• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2003 LeFunGus, lefungus@altern.org
3  *
4  * This file is part of FFmpeg
5  *
6  * FFmpeg is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 
21 #include <float.h>
22 
23 #include "libavutil/imgutils.h"
24 #include "libavutil/attributes.h"
25 #include "libavutil/common.h"
26 #include "libavutil/pixdesc.h"
27 #include "libavutil/intreadwrite.h"
28 #include "libavutil/opt.h"
29 
30 #include "avfilter.h"
31 #include "formats.h"
32 #include "internal.h"
33 #include "video.h"
34 
35 typedef struct VagueDenoiserContext {
36     const AVClass *class;
37 
38     float threshold;
39     float percent;
40     int method;
41     int type;
42     int nsteps;
43     int planes;
44 
45     int depth;
46     int bpc;
47     int peak;
48     int nb_planes;
49     int planeheight[4];
50     int planewidth[4];
51 
52     float *block;
53     float *in;
54     float *out;
55     float *tmp;
56 
57     int hlowsize[4][32];
58     int hhighsize[4][32];
59     int vlowsize[4][32];
60     int vhighsize[4][32];
61 
62     void (*thresholding)(float *block, const int width, const int height,
63                          const int stride, const float threshold,
64                          const float percent);
65 } VagueDenoiserContext;
66 
67 #define OFFSET(x) offsetof(VagueDenoiserContext, x)
68 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM
69 static const AVOption vaguedenoiser_options[] = {
70     { "threshold", "set filtering strength",   OFFSET(threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.},  0,DBL_MAX, FLAGS },
71     { "method",    "set filtering method",     OFFSET(method),    AV_OPT_TYPE_INT,   {.i64=2 },  0, 2,      FLAGS, "method" },
72         { "hard",   "hard thresholding",       0,                 AV_OPT_TYPE_CONST, {.i64=0},   0, 0,      FLAGS, "method" },
73         { "soft",   "soft thresholding",       0,                 AV_OPT_TYPE_CONST, {.i64=1},   0, 0,      FLAGS, "method" },
74         { "garrote", "garrote thresholding",   0,                 AV_OPT_TYPE_CONST, {.i64=2},   0, 0,      FLAGS, "method" },
75     { "nsteps",    "set number of steps",      OFFSET(nsteps),    AV_OPT_TYPE_INT,   {.i64=6 },  1, 32,     FLAGS },
76     { "percent", "set percent of full denoising", OFFSET(percent),AV_OPT_TYPE_FLOAT, {.dbl=85},  0,100,     FLAGS },
77     { "planes",    "set planes to filter",     OFFSET(planes),    AV_OPT_TYPE_INT,   {.i64=15 }, 0, 15,     FLAGS },
78     { "type",    "set threshold type",     OFFSET(type),          AV_OPT_TYPE_INT,   {.i64=0 },  0, 1,      FLAGS, "type" },
79         { "universal",  "universal (VisuShrink)", 0,              AV_OPT_TYPE_CONST, {.i64=0},   0, 0,      FLAGS, "type" },
80         { "bayes",      "bayes (BayesShrink)",    0,              AV_OPT_TYPE_CONST, {.i64=1},   0, 0,      FLAGS, "type" },
81     { NULL }
82 };
83 
84 AVFILTER_DEFINE_CLASS(vaguedenoiser);
85 
86 #define NPAD 10
87 
88 static const float analysis_low[9] = {
89     0.037828455506995f, -0.023849465019380f, -0.110624404418423f, 0.377402855612654f,
90     0.852698679009403f, 0.377402855612654f, -0.110624404418423f, -0.023849465019380f, 0.037828455506995f
91 };
92 
93 static const float analysis_high[7] = {
94     -0.064538882628938f, 0.040689417609558f, 0.418092273222212f, -0.788485616405664f,
95     0.418092273222212f, 0.040689417609558f, -0.064538882628938f
96 };
97 
98 static const float synthesis_low[7] = {
99     -0.064538882628938f, -0.040689417609558f, 0.418092273222212f, 0.788485616405664f,
100     0.418092273222212f, -0.040689417609558f, -0.064538882628938f
101 };
102 
103 static const float synthesis_high[9] = {
104     -0.037828455506995f, -0.023849465019380f, 0.110624404418423f, 0.377402855612654f,
105     -0.852698679009403f, 0.377402855612654f, 0.110624404418423f, -0.023849465019380f, -0.037828455506995f
106 };
107 
query_formats(AVFilterContext * ctx)108 static int query_formats(AVFilterContext *ctx)
109 {
110     static const enum AVPixelFormat pix_fmts[] = {
111         AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
112         AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
113         AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
114         AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
115         AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
116         AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
117         AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
118         AV_PIX_FMT_YUVJ411P,
119         AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
