• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_mat_inverse_f64.c
4  * Description:  Floating-point matrix inverse
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/matrix_functions.h"
30 
31 /**
32   @ingroup groupMatrix
33  */
34 
35 
36 /**
37   @addtogroup MatrixInv
38   @{
39  */
40 
41 /**
42   @brief         Floating-point (64 bit) matrix inverse.
43   @param[in]     pSrc      points to input matrix structure. The source matrix is modified by the function.
44   @param[out]    pDst      points to output matrix structure
45   @return        execution status
46                    - \ref ARM_MATH_SUCCESS       : Operation successful
47                    - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
48                    - \ref ARM_MATH_SINGULAR      : Input matrix is found to be singular (non-invertible)
49  */
50 
arm_mat_inverse_f64(const arm_matrix_instance_f64 * pSrc,arm_matrix_instance_f64 * pDst)51 arm_status arm_mat_inverse_f64(
52   const arm_matrix_instance_f64 * pSrc,
53         arm_matrix_instance_f64 * pDst)
54 {
55   float64_t *pIn = pSrc->pData;                  /* input data matrix pointer */
56   float64_t *pOut = pDst->pData;                 /* output data matrix pointer */
57   float64_t *pInT1, *pInT2;                      /* Temporary input data matrix pointer */
58   float64_t *pOutT1, *pOutT2;                    /* Temporary output data matrix pointer */
59   float64_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst;  /* Temporary input and output data matrix pointer */
60   uint32_t numRows = pSrc->numRows;              /* Number of rows in the matrix  */
61   uint32_t numCols = pSrc->numCols;              /* Number of Cols in the matrix  */
62 
63 #if defined (ARM_MATH_DSP)
64 
65   float64_t Xchg, in = 0.0, in1;                /* Temporary input values  */
66   uint32_t i, rowCnt, flag = 0U, j, loopCnt, k,l;      /* loop counters */
67   arm_status status;                             /* status of matrix inverse */
68 
69 #ifdef ARM_MATH_MATRIX_CHECK
70 
71   /* Check for matrix mismatch condition */
72   if ((pSrc->numRows != pSrc->numCols) ||
73       (pDst->numRows != pDst->numCols) ||
74       (pSrc->numRows != pDst->numRows)   )
75   {
76     /* Set status as ARM_MATH_SIZE_MISMATCH */
77     status = ARM_MATH_SIZE_MISMATCH;
78   }
79   else
80 
81 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
82 
83   {
84 
85     /*--------------------------------------------------------------------------------------------------------------
86      * Matrix Inverse can be solved using elementary row operations.
87      *
88      *  Gauss-Jordan Method:
89      *
90      *      1. First combine the identity matrix and the input matrix separated by a bar to form an
91      *        augmented matrix as follows:
92      *                      _                  _         _         _
93      *                     |  a11  a12 | 1   0  |       |  X11 X12  |
94      *                     |           |        |   =   |           |
95      *                     |_ a21  a22 | 0   1 _|       |_ X21 X21 _|
96      *
97      *      2. In our implementation, pDst Matrix is used as identity matrix.
98      *
99      *      3. Begin with the first row. Let i = 1.
100      *
101      *      4. Check to see if the pivot for row i is zero.
102      *         The pivot is the element of the main diagonal that is on the current row.
103      *         For instance, if working with row i, then the pivot element is aii.
104      *         If the pivot is zero, exchange that row with a row below it that does not
105      *         contain a zero in column i. If this is not possible, then an inverse
106      *         to that matrix does not exist.
107      *
108      *      5. Divide every element of row i by the pivot.
109      *
110      *      6. For every row below and  row i, replace that row with the sum of that row and
111      *         a multiple of row i so that each new element in column i below row i is zero.
112      *
113      *      7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
114      *         for every element below and above the main diagonal.
