• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010-2011 Kevin Stone
3  * Copyright (C) 2016 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 
22 #include <float.h>
23 
24 #include "libavutil/avassert.h"
25 #include "libavutil/common.h"
26 #include "libavutil/float_dsp.h"
27 #include "libavutil/imgutils.h"
28 #include "libavutil/mem_internal.h"
29 #include "libavutil/opt.h"
30 #include "libavutil/pixdesc.h"
31 #include "avfilter.h"
32 #include "formats.h"
33 #include "internal.h"
34 #include "video.h"
35 
36 static const size_t NNEDI_WEIGHTS_SIZE = 13574928;
37 static const uint8_t NNEDI_XDIM[] = { 8, 16, 32, 48, 8, 16, 32 };
38 static const uint8_t NNEDI_YDIM[] = { 6, 6, 6, 6, 4, 4, 4 };
39 static const uint16_t NNEDI_NNS[] = { 16, 32, 64, 128, 256 };
40 
41 typedef struct PrescreenerCoefficients {
42     DECLARE_ALIGNED(32, float, kernel_l0)[4][16 * 4];
43     DECLARE_ALIGNED(32, float, bias_l0)[4];
44 
45     DECLARE_ALIGNED(32, float, kernel_l1)[4][4];
46     DECLARE_ALIGNED(32, float, bias_l1)[4];
47 
48     DECLARE_ALIGNED(32, float, kernel_l2)[4][8];
49     DECLARE_ALIGNED(32, float, bias_l2)[4];
50 } PrescreenerCoefficients;
51 
52 typedef struct PredictorCoefficients {
53     int xdim, ydim, nns, nsize;
54     float *data;
55     float *softmax_q1;
56     float *elliott_q1;
57     float *softmax_bias_q1;
58     float *elliott_bias_q1;
59     float *softmax_q2;
60     float *elliott_q2;
61     float *softmax_bias_q2;
62     float *elliott_bias_q2;
63 } PredictorCoefficients;
64 
65 typedef struct NNEDIContext {
66     const AVClass *class;
67 
68     char *weights_file;
69 
70     AVFrame *prev;
71     int eof;
72     int64_t pts;
73 
74     AVFloatDSPContext *fdsp;
75     int depth;
76     int nb_planes;
77     int nb_threads;
78     int linesize[4];
79     int planewidth[4];
80     int planeheight[4];
81     int field_n;
82 
83     PrescreenerCoefficients prescreener[4];
84     PredictorCoefficients coeffs[2][5][7];
85 
86     float half;
87     float in_scale;
88     float out_scale;
89 
90     // Parameters
91     int deint;
92     int field;
93     int process_plane;
94     int nsize;
95     int nnsparam;
96     int qual;
97     int etype;
98     int pscrn;
99 
100     int input_size;
101     uint8_t **prescreen_buf;
102     float **input_buf;
103     float **output_buf;
104 
105     void (*read)(const uint8_t *src, float *dst,
106                  int src_stride, int dst_stride,
107                  int width, int height, float scale);
108     void (*write)(const float *src, uint8_t *dst,
109                   int src_stride, int dst_stride,
110                   int width, int height, int depth, float scale);
111     void (*prescreen[2])(AVFilterContext *ctx,
112                          const void *src, ptrdiff_t src_stride,
113                          uint8_t *prescreen, int N,
114                          const PrescreenerCoefficients *const coeffs);
115 } NNEDIContext;
116 
117 #define OFFSET(x) offsetof(NNEDIContext, x)
118 #define RFLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
119 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
120 
121 static const AVOption nnedi_options[] = {
122     {"weights",  "set weights file", OFFSET(weights_file),  AV_OPT_TYPE_STRING, {.str="nnedi3_weights.bin"}, 0, 0, FLAGS },
123     {"deint",         "set which frames to deinterlace", OFFSET(deint),         AV_OPT_TYPE_INT, {.i64=0}, 0, 1, RFLAGS, "deint" },
124         {"all",        "deinterlace all frames",                       0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "deint" },
125         {"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "deint" },
126     {"field",  "set mode of operation", OFFSET(field),         AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, RFLAGS, "field" },
127         {"af", "use frame flags, both fields",  0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, RFLAGS, "field" },
128         {"a",  "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, RFLAGS, "field" },
129         {"t",  "use top field only",            0, AV_OPT_TYPE_CONST, {.i64=0},  0, 0, RFLAGS, "field" },
130         {"b",  "use bottom field only",         0, AV_OPT_TYPE_CONST, {.i64=1},  0, 0, RFLAGS, "field" },
131         {"tf", "use both fields, top first",    0, AV_OPT_TYPE_CONST, {.i64=2},  0, 0, RFLAGS, "field" },
132         {"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3},  0, 0, RFLAGS, "field" },
133     {"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, RFLAGS },
134     {"nsize",  "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, RFLAGS, "nsize" },
135         {"s8x6",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "nsize" },
136         {"s16x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "nsize" },
137         {"s32x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "nsize" },
138         {"s48x6",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, "nsize" },
139         {"s8x4",     NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, "nsize" },
140         {"s16x4",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, RFLAGS, "nsize" },
141         {"s32x4",    NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, RFLAGS, "nsize" },
142     {"nns",    "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, RFLAGS, "nns" },
143         {"n16",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "nns" },
144         {"n32",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "nns" },
145         {"n64",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "nns" },
146         {"n128",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, "nns" },
147         {"n256",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, "nns" },
148     {"qual",  "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, RFLAGS, "qual" },
149         {"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "qual" },
150         {"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "qual" },
151     {"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, RFLAGS, "etype" },
152         {"a",  "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "etype" },