120         AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
121         AV_PIX_FMT_YUV440P10,
122         AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
123         AV_PIX_FMT_YUV440P12,
124         AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
125         AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
126         AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
127         AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
128         AV_PIX_FMT_YUVA420P,  AV_PIX_FMT_YUVA422P,   AV_PIX_FMT_YUVA444P,
129         AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
130         AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
131         AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
132         AV_PIX_FMT_GBRAP,     AV_PIX_FMT_GBRAP10,    AV_PIX_FMT_GBRAP12,    AV_PIX_FMT_GBRAP16,
133         AV_PIX_FMT_NONE
134     };
135     AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
136     if (!fmts_list)
137         return AVERROR(ENOMEM);
138     return ff_set_common_formats(ctx, fmts_list);
139 }
140 
config_input(AVFilterLink * inlink)141 static int config_input(AVFilterLink *inlink)
142 {
143     VagueDenoiserContext *s = inlink->dst->priv;
144     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
145     int p, i, nsteps_width, nsteps_height, nsteps_max;
146 
147     s->depth = desc->comp[0].depth;
148     s->bpc = (s->depth + 7) / 8;
149     s->nb_planes = desc->nb_components;
150 
151     s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
152     s->planeheight[0] = s->planeheight[3] = inlink->h;
153     s->planewidth[1]  = s->planewidth[2]  = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
154     s->planewidth[0]  = s->planewidth[3]  = inlink->w;
155 
156     s->block = av_malloc_array(inlink->w * inlink->h, sizeof(*s->block));
157     s->in    = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->in));
158     s->out   = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->out));
159     s->tmp   = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->tmp));
160 
161     if (!s->block || !s->in || !s->out || !s->tmp)
162         return AVERROR(ENOMEM);
163 
164     s->threshold *= 1 << (s->depth - 8);
165     s->peak = (1 << s->depth) - 1;
166 
167     nsteps_width  = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planewidth[1] : s->planewidth[0];
168     nsteps_height = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planeheight[1] : s->planeheight[0];
169 
170     for (nsteps_max = 1; nsteps_max < 15; nsteps_max++) {
171         if (pow(2, nsteps_max) >= nsteps_width || pow(2, nsteps_max) >= nsteps_height)
172             break;
173     }
174 
175     s->nsteps = FFMIN(s->nsteps, nsteps_max - 2);
176 
177     for (p = 0; p < 4; p++) {
178         s->hlowsize[p][0]  = (s->planewidth[p] + 1) >> 1;
179         s->hhighsize[p][0] =  s->planewidth[p] >> 1;
180         s->vlowsize[p][0]  = (s->planeheight[p] + 1) >> 1;
181         s->vhighsize[p][0] =  s->planeheight[p] >> 1;
182 
183         for (i = 1; i < s->nsteps; i++) {
184             s->hlowsize[p][i]  = (s->hlowsize[p][i - 1] + 1) >> 1;
185             s->hhighsize[p][i] =  s->hlowsize[p][i - 1] >> 1;
186             s->vlowsize[p][i]  = (s->vlowsize[p][i - 1] + 1) >> 1;
187             s->vhighsize[p][i] =  s->vlowsize[p][i - 1] >> 1;
188         }
189     }
190 
191     return 0;
192 }
193 
copy(const float * p1,float * p2,const int length)194 static inline void copy(const float *p1, float *p2, const int length)
195 {
196     memcpy(p2, p1, length * sizeof(float));
197 }
198 
copyv(const float * p1,const int stride1,float * p2,const int length)199 static inline void copyv(const float *p1, const int stride1, float *p2, const int length)
200 {
201     int i;
202 
203     for (i = 0; i < length; i++) {
204         p2[i] = *p1;
205         p1 += stride1;
206     }
207 }
208 
copyh(const float * p1,float * p2,const int stride2,const int length)209 static inline void copyh(const float *p1, float *p2, const int stride2, const int length)
210 {
211     int i;
212 
213     for (i = 0; i < length; i++) {
214         *p2 = p1[i];
215         p2 += stride2;
216     }
217 }
218 
219 // Do symmetric extension of data using prescribed symmetries
220 // Original values are in output[npad] through output[npad+size-1]
221 // New values will be placed in output[0] through output[npad] and in output[npad+size] through output[2*npad+size-1] (note: end values may not be filled in)
222 // extension at left bdry is ... 3 2 1 0 | 0 1 2 3 ...