115      *
116      *      8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
117      *         Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
118      *----------------------------------------------------------------------------------------------------------------*/
119 
120     /* Working pointer for destination matrix */
121     pOutT1 = pOut;
122 
123     /* Loop over the number of rows */
124     rowCnt = numRows;
125 
126     /* Making the destination matrix as identity matrix */
127     while (rowCnt > 0U)
128     {
129       /* Writing all zeroes in lower triangle of the destination matrix */
130       j = numRows - rowCnt;
131       while (j > 0U)
132       {
133         *pOutT1++ = 0.0;
134         j--;
135       }
136 
137       /* Writing all ones in the diagonal of the destination matrix */
138       *pOutT1++ = 1.0;
139 
140       /* Writing all zeroes in upper triangle of the destination matrix */
141       j = rowCnt - 1U;
142       while (j > 0U)
143       {
144         *pOutT1++ = 0.0;
145         j--;
146       }
147 
148       /* Decrement loop counter */
149       rowCnt--;
150     }
151 
152     /* Loop over the number of columns of the input matrix.
153        All the elements in each column are processed by the row operations */
154     loopCnt = numCols;
155 
156     /* Index modifier to navigate through the columns */
157     l = 0U;
158 
159     while (loopCnt > 0U)
160     {
161       /* Check if the pivot element is zero..
162        * If it is zero then interchange the row with non zero row below.
163        * If there is no non zero element to replace in the rows below,
164        * then the matrix is Singular. */
165 
166       /* Working pointer for the input matrix that points
167        * to the pivot element of the particular row  */
168       pInT1 = pIn + (l * numCols);
169 
170       /* Working pointer for the destination matrix that points
171        * to the pivot element of the particular row  */
172       pOutT1 = pOut + (l * numCols);
173 
174       /* Temporary variable to hold the pivot value */
175       in = *pInT1;
176 
177 
178 
179       /* Check if the pivot element is zero */
180       if (*pInT1 == 0.0)
181       {
182         /* Loop over the number rows present below */
183 
184         for (i = 1U; i < numRows - l; i++)
185         {
186           /* Update the input and destination pointers */
187           pInT2 = pInT1 + (numCols * i);
188           pOutT2 = pOutT1 + (numCols * i);
189 
190           /* Check if there is a non zero pivot element to
191            * replace in the rows below */
192           if (*pInT2 != 0.0)
193           {
194             /* Loop over number of columns
195              * to the right of the pilot element */
196             j = numCols - l;
197 
198             while (j > 0U)
199             {
200               /* Exchange the row elements of the input matrix */
201               Xchg = *pInT2;
202               *pInT2++ = *pInT1;
203               *pInT1++ = Xchg;
204 
205               /* Decrement the loop counter */
206               j--;
207             }
208 
209             /* Loop over number of columns of the destination matrix */
210             j = numCols;
211 
212             while (j > 0U)
213             {
214               /* Exchange the row elements of the destination matrix */
215               Xchg = *pOutT2;
216               *pOutT2++ = *pOutT1;
217               *pOutT1++ = Xchg;
218 
219               /* Decrement loop counter */
220               j--;
221             }
222 
223             /* Flag to indicate whether exchange is done or not */
224             flag = 1U;
225 
226             /* Break after exchange is done */
227             break;
228           }
229 
230 
231           /* Decrement loop counter */
232         }
233       }
234 
235       /* Update the status if the matrix is singular */
236       if ((flag != 1U) && (in == 0.0))
237       {
238         return ARM_MATH_SINGULAR;
239       }
240 
241       /* Points to the pivot row of input and destination matrices */
242       pPivotRowIn = pIn + (l * numCols);
243       pPivotRowDst = pOut + (l * numCols);
244 
245       /* Temporary pointers to the pivot row pointers */
246       pInT1 = pPivotRowIn;
247       pInT2 = pPivotRowDst;
248 