153         {"abs","weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "etype" },
154         {"s",  "weights trained to minimize squared error",  0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "etype" },
155         {"mse","weights trained to minimize squared error",  0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "etype" },
156     {"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 4, RFLAGS, "pscrn" },
157         {"none",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, RFLAGS, "pscrn" },
158         {"original",  NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, RFLAGS, "pscrn" },
159         {"new",       NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, RFLAGS, "pscrn" },
160         {"new2",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, RFLAGS, "pscrn" },
161         {"new3",      NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, RFLAGS, "pscrn" },
162     { NULL }
163 };
164 
165 AVFILTER_DEFINE_CLASS(nnedi);
166 
config_output(AVFilterLink * outlink)167 static int config_output(AVFilterLink *outlink)
168 {
169     AVFilterContext *ctx = outlink->src;
170 
171     outlink->time_base.num = ctx->inputs[0]->time_base.num;
172     outlink->time_base.den = ctx->inputs[0]->time_base.den * 2;
173     outlink->w             = ctx->inputs[0]->w;
174     outlink->h             = ctx->inputs[0]->h;
175 
176     outlink->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate,
177                                    (AVRational){2, 1});
178 
179     return 0;
180 }
181 
query_formats(AVFilterContext * ctx)182 static int query_formats(AVFilterContext *ctx)
183 {
184     static const enum AVPixelFormat pix_fmts[] = {
185         AV_PIX_FMT_GRAY8,
186         AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
187         AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
188         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
189         AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
190         AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
191         AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
192         AV_PIX_FMT_YUVJ411P,
193         AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
194         AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
195         AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
196         AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
197         AV_PIX_FMT_YUV440P10,
198         AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
199         AV_PIX_FMT_YUV440P12,
200         AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
201         AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
202         AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
203         AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
204         AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
205         AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
206         AV_PIX_FMT_GBRAP10,   AV_PIX_FMT_GBRAP12,    AV_PIX_FMT_GBRAP16,
207         AV_PIX_FMT_NONE
208     };
209 
210     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
211     if (!fmts_list)
212         return AVERROR(ENOMEM);
213     return ff_set_common_formats(ctx, fmts_list);
214 }
215 
dot_dsp(const NNEDIContext * const s,const float * kernel,const float * input,int n,float scale,float bias)216 static float dot_dsp(const NNEDIContext *const s, const float *kernel, const float *input,
217                      int n, float scale, float bias)
218 {
219     float sum, y;
220 
221     sum = s->fdsp->scalarproduct_float(kernel, input, n);
222 
223     y = sum * scale + bias + 1e-20f;
224 
225     return y;
226 }
227 
elliott(float x)228 static float elliott(float x)
229 {
230     return x / (1.0f + fabsf(x));
231 }
232 
transform_elliott(float * input,int size)233 static void transform_elliott(float *input, int size)
234 {
235     for (int i = 0; i < size; i++)
236         input[i] = elliott(input[i]);
237 }
238 
process_old(AVFilterContext * ctx,const void * src,ptrdiff_t src_stride,uint8_t * prescreen,int N,const PrescreenerCoefficients * const m_data)239 static void process_old(AVFilterContext *ctx,
240                         const void *src, ptrdiff_t src_stride,
241                         uint8_t *prescreen, int N,
242                         const PrescreenerCoefficients *const m_data)
243 {
244     NNEDIContext *s = ctx->priv;
245     const float *src_p = src;
246 
247     // Adjust source pointer to point to top-left of filter window.
248     const float *window = src_p - 2 * src_stride - 5;
249 
250     for (int j = 0; j < N; j++) {
251         LOCAL_ALIGNED_32(float, input, [48]);
252         float state[12];
253 
254         for (int i = 0; i < 4; i++)
255             memcpy(input + i * 12, window + i * src_stride + j, 12 * sizeof(float));
256 
257         // Layer 0.
258         for (int n = 0; n < 4; n++)
259             state[n] = dot_dsp(s, m_data->kernel_l0[n], input, 48, 1.0f, m_data->bias_l0[n]);
260         transform_elliott(state + 1, 3);
261 
262         // Layer 1.
263         for (int n = 0; n < 4; n++)
264             state[n + 4] = dot_dsp(s, m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]);
265         transform_elliott(state + 4, 3);
266 
267         // Layer 2.
268         for (int n = 0; n < 4; n++)
269             state[n + 8] = dot_dsp(s, m_data->kernel_l2[n], state, 8, 1.0f, m_data->bias_l2[n]);
270 
271         prescreen[j] = FFMAX(state[10], state[11]) <= FFMAX(state[8], state[9]) ? 255 : 0;
272     }
273 }
274 
process_new(AVFilterContext * ctx,const void * src,ptrdiff_t src_stride,uint8_t * prescreen,int N,const PrescreenerCoefficients * const m_data)275 static void process_new(AVFilterContext *ctx,
276                         const void *src, ptrdiff_t src_stride,
277                         uint8_t *prescreen, int N,
278                         const PrescreenerCoefficients *const m_data)
279 {
280     NNEDIContext *s = ctx->priv;
281     const float *src_p = src;
282 
283     // Adjust source pointer to point to top-left of filter window.
