1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include <algorithm>
9 #include "include/core/SkMallocPixelRef.h"
10 #include "include/private/SkFloatBits.h"
11 #include "include/private/SkHalf.h"
12 #include "src/core/SkColorSpacePriv.h"
13 #include "src/core/SkConvertPixels.h"
14 #include "src/core/SkReadBuffer.h"
15 #include "src/core/SkWriteBuffer.h"
16 #include "src/shaders/gradients/Sk4fLinearGradient.h"
17 #include "src/shaders/gradients/SkGradientShaderPriv.h"
18 #include "src/shaders/gradients/SkLinearGradient.h"
19 #include "src/shaders/gradients/SkRadialGradient.h"
20 #include "src/shaders/gradients/SkSweepGradient.h"
21 #include "src/shaders/gradients/SkTwoPointConicalGradient.h"
22
23 enum GradientSerializationFlags {
24 // Bits 29:31 used for various boolean flags
25 kHasPosition_GSF = 0x80000000,
26 kHasLocalMatrix_GSF = 0x40000000,
27 kHasColorSpace_GSF = 0x20000000,
28
29 // Bits 12:28 unused
30
31 // Bits 8:11 for fTileMode
32 kTileModeShift_GSF = 8,
33 kTileModeMask_GSF = 0xF,
34
35 // Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80)
36 kGradFlagsShift_GSF = 0,
37 kGradFlagsMask_GSF = 0xFF,
38 };
39
flatten(SkWriteBuffer & buffer) const40 void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const {
41 uint32_t flags = 0;
42 if (fPos) {
43 flags |= kHasPosition_GSF;
44 }
45 if (fLocalMatrix) {
46 flags |= kHasLocalMatrix_GSF;
47 }
48 sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr;
49 if (colorSpaceData) {
50 flags |= kHasColorSpace_GSF;
51 }
52 SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF);
53 flags |= ((unsigned)fTileMode << kTileModeShift_GSF);
54 SkASSERT(fGradFlags <= kGradFlagsMask_GSF);
55 flags |= (fGradFlags << kGradFlagsShift_GSF);
56
57 buffer.writeUInt(flags);
58
59 buffer.writeColor4fArray(fColors, fCount);
60 if (colorSpaceData) {
61 buffer.writeDataAsByteArray(colorSpaceData.get());
62 }
63 if (fPos) {
64 buffer.writeScalarArray(fPos, fCount);
65 }
66 if (fLocalMatrix) {
67 buffer.writeMatrix(*fLocalMatrix);
68 }
69 }
70
71 template <int N, typename T, bool MEM_MOVE>
validate_array(SkReadBuffer & buffer,size_t count,SkSTArray<N,T,MEM_MOVE> * array)72 static bool validate_array(SkReadBuffer& buffer, size_t count, SkSTArray<N, T, MEM_MOVE>* array) {
73 if (!buffer.validateCanReadN<T>(count)) {
74 return false;
75 }
76
77 array->resize_back(count);
78 return true;
79 }
80
unflatten(SkReadBuffer & buffer)81 bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) {
82 // New gradient format. Includes floating point color, color space, densely packed flags
83 uint32_t flags = buffer.readUInt();
84
85 fTileMode = (SkTileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF);
86 fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF;
87
88 fCount = buffer.getArrayCount();
89
90 if (!(validate_array(buffer, fCount, &fColorStorage) &&
91 buffer.readColor4fArray(fColorStorage.begin(), fCount))) {
92 return false;
93 }
94 fColors = fColorStorage.begin();
95
96 if (SkToBool(flags & kHasColorSpace_GSF)) {
97 sk_sp<SkData> data = buffer.readByteArrayAsData();
98 fColorSpace = data ? SkColorSpace::Deserialize(data->data(), data->size()) : nullptr;
99 } else {
100 fColorSpace = nullptr;
101 }
102 if (SkToBool(flags & kHasPosition_GSF)) {
103 if (!(validate_array(buffer, fCount, &fPosStorage) &&
104 buffer.readScalarArray(fPosStorage.begin(), fCount))) {
105 return false;
106 }
107 fPos = fPosStorage.begin();
108 } else {
109 fPos = nullptr;
110 }
111 if (SkToBool(flags & kHasLocalMatrix_GSF)) {
112 fLocalMatrix = &fLocalMatrixStorage;
113 buffer.readMatrix(&fLocalMatrixStorage);
114 } else {
115 fLocalMatrix = nullptr;
116 }
117 return buffer.isValid();
118 }
119
120 ////////////////////////////////////////////////////////////////////////////////////////////
121
SkGradientShaderBase(const Descriptor & desc,const SkMatrix & ptsToUnit)122 SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit)
123 : INHERITED(desc.fLocalMatrix)
124 , fPtsToUnit(ptsToUnit)
125 , fColorSpace(desc.fColorSpace ? desc.fColorSpace : SkColorSpace::MakeSRGB())
126 , fColorsAreOpaque(true)
127 {
128 fPtsToUnit.getType(); // Precache so reads are threadsafe.