249       /* Pivot element of the row */
250       in = *pPivotRowIn;
251 
252       /* Loop over number of columns
253        * to the right of the pilot element */
254       j = (numCols - l);
255 
256       while (j > 0U)
257       {
258         /* Divide each element of the row of the input matrix
259          * by the pivot element */
260         in1 = *pInT1;
261         *pInT1++ = in1 / in;
262 
263         /* Decrement the loop counter */
264         j--;
265       }
266 
267       /* Loop over number of columns of the destination matrix */
268       j = numCols;
269 
270       while (j > 0U)
271       {
272         /* Divide each element of the row of the destination matrix
273          * by the pivot element */
274         in1 = *pInT2;
275         *pInT2++ = in1 / in;
276 
277         /* Decrement the loop counter */
278         j--;
279       }
280 
281       /* Replace the rows with the sum of that row and a multiple of row i
282        * so that each new element in column i above row i is zero.*/
283 
284       /* Temporary pointers for input and destination matrices */
285       pInT1 = pIn;
286       pInT2 = pOut;
287 
288       /* index used to check for pivot element */
289       i = 0U;
290 
291       /* Loop over number of rows */
292       /*  to be replaced by the sum of that row and a multiple of row i */
293       k = numRows;
294 
295       while (k > 0U)
296       {
297         /* Check for the pivot element */
298         if (i == l)
299         {
300           /* If the processing element is the pivot element,
301              only the columns to the right are to be processed */
302           pInT1 += numCols - l;
303 
304           pInT2 += numCols;
305         }
306         else
307         {
308           /* Element of the reference row */
309           in = *pInT1;
310 
311           /* Working pointers for input and destination pivot rows */
312           pPRT_in = pPivotRowIn;
313           pPRT_pDst = pPivotRowDst;
314 
315           /* Loop over the number of columns to the right of the pivot element,
316              to replace the elements in the input matrix */
317           j = (numCols - l);
318 
319           while (j > 0U)
320           {
321             /* Replace the element by the sum of that row
322                and a multiple of the reference row  */
323             in1 = *pInT1;
324             *pInT1++ = in1 - (in * *pPRT_in++);
325 
326             /* Decrement the loop counter */
327             j--;
328           }
329 
330           /* Loop over the number of columns to
331              replace the elements in the destination matrix */
332           j = numCols;
333 
334           while (j > 0U)
335           {
336             /* Replace the element by the sum of that row
337                and a multiple of the reference row  */
338             in1 = *pInT2;
339             *pInT2++ = in1 - (in * *pPRT_pDst++);
340 
341             /* Decrement loop counter */
342             j--;
343           }
344 
345         }
346 
347         /* Increment temporary input pointer */
348         pInT1 = pInT1 + l;
349 
350         /* Decrement loop counter */
351         k--;
352 
353         /* Increment pivot index */
354         i++;
355       }
356 
357       /* Increment the input pointer */
358       pIn++;
359 
360       /* Decrement the loop counter */
361       loopCnt--;
362 
363       /* Increment the index modifier */
364       l++;
365     }
366 
367 
368 #else
369 
370   float64_t Xchg, in = 0.0;                     /* Temporary input values  */
371   uint32_t i, rowCnt, flag = 0U, j, loopCnt, l;      /* loop counters */
372   arm_status status;                             /* status of matrix inverse */
373 
374 #ifdef ARM_MATH_MATRIX_CHECK
375 
376   /* Check for matrix mismatch condition */
377   if ((pSrc->numRows != pSrc->numCols) ||
378       (pDst->numRows != pDst->numCols) ||
379       (pSrc->numRows != pDst->numRows)   )
380   {
381     /* Set status as ARM_MATH_SIZE_MISMATCH */
382     status = ARM_MATH_SIZE_MISMATCH;
383   }
384   else
385 
386 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
387 
388   {
389 
390     /*--------------------------------------------------------------------------------------------------------------
391      * Matrix Inverse can be solved using elementary row operations.