284     const float *window = src_p - 2 * src_stride - 6;
285 
286     for (int j = 0; j < N; j += 4) {
287         LOCAL_ALIGNED_32(float, input, [64]);
288         float state[8];
289 
290         for (int i = 0; i < 4; i++)
291             memcpy(input + i * 16, window + i * src_stride + j, 16 * sizeof(float));
292 
293         for (int n = 0; n < 4; n++)
294             state[n] = dot_dsp(s, m_data->kernel_l0[n], input, 64, 1.0f, m_data->bias_l0[n]);
295         transform_elliott(state, 4);
296 
297         for (int n = 0; n < 4; n++)
298             state[n + 4] = dot_dsp(s, m_data->kernel_l1[n], state, 4, 1.0f, m_data->bias_l1[n]);
299 
300         for (int n = 0; n < 4; n++)
301             prescreen[j + n] = state[n + 4] > 0.f;
302     }
303 }
304 
filter_offset(int nn,const PredictorCoefficients * const model)305 static int filter_offset(int nn, const PredictorCoefficients *const model)
306 {
307     return nn * model->nsize;
308 }
309 
softmax_q1_filter(int nn,const PredictorCoefficients * const model)310 static const float *softmax_q1_filter(int nn,
311                                       const PredictorCoefficients *const model)
312 {
313     return model->softmax_q1 + filter_offset(nn, model);
314 }
315 
elliott_q1_filter(int nn,const PredictorCoefficients * const model)316 static const float *elliott_q1_filter(int nn,
317                                       const PredictorCoefficients *const model)
318 {
319     return model->elliott_q1 + filter_offset(nn, model);
320 }
321 
softmax_q2_filter(int nn,const PredictorCoefficients * const model)322 static const float *softmax_q2_filter(int nn,
323                                       const PredictorCoefficients *const model)
324 {
325     return model->softmax_q2 + filter_offset(nn, model);
326 }
327 
elliott_q2_filter(int nn,const PredictorCoefficients * const model)328 static const float *elliott_q2_filter(int nn,
329                                       const PredictorCoefficients *const model)
330 {
331     return model->elliott_q2 + filter_offset(nn, model);
332 }
333 
gather_input(const float * src,ptrdiff_t src_stride,float * buf,float mstd[4],const PredictorCoefficients * const model)334 static void gather_input(const float *src, ptrdiff_t src_stride,
335                          float *buf, float mstd[4],
336                          const PredictorCoefficients *const model)
337 {
338     const float scale = 1.f / model->nsize;
339     float sum = 0.f;
340     float sum_sq = 0.f;
341     float tmp;
342 
343     for (int i = 0; i < model->ydim; i++) {
344         memcpy(buf, src, model->xdim * sizeof(float));
345 
346         for (int j = 0; j < model->xdim; j++) {
347             const float val = src[j];
348 
349             sum += val;
350             sum_sq += val * val;
351         }
352 
353         src += src_stride;
354         buf += model->xdim;
355     }
356 
357     mstd[0] = sum * scale;
358     mstd[3] = 0.f;
359 
360     tmp = sum_sq * scale - mstd[0] * mstd[0];
361     if (tmp < FLT_EPSILON) {
362         mstd[1] = 0.0f;
363         mstd[2] = 0.0f;
364     } else {
365         mstd[1] = sqrtf(tmp);
366         mstd[2] = 1.0f / mstd[1];
367     }
368 }
369 
softmax_exp(float x)370 static float softmax_exp(float x)
371 {
372     return expf(av_clipf(x, -80.f, 80.f));
373 }
374 
transform_softmax_exp(float * input,int size)375 static void transform_softmax_exp(float *input, int size)
376 {
377     for (int i = 0; i < size; i++)
378         input[i] = softmax_exp(input[i]);
379 }
380 
wae5(const float * softmax,const float * el,int n,float mstd[4])381 static void wae5(const float *softmax, const float *el,
382                  int n, float mstd[4])
383 {
384     float vsum = 0.0f, wsum = 0.0f;
385 
386     for (int i = 0; i < n; i++) {
387         vsum += softmax[i] * elliott(el[i]);
388         wsum += softmax[i];
389     }
390 
391     if (wsum > 1e-10f)
392         mstd[3] += (5.0f * vsum) / wsum * mstd[1] + mstd[0];
393     else
394         mstd[3] += mstd[0];
395 }
396 
predictor(AVFilterContext * ctx,const void * src,ptrdiff_t src_stride,void * dst,const uint8_t * prescreen,int N,const PredictorCoefficients * const model,int use_q2)397 static void predictor(AVFilterContext *ctx,
398                       const void *src, ptrdiff_t src_stride, void *dst,
399                       const uint8_t *prescreen, int N,
400                       const PredictorCoefficients *const model, int use_q2)
401 {
402     const NNEDIContext *const s = ctx->priv;
403     const float *src_p = src;
404     float *dst_p = dst;
405 
406     // Adjust source pointer to point to top-left of filter window.
407     const float *window = src_p - (model->ydim / 2) * src_stride - (model->xdim / 2 - 1);
408     const int filter_size = model->nsize;
409     const int nns = model->nns;
410 
411     for (int i = 0; i < N; i++) {
412         LOCAL_ALIGNED_32(float, input, [48 * 6]);
413         float activation[256 * 2];
414         float mstd[4];
415         float scale;
416 
417         if (prescreen[i])
418             continue;
419 
420         gather_input(window + i, src_stride, input, mstd, model);
421         scale = mstd[2];
422 
423         for (int nn = 0; nn < nns; nn++)
424             activation[nn] = dot_dsp(s, softmax_q1_filter(nn, model), input, filter_size, scale, model->softmax_bias_q1[nn]);
425 
426         for (int nn = 0; nn < nns; nn++)
427             activation[nns + nn] = dot_dsp(s, elliott_q1_filter(nn, model), input, filter_size, scale, model->elliott_bias_q1[nn]);