129 SkASSERT(desc.fCount > 1);
130
131 fGradFlags = static_cast<uint8_t>(desc.fGradFlags);
132
133 SkASSERT((unsigned)desc.fTileMode < kSkTileModeCount);
134 fTileMode = desc.fTileMode;
135
136 /* Note: we let the caller skip the first and/or last position.
137 i.e. pos[0] = 0.3, pos[1] = 0.7
138 In these cases, we insert dummy entries to ensure that the final data
139 will be bracketed by [0, 1].
140 i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
141
142 Thus colorCount (the caller's value, and fColorCount (our value) may
143 differ by up to 2. In the above example:
144 colorCount = 2
145 fColorCount = 4
146 */
147 fColorCount = desc.fCount;
148 // check if we need to add in dummy start and/or end position/colors
149 bool dummyFirst = false;
150 bool dummyLast = false;
151 if (desc.fPos) {
152 dummyFirst = desc.fPos[0] != 0;
153 dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
154 fColorCount += dummyFirst + dummyLast;
155 }
156
157 size_t storageSize = fColorCount * (sizeof(SkColor4f) + (desc.fPos ? sizeof(SkScalar) : 0));
158 fOrigColors4f = reinterpret_cast<SkColor4f*>(fStorage.reset(storageSize));
159 fOrigPos = desc.fPos ? reinterpret_cast<SkScalar*>(fOrigColors4f + fColorCount)
160 : nullptr;
161
162 // Now copy over the colors, adding the dummies as needed
163 SkColor4f* origColors = fOrigColors4f;
164 if (dummyFirst) {
165 *origColors++ = desc.fColors[0];
166 }
167 for (int i = 0; i < desc.fCount; ++i) {
168 origColors[i] = desc.fColors[i];
169 fColorsAreOpaque = fColorsAreOpaque && (desc.fColors[i].fA == 1);
170 }
171 if (dummyLast) {
172 origColors += desc.fCount;
173 *origColors = desc.fColors[desc.fCount - 1];
174 }
175
176 if (desc.fPos) {
177 SkScalar prev = 0;
178 SkScalar* origPosPtr = fOrigPos;
179 *origPosPtr++ = prev; // force the first pos to 0
180
181 int startIndex = dummyFirst ? 0 : 1;
182 int count = desc.fCount + dummyLast;
183
184 bool uniformStops = true;
185 const SkScalar uniformStep = desc.fPos[startIndex] - prev;
186 for (int i = startIndex; i < count; i++) {
187 // Pin the last value to 1.0, and make sure pos is monotonic.
188 auto curr = (i == desc.fCount) ? 1 : SkScalarPin(desc.fPos[i], prev, 1);
189 uniformStops &= SkScalarNearlyEqual(uniformStep, curr - prev);
190
191 *origPosPtr++ = prev = curr;
192 }
193
194 // If the stops are uniform, treat them as implicit.