392      *
393      *  Gauss-Jordan Method:
394      *
395      *      1. First combine the identity matrix and the input matrix separated by a bar to form an
396      *        augmented matrix as follows:
397      *                      _  _          _     _      _   _         _         _
398      *                     |  |  a11  a12  | | | 1   0  |   |       |  X11 X12  |
399      *                     |  |            | | |        |   |   =   |           |
400      *                     |_ |_ a21  a22 _| | |_0   1 _|  _|       |_ X21 X21 _|
401      *
402      *      2. In our implementation, pDst Matrix is used as identity matrix.
403      *
404      *      3. Begin with the first row. Let i = 1.
405      *
406      *      4. Check to see if the pivot for row i is zero.
407      *         The pivot is the element of the main diagonal that is on the current row.
408      *         For instance, if working with row i, then the pivot element is aii.
409      *         If the pivot is zero, exchange that row with a row below it that does not
410      *         contain a zero in column i. If this is not possible, then an inverse
411      *         to that matrix does not exist.
412      *
413      *      5. Divide every element of row i by the pivot.
414      *
415      *      6. For every row below and  row i, replace that row with the sum of that row and
416      *         a multiple of row i so that each new element in column i below row i is zero.
417      *
418      *      7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
419      *         for every element below and above the main diagonal.
420      *
421      *      8. Now an identical matrix is formed to the left of the bar(input matrix, src).
422      *         Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
423      *----------------------------------------------------------------------------------------------------------------*/
424 
425     /* Working pointer for destination matrix */
426     pOutT1 = pOut;
427 
428     /* Loop over the number of rows */
429     rowCnt = numRows;
430 
431     /* Making the destination matrix as identity matrix */
432     while (rowCnt > 0U)
433     {
434       /* Writing all zeroes in lower triangle of the destination matrix */
435       j = numRows - rowCnt;
436       while (j > 0U)
437       {
438         *pOutT1++ = 0.0;
439         j--;
440       }
441 
442       /* Writing all ones in the diagonal of the destination matrix */
443       *pOutT1++ = 1.0;
444 
445       /* Writing all zeroes in upper triangle of the destination matrix */
446       j = rowCnt - 1U;
447       while (j > 0U)
448       {
449         *pOutT1++ = 0.0;
450         j--;
451       }
452 
453       /* Decrement loop counter */
454       rowCnt--;
455     }
456 
457     /* Loop over the number of columns of the input matrix.
458        All the elements in each column are processed by the row operations */
459     loopCnt = numCols;
460 
461     /* Index modifier to navigate through the columns */
462     l = 0U;
463 
464     while (loopCnt > 0U)
465     {
466       /* Check if the pivot element is zero..
467        * If it is zero then interchange the row with non zero row below.
468        * If there is no non zero element to replace in the rows below,
469        * then the matrix is Singular. */
470 
471       /* Working pointer for the input matrix that points
472        * to the pivot element of the particular row  */
473       pInT1 = pIn + (l * numCols);
474 
475       /* Working pointer for the destination matrix that points
476        * to the pivot element of the particular row  */
477       pOutT1 = pOut + (l * numCols);
478 
479       /* Temporary variable to hold the pivot value */
480       in = *pInT1;
481 
482       /* Check if the pivot element is zero */
483       if (*pInT1 == 0.0)
484       {
485         /* Loop over the number rows present below */
486         for (i = 1U; i < numRows-l; i++)
487         {
488           /* Update the input and destination pointers */
489           pInT2 = pInT1 + (numCols * i);
490           pOutT2 = pOutT1 + (numCols * i);
491 
492           /* Check if there is a non zero pivot element to
493            * replace in the rows below */
494           if (*pInT2 != 0.0)
495           {
496             /* Loop over number of columns
497              * to the right of the pilot element */
498             for (j = 0U; j < (numCols - l); j++)