428 
429         transform_softmax_exp(activation, nns);
430         wae5(activation, activation + nns, nns, mstd);
431 
432         if (use_q2) {
433             for (int nn = 0; nn < nns; nn++)
434                 activation[nn] = dot_dsp(s, softmax_q2_filter(nn, model), input, filter_size, scale, model->softmax_bias_q2[nn]);
435 
436             for (int nn = 0; nn < nns; nn++)
437                 activation[nns + nn] = dot_dsp(s, elliott_q2_filter(nn, model), input, filter_size, scale, model->elliott_bias_q2[nn]);
438 
439             transform_softmax_exp(activation, nns);
440             wae5(activation, activation + nns, nns, mstd);
441         }
442 
443         dst_p[i] = mstd[3] * (use_q2 ? 0.5f : 1.f);
444     }
445 }
446 
read_bytes(const uint8_t * src,float * dst,int src_stride,int dst_stride,int width,int height,float scale)447 static void read_bytes(const uint8_t *src, float *dst,
448                        int src_stride, int dst_stride,
449                        int width, int height, float scale)
450 {
451     for (int y = 0; y < height; y++) {
452         for (int x = 0; x < 32; x++)
453             dst[-x - 1] = src[x];
454 
455         for (int x = 0; x < width; x++)
456             dst[x] = src[x];
457 
458         for (int x = 0; x < 32; x++)
459             dst[width + x] = src[width - x - 1];
460 
461         dst += dst_stride;
462         src += src_stride;
463     }
464 }
465 
read_words(const uint8_t * srcp,float * dst,int src_stride,int dst_stride,int width,int height,float scale)466 static void read_words(const uint8_t *srcp, float *dst,
467                        int src_stride, int dst_stride,
468                        int width, int height, float scale)
469 {
470     const uint16_t *src = (const uint16_t *)srcp;
471 
472     src_stride /= 2;
473 
474     for (int y = 0; y < height; y++) {
475         for (int x = 0; x < 32; x++)
476             dst[-x - 1] = src[x] * scale;
477 
478         for (int x = 0; x < width; x++)
479             dst[x] = src[x] * scale;
480 
481         for (int x = 0; x < 32; x++)
482             dst[width + x] = src[width - x - 1] * scale;
483 
484         dst += dst_stride;
485         src += src_stride;
486     }
487 }
488 
write_bytes(const float * src,uint8_t * dst,int src_stride,int dst_stride,int width,int height,int depth,float scale)489 static void write_bytes(const float *src, uint8_t *dst,
490                         int src_stride, int dst_stride,
491                         int width, int height, int depth,
492                         float scale)
493 {
494     for (int y = 0; y < height; y++) {
495         for (int x = 0; x < width; x++)
496             dst[x] = av_clip_uint8(src[x]);
497 
498         dst += dst_stride;
499         src += src_stride;
500     }
501 }
502 
write_words(const float * src,uint8_t * dstp,int src_stride,int dst_stride,int width,int height,int depth,float scale)503 static void write_words(const float *src, uint8_t *dstp,
504                         int src_stride, int dst_stride,
505                         int width, int height, int depth,
506                         float scale)
507 {
508     uint16_t *dst = (uint16_t *)dstp;
509 
510     dst_stride /= 2;
511 
512     for (int y = 0; y < height; y++) {
513         for (int x = 0; x < width; x++)
514             dst[x] = av_clip_uintp2_c(src[x] * scale, depth);
515 
516         dst += dst_stride;
517         src += src_stride;
518     }
519 }
520 
interpolation(const void * src,ptrdiff_t src_stride,void * dst,const uint8_t * prescreen,int n)521 static void interpolation(const void *src, ptrdiff_t src_stride,
522                           void *dst, const uint8_t *prescreen, int n)
523 {
524     const float *src_p = src;
525     float *dst_p = dst;
526     const float *window = src_p - 2 * src_stride;
527 
528     for (int i = 0; i < n; i++) {
529         float accum = 0.0f;
530 
531         if (!prescreen[i])
532             continue;
533 
534         accum += (-3.0f / 32.0f) * window[0 * src_stride + i];
535         accum += (19.0f / 32.0f) * window[1 * src_stride + i];
536         accum += (19.0f / 32.0f) * window[2 * src_stride + i];
537         accum += (-3.0f / 32.0f) * window[3 * src_stride + i];
538 
539         dst_p[i] = accum;
540     }
541 }
542 
filter_slice(AVFilterContext * ctx,void * arg,int jobnr,int nb_jobs)543 static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
544 {
545     const NNEDIContext *const s = ctx->priv;
546     AVFrame *out = arg;
547     AVFrame *in = s->prev;
548     const float in_scale = s->in_scale;
549     const float out_scale = s->out_scale;
550     const int depth = s->depth;
551     const int interlaced = in->interlaced_frame;
552     const int tff = s->field_n == (s->field < 0 ? interlaced ? in->top_field_first : 1 :
553                                   (s->field & 1) ^ 1);
554 
555 
556     for (int p = 0; p < s->nb_planes; p++) {
557         const int height = s->planeheight[p];
558         const int width = s->planewidth[p];
559         const int slice_start = 2 * ((height / 2 * jobnr) / nb_jobs);
560         const int slice_end = 2 * ((height / 2 * (jobnr+1)) / nb_jobs);
561         const uint8_t *src_data = in->data[p];
562         uint8_t *dst_data = out->data[p];
563         uint8_t *dst = out->data[p] + slice_start * out->linesize[p];
564         const int src_linesize = in->linesize[p];
565         const int dst_linesize = out->linesize[p];