223 // same for right boundary
224 // if right_ext=1 then ... 3 2 1 0 | 1 2 3
symmetric_extension(float * output,const int size,const int left_ext,const int right_ext)225 static void symmetric_extension(float *output, const int size, const int left_ext, const int right_ext)
226 {
227     int first = NPAD;
228     int last = NPAD - 1 + size;
229     const int originalLast = last;
230     int i, nextend, idx;
231 
232     if (left_ext == 2)
233         output[--first] = output[NPAD];
234     if (right_ext == 2)
235         output[++last] = output[originalLast];
236 
237     // extend left end
238     nextend = first;
239     for (i = 0; i < nextend; i++)
240         output[--first] = output[NPAD + 1 + i];
241 
242     idx = NPAD + NPAD - 1 + size;
243 
244     // extend right end
245     nextend = idx - last;
246     for (i = 0; i < nextend; i++)
247         output[++last] = output[originalLast - 1 - i];
248 }
249 
transform_step(float * input,float * output,const int size,const int low_size,VagueDenoiserContext * s)250 static void transform_step(float *input, float *output, const int size, const int low_size, VagueDenoiserContext *s)
251 {
252     int i;
253 
254     symmetric_extension(input, size, 1, 1);
255 
256     for (i = NPAD; i < NPAD + low_size; i++) {
257         const float a = input[2 * i - 14] * analysis_low[0];
258         const float b = input[2 * i - 13] * analysis_low[1];
259         const float c = input[2 * i - 12] * analysis_low[2];
260         const float d = input[2 * i - 11] * analysis_low[3];
261         const float e = input[2 * i - 10] * analysis_low[4];
262         const float f = input[2 * i -  9] * analysis_low[3];
263         const float g = input[2 * i -  8] * analysis_low[2];
264         const float h = input[2 * i -  7] * analysis_low[1];
265         const float k = input[2 * i -  6] * analysis_low[0];
266 
267         output[i] = a + b + c + d + e + f + g + h + k;
268     }
269 
270     for (i = NPAD; i < NPAD + low_size; i++) {
271         const float a = input[2 * i - 12] * analysis_high[0];
272         const float b = input[2 * i - 11] * analysis_high[1];
273         const float c = input[2 * i - 10] * analysis_high[2];
274         const float d = input[2 * i -  9] * analysis_high[3];
275         const float e = input[2 * i -  8] * analysis_high[2];
276         const float f = input[2 * i -  7] * analysis_high[1];
277         const float g = input[2 * i -  6] * analysis_high[0];
278 
279         output[i + low_size] = a + b + c + d + e + f + g;
280     }
281 }
282 
invert_step(const float * input,float * output,float * temp,const int size,VagueDenoiserContext * s)283 static void invert_step(const float *input, float *output, float *temp, const int size, VagueDenoiserContext *s)
284 {
285     const int low_size = (size + 1) >> 1;
286     const int high_size = size >> 1;
287     int left_ext = 1, right_ext, i;
288     int findex;
289 
290     memcpy(temp + NPAD, input + NPAD, low_size * sizeof(float));
291 
292     right_ext = (size % 2 == 0) ? 2 : 1;
293     symmetric_extension(temp, low_size, left_ext, right_ext);
294 
295     memset(output, 0, (NPAD + NPAD + size) * sizeof(float));
296     findex = (size + 2) >> 1;
297 
298     for (i = 9; i < findex + 11; i++) {
299         const float a = temp[i] * synthesis_low[0];
300         const float b = temp[i] * synthesis_low[1];
301         const float c = temp[i] * synthesis_low[2];
302         const float d = temp[i] * synthesis_low[3];
303 
304         output[2 * i - 13] += a;
305         output[2 * i - 12] += b;
306         output[2 * i - 11] += c;
307         output[2 * i - 10] += d;
308         output[2 * i -  9] += c;
309         output[2 * i -  8] += b;
310         output[2 * i -  7] += a;
311     }
312 
313     memcpy(temp + NPAD, input + NPAD + low_size, high_size * sizeof(float));
314 
315     left_ext = 2;
316     right_ext = (size % 2 == 0) ? 1 : 2;
317     symmetric_extension(temp, high_size, left_ext, right_ext);