499             {
500               /* Exchange the row elements of the input matrix */
501               Xchg = *pInT2;
502               *pInT2++ = *pInT1;
503               *pInT1++ = Xchg;
504             }
505 
506             for (j = 0U; j < numCols; j++)
507             {
508               Xchg = *pOutT2;
509               *pOutT2++ = *pOutT1;
510               *pOutT1++ = Xchg;
511             }
512 
513             /* Flag to indicate whether exchange is done or not */
514             flag = 1U;
515 
516             /* Break after exchange is done */
517             break;
518           }
519         }
520       }
521 
522 
523       /* Update the status if the matrix is singular */
524       if ((flag != 1U) && (in == 0.0))
525       {
526         return ARM_MATH_SINGULAR;
527       }
528 
529       /* Points to the pivot row of input and destination matrices */
530       pPivotRowIn = pIn + (l * numCols);
531       pPivotRowDst = pOut + (l * numCols);
532 
533       /* Temporary pointers to the pivot row pointers */
534       pInT1 = pPivotRowIn;
535       pOutT1 = pPivotRowDst;
536 
537       /* Pivot element of the row */
538       in = *(pIn + (l * numCols));
539 
540       /* Loop over number of columns
541        * to the right of the pilot element */
542       for (j = 0U; j < (numCols - l); j++)
543       {
544         /* Divide each element of the row of the input matrix
545          * by the pivot element */
546         *pInT1 = *pInT1 / in;
547         pInT1++;
548       }
549       for (j = 0U; j < numCols; j++)
550       {
551         /* Divide each element of the row of the destination matrix
552          * by the pivot element */
553         *pOutT1 = *pOutT1 / in;
554         pOutT1++;
555       }
556 
557       /* Replace the rows with the sum of that row and a multiple of row i
558        * so that each new element in column i above row i is zero.*/
559 
560       /* Temporary pointers for input and destination matrices */
561       pInT1 = pIn;
562       pOutT1 = pOut;
563 
564       for (i = 0U; i < numRows; i++)
565       {
566         /* Check for the pivot element */
567         if (i == l)
568         {
569           /* If the processing element is the pivot element,
570              only the columns to the right are to be processed */
571           pInT1 += numCols - l;
572           pOutT1 += numCols;
573         }
574         else
575         {
576           /* Element of the reference row */
577           in = *pInT1;
578 
579           /* Working pointers for input and destination pivot rows */
580           pPRT_in = pPivotRowIn;
581           pPRT_pDst = pPivotRowDst;
582 
583           /* Loop over the number of columns to the right of the pivot element,
584              to replace the elements in the input matrix */
585           for (j = 0U; j < (numCols - l); j++)
586           {
587             /* Replace the element by the sum of that row
588                and a multiple of the reference row  */
589             *pInT1 = *pInT1 - (in * *pPRT_in++);
590             pInT1++;
591           }
592 
593           /* Loop over the number of columns to
594              replace the elements in the destination matrix */
595           for (j = 0U; j < numCols; j++)
596           {
597             /* Replace the element by the sum of that row
598                and a multiple of the reference row  */
599             *pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
600             pOutT1++;
601           }
602 
603         }
604 
605         /* Increment temporary input pointer */
606         pInT1 = pInT1 + l;
607       }
608 
609       /* Increment the input pointer */
610       pIn++;
611 
612       /* Decrement the loop counter */
613       loopCnt--;
614 
615       /* Increment the index modifier */
616       l++;
617     }
618 
619 #endif /* #if defined (ARM_MATH_DSP) */
620 
621     /* Set status as ARM_MATH_SUCCESS */
622     status = ARM_MATH_SUCCESS;
623 
624     if ((flag != 1U) && (in == 0.0))
625     {
626       pIn = pSrc->pData;
627       for (i = 0; i < numRows * numCols; i++)
628       {
629         if (pIn[i] != 0.0)
630             break;
631       }
632 
633       if (i == numRows * numCols)
634         status = ARM_MATH_SINGULAR;
635     }
636   }
637 
638   /* Return to application */
639   return (status);
640 }
641 
642 /**
643   @} end of MatrixInv group
644  */
645