566         uint8_t *prescreen_buf = s->prescreen_buf[jobnr];
567         float *srcbuf = s->input_buf[jobnr];
568         const int srcbuf_stride = width + 64;
569         float *dstbuf = s->output_buf[jobnr];
570         const int dstbuf_stride = width;
571         const int slice_height = (slice_end - slice_start) / 2;
572         const int last_slice = slice_end == height;
573         const uint8_t *in_line;
574         uint8_t *out_line;
575         int y_out;
576 
577         if (!(s->process_plane & (1 << p))) {
578             av_image_copy_plane(dst, out->linesize[p],
579                                 in->data[p] + slice_start * in->linesize[p],
580                                 in->linesize[p],
581                                 s->linesize[p], slice_end - slice_start);
582             continue;
583         }
584 
585         y_out    = slice_start + (tff ^ (slice_start & 1));
586         in_line  = src_data + (y_out * src_linesize);
587         out_line = dst_data + (y_out * dst_linesize);
588 
589         while (y_out < slice_end) {
590             memcpy(out_line, in_line, s->linesize[p]);
591             y_out += 2;
592             in_line  += src_linesize * 2;
593             out_line += dst_linesize * 2;
594         }
595 
596         y_out = slice_start + ((!tff) ^ (slice_start & 1));
597 
598         s->read(src_data + FFMAX(y_out - 5, tff) * src_linesize,
599                 srcbuf + 32,
600                 src_linesize * 2, srcbuf_stride,
601                 width, 1, in_scale);
602         srcbuf += srcbuf_stride;
603 
604         s->read(src_data + FFMAX(y_out - 3, tff) * src_linesize,
605                 srcbuf + 32,
606                 src_linesize * 2, srcbuf_stride,
607                 width, 1, in_scale);
608         srcbuf += srcbuf_stride;
609 
610         s->read(src_data + FFMAX(y_out - 1, tff) * src_linesize,
611                 srcbuf + 32,
612                 src_linesize * 2, srcbuf_stride,
613                 width, 1, in_scale);
614         srcbuf += srcbuf_stride;
615 
616         in_line  = src_data + FFMIN(y_out + 1, height - 1 - !tff) * src_linesize;
617         out_line = dst_data + (y_out * dst_linesize);
618 
619         s->read(in_line, srcbuf + 32, src_linesize * 2, srcbuf_stride,
620                 width, slice_height - last_slice, in_scale);
621 
622         y_out += (slice_height - last_slice) * 2;
623 
624         s->read(src_data + FFMIN(y_out + 1, height - 1 - !tff) * src_linesize,
625                 srcbuf + 32 + srcbuf_stride * (slice_height - last_slice),
626                 src_linesize * 2, srcbuf_stride,
627                 width, 1, in_scale);
628 
629         s->read(src_data + FFMIN(y_out + 3, height - 1 - !tff) * src_linesize,
630                 srcbuf + 32 + srcbuf_stride * (slice_height + 1 - last_slice),
631                 src_linesize * 2, srcbuf_stride,
632                 width, 1, in_scale);
633 
634         s->read(src_data + FFMIN(y_out + 5, height - 1 - !tff) * src_linesize,
635                 srcbuf + 32 + srcbuf_stride * (slice_height + 2 - last_slice),
636                 src_linesize * 2, srcbuf_stride,
637                 width, 1, in_scale);
638 
639         for (int y = 0; y < slice_end - slice_start; y += 2) {
640             if (s->pscrn > 0)
641                 s->prescreen[s->pscrn > 1](ctx, srcbuf + (y / 2) * srcbuf_stride + 32,
642                              srcbuf_stride, prescreen_buf, width,
643                              &s->prescreener[s->pscrn - 1]);
644 
645             predictor(ctx,
646                       srcbuf + (y / 2) * srcbuf_stride + 32,
647                       srcbuf_stride,
648                       dstbuf + (y / 2) * dstbuf_stride,
649                       prescreen_buf, width,
650                       &s->coeffs[s->etype][s->nnsparam][s->nsize], s->qual == 2);
651 
652             if (s->pscrn > 0)
653                 interpolation(srcbuf + (y / 2) * srcbuf_stride + 32,
654                               srcbuf_stride,
655                               dstbuf + (y / 2) * dstbuf_stride,
656                               prescreen_buf, width);
657         }
658 
659         s->write(dstbuf, out_line, dstbuf_stride, dst_linesize * 2,
660                  width, slice_height, depth, out_scale);
661     }
662 
663     return 0;
664 }
665 
get_frame(AVFilterContext * ctx,int is_second)666 static int get_frame(AVFilterContext *ctx, int is_second)
667 {
668     NNEDIContext *s = ctx->priv;
669     AVFilterLink *outlink = ctx->outputs[0];
670     AVFrame *dst;
671 
672     dst = ff_get_video_buffer(outlink, outlink->w, outlink->h);
673     if (!dst)
674         return AVERROR(ENOMEM);
675     av_frame_copy_props(dst, s->prev);
676     dst->interlaced_frame = 0;
677     dst->pts = s->pts;
678 
679     ctx->internal->execute(ctx, filter_slice, dst, NULL, FFMIN(s->planeheight[1] / 2, s->nb_threads));
680 
681     if (s->field == -2 || s->field > 1)
682         s->field_n = !s->field_n;
683 
684     return ff_filter_frame(outlink, dst);
685 }
686 
filter_frame(AVFilterLink * inlink,AVFrame * in)687 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
688 {
689     AVFilterContext *ctx = inlink->dst;
690     NNEDIContext *s = ctx->priv;
691     int ret;
692 
693     if (!s->prev) {
694         s->prev = in;
695         return 0;
696     }
697 
698     if ((s->deint && !in->interlaced_frame) || ctx->is_disabled) {
699         s->prev->pts *= 2;
700         ret = ff_filter_frame(ctx->outputs[0], s->prev);
701         s->prev = in;