318 
319     for (i = 8; i < findex + 11; i++) {
320         const float a = temp[i] * synthesis_high[0];
321         const float b = temp[i] * synthesis_high[1];
322         const float c = temp[i] * synthesis_high[2];
323         const float d = temp[i] * synthesis_high[3];
324         const float e = temp[i] * synthesis_high[4];
325 
326         output[2 * i - 13] += a;
327         output[2 * i - 12] += b;
328         output[2 * i - 11] += c;
329         output[2 * i - 10] += d;
330         output[2 * i -  9] += e;
331         output[2 * i -  8] += d;
332         output[2 * i -  7] += c;
333         output[2 * i -  6] += b;
334         output[2 * i -  5] += a;
335     }
336 }
337 
hard_thresholding(float * block,const int width,const int height,const int stride,const float threshold,const float percent)338 static void hard_thresholding(float *block, const int width, const int height,
339                               const int stride, const float threshold,
340                               const float percent)
341 {
342     const float frac = 1.f - percent * 0.01f;
343     int y, x;
344 
345     for (y = 0; y < height; y++) {
346         for (x = 0; x < width; x++) {
347             if (FFABS(block[x]) <= threshold)
348                 block[x] *= frac;
349         }
350         block += stride;
351     }
352 }
353 
soft_thresholding(float * block,const int width,const int height,const int stride,const float threshold,const float percent)354 static void soft_thresholding(float *block, const int width, const int height, const int stride,
355                               const float threshold, const float percent)
356 {
357     const float frac = 1.f - percent * 0.01f;
358     const float shift = threshold * 0.01f * percent;
359     int y, x;
360 
361     for (y = 0; y < height; y++) {
362         for (x = 0; x < width; x++) {
363             const float temp = FFABS(block[x]);
364             if (temp <= threshold)
365                 block[x] *= frac;
366             else
367                 block[x] = (block[x] < 0.f ? -1.f : (block[x] > 0.f ? 1.f : 0.f)) * (temp - shift);
368         }
369         block += stride;
370     }
371 }
372 
qian_thresholding(float * block,const int width,const int height,const int stride,const float threshold,const float percent)373 static void qian_thresholding(float *block, const int width, const int height,
374                               const int stride, const float threshold,
375                               const float percent)
376 {
377     const float percent01 = percent * 0.01f;
378     const float tr2 = threshold * threshold * percent01;
379     const float frac = 1.f - percent01;
380     int y, x;
381 
382     for (y = 0; y < height; y++) {
383         for (x = 0; x < width; x++) {
384             const float temp = FFABS(block[x]);
385             if (temp <= threshold) {
386                 block[x] *= frac;
387             } else {
388                 const float tp2 = temp * temp;
389                 block[x] *= (tp2 - tr2) / tp2;
390             }
391         }
392         block += stride;
393     }
394 }
395 
bayes_threshold(float * block,const int width,const int height,const int stride,const float threshold)396 static float bayes_threshold(float *block, const int width, const int height,
397                               const int stride, const float threshold)
398 {
399     float mean = 0.f;
400 
401     for (int y = 0; y < height; y++) {
402         for (int x = 0; x < width; x++) {
403             mean += block[x] * block[x];
404         }
405         block += stride;
406     }
407 
408     mean /= width * height;
409 
410     return threshold * threshold / (FFMAX(sqrtf(mean - threshold), FLT_EPSILON));
411 }
412 
filter(VagueDenoiserContext * s,AVFrame * in,AVFrame * out)413 static void filter(VagueDenoiserContext *s, AVFrame *in, AVFrame *out)
414 {
415     int p, y, x, i, j;
416 