195 if (uniformStops) {
196 fOrigPos = nullptr;
197 }
198 }
199 }
200
~SkGradientShaderBase()201 SkGradientShaderBase::~SkGradientShaderBase() {}
202
flatten(SkWriteBuffer & buffer) const203 void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
204 Descriptor desc;
205 desc.fColors = fOrigColors4f;
206 desc.fColorSpace = fColorSpace;
207 desc.fPos = fOrigPos;
208 desc.fCount = fColorCount;
209 desc.fTileMode = fTileMode;
210 desc.fGradFlags = fGradFlags;
211
212 const SkMatrix& m = this->getLocalMatrix();
213 desc.fLocalMatrix = m.isIdentity() ? nullptr : &m;
214 desc.flatten(buffer);
215 }
216
add_stop_color(SkRasterPipeline_GradientCtx * ctx,size_t stop,SkPMColor4f Fs,SkPMColor4f Bs)217 static void add_stop_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f Fs, SkPMColor4f Bs) {
218 (ctx->fs[0])[stop] = Fs.fR;
219 (ctx->fs[1])[stop] = Fs.fG;
220 (ctx->fs[2])[stop] = Fs.fB;
221 (ctx->fs[3])[stop] = Fs.fA;
222 (ctx->bs[0])[stop] = Bs.fR;
223 (ctx->bs[1])[stop] = Bs.fG;
224 (ctx->bs[2])[stop] = Bs.fB;
225 (ctx->bs[3])[stop] = Bs.fA;
226 }
227
add_const_color(SkRasterPipeline_GradientCtx * ctx,size_t stop,SkPMColor4f color)228 static void add_const_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f color) {
229 add_stop_color(ctx, stop, { 0, 0, 0, 0 }, color);
230 }
231
232 // Calculate a factor F and a bias B so that color = F*t + B when t is in range of
233 // the stop. Assume that the distance between stops is 1/gapCount.
init_stop_evenly(SkRasterPipeline_GradientCtx * ctx,float gapCount,size_t stop,SkPMColor4f c_l,SkPMColor4f c_r)234 static void init_stop_evenly(
235 SkRasterPipeline_GradientCtx* ctx, float gapCount, size_t stop, SkPMColor4f c_l, SkPMColor4f c_r) {
236 // Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar...
237 SkPMColor4f Fs = {
238 (c_r.fR - c_l.fR) * gapCount,
239 (c_r.fG - c_l.fG) * gapCount,
240 (c_r.fB - c_l.fB) * gapCount,
241 (c_r.fA - c_l.fA) * gapCount,
242 };
243 SkPMColor4f Bs = {
244 c_l.fR - Fs.fR*(stop/gapCount),
245 c_l.fG - Fs.fG*(stop/gapCount),
246 c_l.fB - Fs.fB*(stop/gapCount),
247 c_l.fA - Fs.fA*(stop/gapCount),
248 };
249 add_stop_color(ctx, stop, Fs, Bs);
250 }
251
252 // For each stop we calculate a bias B and a scale factor F, such that
253 // for any t between stops n and n+1, the color we want is B[n] + F[n]*t.
init_stop_pos(SkRasterPipeline_GradientCtx * ctx,size_t stop,float t_l,float t_r,SkPMColor4f c_l,SkPMColor4f c_r)254 static void init_stop_pos(
255 SkRasterPipeline_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPMColor4f c_l, SkPMColor4f c_r) {
256 // See note about Clankium's old compiler in init_stop_evenly().
257 SkPMColor4f Fs = {
258 (c_r.fR - c_l.fR) / (t_r - t_l),
259 (c_r.fG - c_l.fG) / (t_r - t_l),
260 (c_r.fB - c_l.fB) / (t_r - t_l),
261 (c_r.fA - c_l.fA) / (t_r - t_l),
262 };
263 SkPMColor4f Bs = {
264 c_l.fR - Fs.fR*t_l,
265 c_l.fG - Fs.fG*t_l,
266 c_l.fB - Fs.fB*t_l,
267 c_l.fA - Fs.fA*t_l,
268 };
269 ctx->ts[stop] = t_l;
270 add_stop_color(ctx, stop, Fs, Bs);
271 }
272
onAppendStages(const SkStageRec & rec) const273 bool SkGradientShaderBase::onAppendStages(const SkStageRec& rec) const {
274 SkRasterPipeline* p = rec.fPipeline;
275 SkArenaAlloc* alloc = rec.fAlloc;
276 SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr;
277
278 SkMatrix matrix;
279 if (!this->computeTotalInverse(rec.fCTM, rec.fLocalM, &matrix)) {
280 return false;
281 }
282 matrix.postConcat(fPtsToUnit);
283
284 SkRasterPipeline_<256> postPipeline;
285
286 p->append(SkRasterPipeline::seed_shader);
287 p->append_matrix(alloc, matrix);
288 this->appendGradientStages(alloc, p, &postPipeline);
289
290 switch(fTileMode) {
291 case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x_1); break;
292 case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x_1); break;
293 case SkTileMode::kDecal:
294 decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>();
295 decal_ctx->limit_x = SkBits2Float(SkFloat2Bits(1.0f) + 1);
296 // reuse mask + limit_x stage, or create a custom decal_1 that just stores the mask
297 p->append(SkRasterPipeline::decal_x, decal_ctx);
298 // fall-through to clamp
299 case SkTileMode::kClamp:
300 if (!fOrigPos) {
301 // We clamp only when the stops are evenly spaced.