702         return ret;
703     }
704 
705     s->pts = s->prev->pts * 2;
706     ret = get_frame(ctx, 0);
707     if (ret < 0 || (s->field > -2 && s->field < 2)) {
708         av_frame_free(&s->prev);
709         s->prev = in;
710         return ret;
711     }
712 
713     s->pts = s->prev->pts + in->pts;
714     ret = get_frame(ctx, 1);
715     av_frame_free(&s->prev);
716     s->prev = in;
717     return ret;
718 }
719 
request_frame(AVFilterLink * link)720 static int request_frame(AVFilterLink *link)
721 {
722     AVFilterContext *ctx = link->src;
723     NNEDIContext *s = ctx->priv;
724     int ret;
725 
726     if (s->eof)
727         return AVERROR_EOF;
728 
729     ret  = ff_request_frame(ctx->inputs[0]);
730 
731     if (ret == AVERROR_EOF && s->prev) {
732         AVFrame *next = av_frame_clone(s->prev);
733 
734         if (!next)
735             return AVERROR(ENOMEM);
736 
737         next->pts = s->prev->pts + av_rescale_q(1, av_inv_q(ctx->outputs[0]->frame_rate),
738                                                 ctx->outputs[0]->time_base);
739         s->eof = 1;
740 
741         ret = filter_frame(ctx->inputs[0], next);
742     } else if (ret < 0) {
743         return ret;
744     }
745 
746     return ret;
747 }
748 
copy_weights(float * dst,int n,const float ** data)749 static void copy_weights(float *dst, int n, const float **data)
750 {
751     memcpy(dst, *data, n * sizeof(float));
752     *data += n;
753 }
754 
allocate(float ** ptr,int size)755 static float *allocate(float **ptr, int size)
756 {
757     float *ret = *ptr;
758 
759     *ptr += size;
760 
761     return ret;
762 }
763 
allocate_model(PredictorCoefficients * coeffs,int xdim,int ydim,int nns)764 static int allocate_model(PredictorCoefficients *coeffs, int xdim, int ydim, int nns)
765 {
766     int filter_size = nns * xdim * ydim;
767     int bias_size = nns;
768     float *data;
769 
770     data = av_calloc(filter_size + bias_size, 4 * sizeof(float));
771     if (!data)
772         return AVERROR(ENOMEM);
773 
774     coeffs->data = data;
775     coeffs->xdim = xdim;
776     coeffs->ydim = ydim;
777     coeffs->nsize = xdim * ydim;
778     coeffs->nns  = nns;
779 
780     coeffs->softmax_q1 = allocate(&data, filter_size);
781     coeffs->elliott_q1 = allocate(&data, filter_size);
782     coeffs->softmax_bias_q1 = allocate(&data, bias_size);
783     coeffs->elliott_bias_q1 = allocate(&data, bias_size);
784 
785     coeffs->softmax_q2 = allocate(&data, filter_size);
786     coeffs->elliott_q2 = allocate(&data, filter_size);
787     coeffs->softmax_bias_q2 = allocate(&data, bias_size);
788     coeffs->elliott_bias_q2 = allocate(&data, bias_size);
789 
790     return 0;
791 }
792 
read_weights(AVFilterContext * ctx,const float * bdata)793 static int read_weights(AVFilterContext *ctx, const float *bdata)
794 {
795     NNEDIContext *s = ctx->priv;
796     int ret;
797 
798     copy_weights(&s->prescreener[0].kernel_l0[0][0], 4 * 48, &bdata);
799     copy_weights(s->prescreener[0].bias_l0, 4, &bdata);
800 
801     copy_weights(&s->prescreener[0].kernel_l1[0][0], 4 * 4, &bdata);
802     copy_weights(s->prescreener[0].bias_l1, 4, &bdata);
803 
804     copy_weights(&s->prescreener[0].kernel_l2[0][0], 4 * 8, &bdata);
805     copy_weights(s->prescreener[0].bias_l2, 4, &bdata);
806 
807     for (int i = 0; i < 3; i++) {
808         PrescreenerCoefficients *data = &s->prescreener[i + 1];
809         float kernel_l0_shuffled[4 * 64];
810         float kernel_l1_shuffled[4 * 4];
811 
812         copy_weights(kernel_l0_shuffled, 4 * 64, &bdata);
813         copy_weights(data->bias_l0, 4, &bdata);
814 
815         copy_weights(kernel_l1_shuffled, 4 * 4, &bdata);
816         copy_weights(data->bias_l1, 4, &bdata);
817 
818         for (int n = 0; n < 4; n++) {
819             for (int k = 0; k < 64; k++)
820                 data->kernel_l0[n][k] = kernel_l0_shuffled[(k / 8) * 32 + n * 8 + k % 8];
821             for (int k = 0; k < 4; k++)
822                 data->kernel_l1[n][k] = kernel_l1_shuffled[k * 4 + n];
823         }
824     }
825 
826     for (int m = 0; m < 2; m++) {
827         // Grouping by neuron count.
828         for (int i = 0; i < 5; i++) {
829             const int nns = NNEDI_NNS[i];
830 
831             // Grouping by window size.
832             for (int j = 0; j < 7; j++) {
833                 PredictorCoefficients *model = &s->coeffs[m][i][j];
834                 const int xdim = NNEDI_XDIM[j];
835                 const int ydim = NNEDI_YDIM[j];
836                 const int filter_size = xdim * ydim;
837 
838                 ret = allocate_model(model, xdim, ydim, nns);
839                 if (ret < 0)
840                     return ret;
841 
842                 // Quality 1 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients.
843                 copy_weights(model->softmax_q1, nns * filter_size, &bdata);
844                 copy_weights(model->elliott_q1, nns * filter_size, &bdata);
845 
846                 // Quality 1 model bias. NNS[i] * 2 coefficients.
847                 copy_weights(model->softmax_bias_q1, nns, &bdata);
848                 copy_weights(model->elliott_bias_q1, nns, &bdata);
849 
850                 // Quality 2 model. NNS[i] * (XDIM[j] * YDIM[j]) * 2 coefficients.
851                 copy_weights(model->softmax_q2, nns * filter_size, &bdata);
852                 copy_weights(model->elliott_q2, nns * filter_size, &bdata);
853 
854                 // Quality 2 model bias. NNS[i] * 2 coefficients.