417     for (p = 0; p < s->nb_planes; p++) {
418         const int height = s->planeheight[p];
419         const int width = s->planewidth[p];
420         const uint8_t *srcp8 = in->data[p];
421         const uint16_t *srcp16 = (const uint16_t *)in->data[p];
422         uint8_t *dstp8 = out->data[p];
423         uint16_t *dstp16 = (uint16_t *)out->data[p];
424         float *output = s->block;
425         int h_low_size0 = width;
426         int v_low_size0 = height;
427         int nsteps_transform = s->nsteps;
428         int nsteps_invert = s->nsteps;
429         const float *input = s->block;
430 
431         if (!((1 << p) & s->planes)) {
432             av_image_copy_plane(out->data[p], out->linesize[p], in->data[p], in->linesize[p],
433                                 s->planewidth[p] * s->bpc, s->planeheight[p]);
434             continue;
435         }
436 
437         if (s->depth <= 8) {
438             for (y = 0; y < height; y++) {
439                 for (x = 0; x < width; x++)
440                     output[x] = srcp8[x];
441                 srcp8 += in->linesize[p];
442                 output += width;
443             }
444         } else {
445             for (y = 0; y < height; y++) {
446                 for (x = 0; x < width; x++)
447                     output[x] = srcp16[x];
448                 srcp16 += in->linesize[p] / 2;
449                 output += width;
450             }
451         }
452 
453         while (nsteps_transform--) {
454             int low_size = (h_low_size0 + 1) >> 1;
455             float *input = s->block;
456             for (j = 0; j < v_low_size0; j++) {
457                 copy(input, s->in + NPAD, h_low_size0);
458                 transform_step(s->in, s->out, h_low_size0, low_size, s);
459                 copy(s->out + NPAD, input, h_low_size0);
460                 input += width;
461             }
462 
463             low_size = (v_low_size0 + 1) >> 1;
464             input = s->block;
465             for (j = 0; j < h_low_size0; j++) {
466                 copyv(input, width, s->in + NPAD, v_low_size0);
467                 transform_step(s->in, s->out, v_low_size0, low_size, s);
468                 copyh(s->out + NPAD, input, width, v_low_size0);
469                 input++;
470             }
471 
472             h_low_size0 = (h_low_size0 + 1) >> 1;
473             v_low_size0 = (v_low_size0 + 1) >> 1;
474         }
475 
476         if (s->type == 0) {
477             s->thresholding(s->block, width, height, width, s->threshold, s->percent);
478         } else {
479             for (int n = 0; n < s->nsteps; n++) {
480                 float threshold;
481                 float *block;
482 
483                 if (n == s->nsteps - 1) {
484                     threshold = bayes_threshold(s->block, s->hlowsize[p][n], s->vlowsize[p][n], width, s->threshold);
485                     s->thresholding(s->block, s->hlowsize[p][n], s->vlowsize[p][n], width, threshold, s->percent);
486                 }
487                 block = s->block + s->hlowsize[p][n];
488                 threshold = bayes_threshold(block, s->hhighsize[p][n], s->vlowsize[p][n], width, s->threshold);
489                 s->thresholding(block, s->hhighsize[p][n], s->vlowsize[p][n], width, threshold, s->percent);
490                 block = s->block + s->vlowsize[p][n] * width;
491                 threshold = bayes_threshold(block, s->hlowsize[p][n], s->vhighsize[p][n], width, s->threshold);
492                 s->thresholding(block, s->hlowsize[p][n], s->vhighsize[p][n], width, threshold, s->percent);
493                 block = s->block + s->hlowsize[p][n] + s->vlowsize[p][n] * width;
494                 threshold = bayes_threshold(block, s->hhighsize[p][n], s->vhighsize[p][n], width, s->threshold);
495                 s->thresholding(block, s->hhighsize[p][n], s->vhighsize[p][n], width, threshold, s->percent);
496             }
497         }
498 
499         while (nsteps_invert--) {
