765 
__SMLAD(uint32_t op1,uint32_t op2,uint32_t op3)1766 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1767 {
1768   uint32_t result;
1769 
1770   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1771   return(result);
1772 }
1773 
__SMLADX(uint32_t op1,uint32_t op2,uint32_t op3)1774 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1775 {
1776   uint32_t result;
1777 
1778   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1779   return(result);
1780 }
1781 
__SMLALD(uint32_t op1,uint32_t op2,uint64_t acc)1782 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1783 {
1784   union llreg_u{
1785     uint32_t w32[2];
1786     uint64_t w64;
1787   } llr;
1788   llr.w64 = acc;
1789 
1790 #ifndef __ARMEB__   /* Little endian */
1791   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1792 #else               /* Big endian */
1793   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1794 #endif
1795 
1796   return(llr.w64);
1797 }
1798 
__SMLALDX(uint32_t op1,uint32_t op2,uint64_t acc)1799 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1800 {
1801   union llreg_u{
1802     uint32_t w32[2];
1803     uint64_t w64;
1804   } llr;
1805   llr.w64 = acc;
1806 
1807 #ifndef __ARMEB__   /* Little endian */
1808   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1809 #else               /* Big endian */
1810   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1811 #endif
1812 
1813   return(llr.w64);
1814 }
1815 
__SMUSD(uint32_t op1,uint32_t op2)1816 __STATIC_FORCEINLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1817 {
1818   uint32_t result;
1819 
1820   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1821   return(result);
1822 }
1823 
__SMUSDX(uint32_t op1,uint32_t op2)1824 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1825 {
1826   uint32_t result;
1827 
1828   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1829   return(result);
1830 }
1831 
__SMLSD(uint32_t op1,uint32_t op2,uint32_t op3)1832 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1833 {
1834   uint32_t result;
1835 
1836   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1837   return(result);
1838 }
1839 
__SMLSDX(uint32_t op1,uint32_t op2,uint32_t op3)1840 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1841 {
1842   uint32_t result;
1843 
1844   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1845   return(result);
1846 }
1847 
__SMLSLD(uint32_t op1,uint32_t op2,uint64_t acc)1848 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1849 {
1850   union llreg_u{
1851     uint32_t w32[2];
1852     uint64_t w64;
1853   } llr;
1854   llr.w64 = acc;
1855 
1856 #ifndef __ARMEB__   /* Little endian */
1857   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1858 #else               /* Big endian */
1859   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1860 #endif
1861 
1862   return(llr.w64);
1863 }
1864 
__SMLSLDX(uint32_t op1,uint32_t op2,uint64_t acc)1865 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1866 {
1867   union llreg_u{
1868     uint32_t w32[2];
1869     uint64_t w64;
1870   } llr;
1871   llr.w64 = acc;
1872 
1873 #ifndef __ARMEB__   /* Little endian */
1874   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1875 #else               /* Big endian */
1876   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1877 #endif
1878 
1879   return(llr.w64);
1880 }
1881 
__SEL(uint32_t op1,uint32_t op2)1882 __STATIC_FORCEINLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
1883 {
1884   uint32_t result;
1885 
1886   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1887   return(result);
1888 }
1889 
__QADD(int32_t op1,int32_t op2)1890 __STATIC_FORCEINLINE  int32_t __QADD( int32_t op1,  int32_t op2)
1891 {
1892   int32_t result;
1893 
1894   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1895   return(result);
1896 }
1897 
__QSUB(int32_t op1,int32_t op2)1898 __STATIC_FORCEINLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
1899 {
1900   int32_t result;
1901 
1902   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1903   return(result);
1904 }
1905 
1906 #define __PKHBT(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0x0000FFFFUL) |  \
1907                                            ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL)  )
1908 
1909 #define __PKHTB(ARG1,ARG2,ARG3)          ( ((((uint32_t)(ARG1))          ) & 0xFFFF0000UL) |  \
1910                                            ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL)  )
1911 
1912 #define __SXTB16_RORn(ARG1, ARG2)        __SXTB16(__ROR(ARG1, ARG2))
1913 
1914 #define __SXTAB16_RORn(ARG1, ARG2, ARG3) __SXTAB16(ARG1, __ROR(ARG2, ARG3))
1915 
__SMMLA(int32_t op1,int32_t op2,int32_t op3)1916 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1917 {
1918   int32_t result;
1919 
1920   __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
1921   return(result);
1922 }
1923 
1924 #endif /* (__ARM_FEATURE_DSP == 1) */
1925 /*@} end of group CMSIS_SIMD_intrinsics */
1926 
1927 
1928 #endif /* __CMSIS_ARMCLANG_H */
1929