855                 copy_weights(model->softmax_bias_q2, nns, &bdata);
856                 copy_weights(model->elliott_bias_q2, nns, &bdata);
857             }
858         }
859     }
860 
861     return 0;
862 }
863 
mean(const float * input,int size)864 static float mean(const float *input, int size)
865 {
866     float sum = 0.f;
867 
868     for (int i = 0; i < size; i++)
869         sum += input[i];
870 
871     return sum / size;
872 }
873 
transform(float * input,int size,float mean,float half)874 static void transform(float *input, int size, float mean, float half)
875 {
876     for (int i = 0; i < size; i++)
877         input[i] = (input[i] - mean) / half;
878 }
879 
subtract_mean_old(PrescreenerCoefficients * coeffs,float half)880 static void subtract_mean_old(PrescreenerCoefficients *coeffs, float half)
881 {
882     for (int n = 0; n < 4; n++) {
883         float m = mean(coeffs->kernel_l0[n], 48);
884 
885         transform(coeffs->kernel_l0[n], 48, m, half);
886     }
887 }
888 
subtract_mean_new(PrescreenerCoefficients * coeffs,float half)889 static void subtract_mean_new(PrescreenerCoefficients *coeffs, float half)
890 {
891     for (int n = 0; n < 4; n++) {
892         float m = mean(coeffs->kernel_l0[n], 64);
893 
894         transform(coeffs->kernel_l0[n], 64, m, half);
895     }
896 }
897 
subtract_mean_predictor(PredictorCoefficients * model)898 static void subtract_mean_predictor(PredictorCoefficients *model)
899 {
900     const int filter_size = model->nsize;
901     const int nns = model->nns;
902     const float scale = 1.f / nns;
903 
904     double softmax_means[256]; // Average of individual softmax filters.
905     double elliott_means[256]; // Average of individual elliott filters.
906     double mean_filter[48 * 6] = { 0 }; // Pointwise average of all softmax filters.
907     double mean_bias;
908 
909     // Quality 1.
910     for (int nn = 0; nn < nns; nn++) {
911         softmax_means[nn] = mean(model->softmax_q1 + nn * filter_size, filter_size);
912         elliott_means[nn] = mean(model->elliott_q1 + nn * filter_size, filter_size);
913 
914         for (int k = 0; k < filter_size; k++)
915             mean_filter[k] += model->softmax_q1[nn * filter_size + k] - softmax_means[nn];
916     }
917 
918     for (int k = 0; k < filter_size; k++)
919         mean_filter[k] *= scale;
920 
921     mean_bias = mean(model->softmax_bias_q1, nns);
922 
923     for (int nn = 0; nn < nns; nn++) {
924         for (int k = 0; k < filter_size; k++) {
925             model->softmax_q1[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k];
926             model->elliott_q1[nn * filter_size + k] -= elliott_means[nn];
927         }
928         model->softmax_bias_q1[nn] -= mean_bias;
929     }
930 
931     // Quality 2.
932     memset(mean_filter, 0, sizeof(mean_filter));
933 
934     for (int nn = 0; nn < nns; nn++) {
935         softmax_means[nn] = mean(model->softmax_q2 + nn * filter_size, filter_size);
936         elliott_means[nn] = mean(model->elliott_q2 + nn * filter_size, filter_size);
937 
938         for (int k = 0; k < filter_size; k++) {
939             mean_filter[k] += model->softmax_q2[nn * filter_size + k] - softmax_means[nn];
940         }
941     }
942 
943     for (int k = 0; k < filter_size; k++)
944         mean_filter[k] *= scale;
945 
946     mean_bias = mean(model->softmax_bias_q2, nns);
947 
948     for (int nn = 0; nn < nns; nn++) {
949         for (int k = 0; k < filter_size; k++) {
950             model->softmax_q2[nn * filter_size + k] -= softmax_means[nn] + mean_filter[k];
951             model->elliott_q2[nn * filter_size + k] -= elliott_means[nn];
952         }
953 
954         model->softmax_bias_q2[nn] -= mean_bias;
955     }
956 }
957 
init(AVFilterContext * ctx)958 static av_cold int init(AVFilterContext *ctx)
959 {
960     NNEDIContext *s = ctx->priv;
961     FILE *weights_file = NULL;
962     int64_t weights_size;
963     float *bdata;
964     size_t bytes_read;
965     int ret = 0;
966 
967     weights_file = av_fopen_utf8(s->weights_file, "rb");
968     if (!weights_file) {
969         av_log(ctx, AV_LOG_ERROR, "No weights file provided, aborting!\n");
970         return AVERROR(EINVAL);
971     }
972 
973     if (fseek(weights_file, 0, SEEK_END)) {
974         av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the end of weights file.\n");
975         fclose(weights_file);
976         return AVERROR(EINVAL);
977     }
978 
979     weights_size = ftell(weights_file);
980 
981     if (weights_size == -1) {
982         fclose(weights_file);
983         av_log(ctx, AV_LOG_ERROR, "Couldn't get size of weights file.\n");
984         return AVERROR(EINVAL);
985     } else if (weights_size != NNEDI_WEIGHTS_SIZE) {
986         fclose(weights_file);
987         av_log(ctx, AV_LOG_ERROR, "Unexpected weights file size.\n");
988         return AVERROR(EINVAL);
989     }
990 
991     if (fseek(weights_file, 0, SEEK_SET)) {
992         fclose(weights_file);
993         av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the start of weights file.\n");
994         return AVERROR(EINVAL);
995     }
996 
997     bdata = av_malloc(NNEDI_WEIGHTS_SIZE);
998     if (!bdata) {
999         fclose(weights_file);
1000         return AVERROR(ENOMEM);
1001     }
1002 
1003     bytes_read = fread(bdata, 1, NNEDI_WEIGHTS_SIZE, weights_file);
1004     if (bytes_read != NNEDI_WEIGHTS_SIZE) {
1005         fclose(weights_file);
1006         ret = AVERROR_INVALIDDATA;