500             const int idx = s->vlowsize[p][nsteps_invert]  + s->vhighsize[p][nsteps_invert];
501             const int idx2 = s->hlowsize[p][nsteps_invert] + s->hhighsize[p][nsteps_invert];
502             float * idx3 = s->block;
503             for (i = 0; i < idx2; i++) {
504                 copyv(idx3, width, s->in + NPAD, idx);
505                 invert_step(s->in, s->out, s->tmp, idx, s);
506                 copyh(s->out + NPAD, idx3, width, idx);
507                 idx3++;
508             }
509 
510             idx3 = s->block;
511             for (i = 0; i < idx; i++) {
512                 copy(idx3, s->in + NPAD, idx2);
513                 invert_step(s->in, s->out, s->tmp, idx2, s);
514                 copy(s->out + NPAD, idx3, idx2);
515                 idx3 += width;
516             }
517         }
518 
519         if (s->depth <= 8) {
520             for (y = 0; y < height; y++) {
521                 for (x = 0; x < width; x++)
522                     dstp8[x] = av_clip_uint8(input[x] + 0.5f);
523                 input += width;
524                 dstp8 += out->linesize[p];
525             }
526         } else {
527             for (y = 0; y < height; y++) {
528                 for (x = 0; x < width; x++)
529                     dstp16[x] = av_clip(input[x] + 0.5f, 0, s->peak);
530                 input += width;
531                 dstp16 += out->linesize[p] / 2;
532             }
533         }
534     }
535 }
536 
filter_frame(AVFilterLink * inlink,AVFrame * in)537 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
538 {
539     AVFilterContext *ctx  = inlink->dst;
540     VagueDenoiserContext *s = ctx->priv;
541     AVFilterLink *outlink = ctx->outputs[0];
542     AVFrame *out;
543     int direct = av_frame_is_writable(in);
544 
545     if (direct) {
546         out = in;
547     } else {
548         out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
549         if (!out) {
550             av_frame_free(&in);
551             return AVERROR(ENOMEM);
552         }
553 
554         av_frame_copy_props(out, in);
555     }
556 
557     filter(s, in, out);
558 
559     if (!direct)
560         av_frame_free(&in);
561 
562     return ff_filter_frame(outlink, out);
563 }
564 
init(AVFilterContext * ctx)565 static av_cold int init(AVFilterContext *ctx)
566 {
567     VagueDenoiserContext *s = ctx->priv;
568 
569     switch (s->method) {
570     case 0:
571         s->thresholding = hard_thresholding;
572         break;
573     case 1:
574         s->thresholding = soft_thresholding;
575         break;
576     case 2:
577         s->thresholding = qian_thresholding;
578         break;
579     }
580 
581     return 0;
582 }
583 
uninit(AVFilterContext * ctx)584 static av_cold void uninit(AVFilterContext *ctx)
585 {
586     VagueDenoiserContext *s = ctx->priv;
587 
588     av_freep(&s->block);
589     av_freep(&s->in);
590     av_freep(&s->out);
591     av_freep(&s->tmp);
592 }
593 
594 static const AVFilterPad vaguedenoiser_inputs[] = {
595     {
596         .name         = "default",
597         .type         = AVMEDIA_TYPE_VIDEO,
598         .config_props = config_input,
599         .filter_frame = filter_frame,
600     },
601     { NULL }
602 };
603 
604 
605 static const AVFilterPad vaguedenoiser_outputs[] = {
606     {
607         .name = "default",
608         .type = AVMEDIA_TYPE_VIDEO
609     },
610     { NULL }
611 };
612 
613 AVFilter ff_vf_vaguedenoiser = {
614     .name          = "vaguedenoiser",
615     .description   = NULL_IF_CONFIG_SMALL("Apply a Wavelet based Denoiser."),
616     .priv_size     = sizeof(VagueDenoiserContext),
617     .priv_class    = &vaguedenoiser_class,
618     .init          = init,
619     .uninit        = uninit,
620     .query_formats = query_formats,
621     .inputs        = vaguedenoiser_inputs,
622     .outputs       = vaguedenoiser_outputs,
623     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC,
624 };
625