1007         av_log(ctx, AV_LOG_ERROR, "Couldn't read weights file.\n");
1008         goto fail;
1009     }
1010 
1011     fclose(weights_file);
1012 
1013     s->fdsp = avpriv_float_dsp_alloc(0);
1014     if (!s->fdsp) {
1015         ret = AVERROR(ENOMEM);
1016         goto fail;
1017     }
1018 
1019     ret = read_weights(ctx, bdata);
1020     if (ret < 0)
1021         goto fail;
1022 
1023 fail:
1024     av_free(bdata);
1025     return ret;
1026 }
1027 
config_input(AVFilterLink * inlink)1028 static int config_input(AVFilterLink *inlink)
1029 {
1030     AVFilterContext *ctx = inlink->dst;
1031     NNEDIContext *s = ctx->priv;
1032     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
1033     int ret;
1034 
1035     s->depth = desc->comp[0].depth;
1036     s->nb_threads = ff_filter_get_nb_threads(ctx);
1037     s->nb_planes = av_pix_fmt_count_planes(inlink->format);
1038     if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0)
1039         return ret;
1040 
1041     s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
1042     s->planewidth[0] = s->planewidth[3] = inlink->w;
1043     s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
1044     s->planeheight[0] = s->planeheight[3] = inlink->h;
1045 
1046     s->half = ((1 << 8) - 1) / 2.f;
1047     s->out_scale = 1 << (s->depth - 8);
1048     s->in_scale = 1.f / s->out_scale;
1049 
1050     switch (s->depth) {
1051     case 8:
1052         s->read  = read_bytes;
1053         s->write = write_bytes;
1054         break;
1055     default:
1056         s->read  = read_words;
1057         s->write = write_words;
1058         break;
1059     }
1060 
1061     subtract_mean_old(&s->prescreener[0], s->half);
1062     subtract_mean_new(&s->prescreener[1], s->half);
1063     subtract_mean_new(&s->prescreener[2], s->half);
1064     subtract_mean_new(&s->prescreener[3], s->half);
1065 
1066     s->prescreen[0] = process_old;
1067     s->prescreen[1] = process_new;
1068 
1069     for (int i = 0; i < 2; i++) {
1070         for (int j = 0; j < 5; j++) {
1071             for (int k = 0; k < 7; k++)
1072                 subtract_mean_predictor(&s->coeffs[i][j][k]);
1073         }
1074     }
1075 
1076     s->input_size = (s->planewidth[0] + 64) * (s->planeheight[0] + 6);
1077     s->input_buf = av_calloc(s->nb_threads, sizeof(*s->input_buf));
1078     if (!s->input_buf)
1079         return AVERROR(ENOMEM);
1080 
1081     for (int i = 0; i < s->nb_threads; i++) {
1082         s->input_buf[i] = av_calloc(s->input_size, sizeof(**s->input_buf));
1083         if (!s->input_buf[i])
1084             return AVERROR(ENOMEM);
1085     }
1086 
1087     s->output_buf = av_calloc(s->nb_threads, sizeof(*s->output_buf));
1088     if (!s->output_buf)
1089         return AVERROR(ENOMEM);
1090 
1091     for (int i = 0; i < s->nb_threads; i++) {
1092         s->output_buf[i] = av_calloc(s->input_size, sizeof(**s->output_buf));
1093         if (!s->output_buf[i])
1094             return AVERROR(ENOMEM);
1095     }
1096 
1097     s->prescreen_buf = av_calloc(s->nb_threads, sizeof(*s->prescreen_buf));
1098     if (!s->prescreen_buf)
1099         return AVERROR(ENOMEM);
1100 
1101     for (int i = 0; i < s->nb_threads; i++) {
1102         s->prescreen_buf[i] = av_calloc(s->planewidth[0], sizeof(**s->prescreen_buf));
1103         if (!s->prescreen_buf[i])
1104             return AVERROR(ENOMEM);
1105     }
1106 
1107     return 0;
1108 }
1109 
uninit(AVFilterContext * ctx)1110 static av_cold void uninit(AVFilterContext *ctx)
1111 {
1112     NNEDIContext *s = ctx->priv;
1113 
1114     for (int i = 0; i < s->nb_threads && s->prescreen_buf; i++)
1115         av_freep(&s->prescreen_buf[i]);
1116 
1117     av_freep(&s->prescreen_buf);
1118 
1119     for (int i = 0; i < s->nb_threads && s->input_buf; i++)
1120         av_freep(&s->input_buf[i]);
1121 
1122     av_freep(&s->input_buf);
1123 
1124     for (int i = 0; i < s->nb_threads && s->output_buf; i++)
1125         av_freep(&s->output_buf[i]);
1126 
1127     av_freep(&s->output_buf);
1128     av_freep(&s->fdsp);
1129 
1130     for (int i = 0; i < 2; i++) {
1131         for (int j = 0; j < 5; j++) {
1132             for (int k = 0; k < 7; k++) {
1133                 av_freep(&s->coeffs[i][j][k].data);
1134             }
1135         }
1136     }
1137 
1138     av_frame_free(&s->prev);
1139 }
1140 
1141 static const AVFilterPad inputs[] = {
1142     {
1143         .name          = "default",
1144         .type          = AVMEDIA_TYPE_VIDEO,
1145         .filter_frame  = filter_frame,
1146         .config_props  = config_input,
1147     },
1148     { NULL }
1149 };
1150 
1151 static const AVFilterPad outputs[] = {
1152     {
1153         .name          = "default",
1154         .type          = AVMEDIA_TYPE_VIDEO,
1155         .config_props  = config_output,
1156         .request_frame = request_frame,
1157     },
1158     { NULL }
1159 };
1160 
1161 AVFilter ff_vf_nnedi = {
1162     .name          = "nnedi",
1163     .description   = NULL_IF_CONFIG_SMALL("Apply neural network edge directed interpolation intra-only deinterlacer."),
1164     .priv_size     = sizeof(NNEDIContext),
1165     .priv_class    = &nnedi_class,
1166     .init          = init,
1167     .uninit        = uninit,
1168     .query_formats = query_formats,
1169     .inputs        = inputs,
1170     .outputs       = outputs,
1171     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS,
1172     .process_command = ff_filter_process_command,
1173 };
1174