302 // If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1.
303 // In that case, we must make sure we're using the general "gradient" stage,
304 // which is the only stage that will correctly handle unclamped t.
305 p->append(SkRasterPipeline::clamp_x_1);
306 }
307 break;
308 }
309
310 const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag;
311
312 // Transform all of the colors to destination color space
313 SkColor4fXformer xformedColors(fOrigColors4f, fColorCount, fColorSpace.get(), rec.fDstCS);
314
315 auto prepareColor = [premulGrad, &xformedColors](int i) {
316 SkColor4f c = xformedColors.fColors[i];
317 return premulGrad ? c.premul()
318 : SkPMColor4f{ c.fR, c.fG, c.fB, c.fA };
319 };
320
321 // The two-stop case with stops at 0 and 1.
322 if (fColorCount == 2 && fOrigPos == nullptr) {
323 const SkPMColor4f c_l = prepareColor(0),
324 c_r = prepareColor(1);
325
326 // See F and B below.
327 auto ctx = alloc->make<SkRasterPipeline_EvenlySpaced2StopGradientCtx>();
328 (Sk4f::Load(c_r.vec()) - Sk4f::Load(c_l.vec())).store(ctx->f);
329 ( Sk4f::Load(c_l.vec())).store(ctx->b);
330 ctx->interpolatedInPremul = premulGrad;
331
332 p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, ctx);
333 } else {
334 auto* ctx = alloc->make<SkRasterPipeline_GradientCtx>();
335 ctx->interpolatedInPremul = premulGrad;
336
337 // Note: In order to handle clamps in search, the search assumes a stop conceptully placed
338 // at -inf. Therefore, the max number of stops is fColorCount+1.
339 for (int i = 0; i < 4; i++) {
340 // Allocate at least at for the AVX2 gather from a YMM register.
341 ctx->fs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
342 ctx->bs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
343 }
344
345 if (fOrigPos == nullptr) {
346 // Handle evenly distributed stops.
347
348 size_t stopCount = fColorCount;
349 float gapCount = stopCount - 1;
350
351 SkPMColor4f c_l = prepareColor(0);
352 for (size_t i = 0; i < stopCount - 1; i++) {
353 SkPMColor4f c_r = prepareColor(i + 1);
354 init_stop_evenly(ctx, gapCount, i, c_l, c_r);
355 c_l = c_r;
356 }
357 add_const_color(ctx, stopCount - 1, c_l);
358
359 ctx->stopCount = stopCount;
360 p->append(SkRasterPipeline::evenly_spaced_gradient, ctx);
361 } else {
362 // Handle arbitrary stops.
363
364 ctx->ts = alloc->makeArray<float>(fColorCount+1);
365
366 // Remove the dummy stops inserted by SkGradientShaderBase::SkGradientShaderBase
367 // because they are naturally handled by the search method.
368 int firstStop;
369 int lastStop;
370 if (fColorCount > 2) {
371 firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1;
372 lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1]
373 ? fColorCount - 1 : fColorCount - 2;
374 } else {
375 firstStop = 0;
376 lastStop = 1;
377 }
378
379 size_t stopCount = 0;
380 float t_l = fOrigPos[firstStop];
381 SkPMColor4f c_l = prepareColor(firstStop);
382 add_const_color(ctx, stopCount++, c_l);
383 // N.B. lastStop is the index of the last stop, not one after.
384 for (int i = firstStop; i < lastStop; i++) {
385 float t_r = fOrigPos[i + 1];
386 SkPMColor4f c_r = prepareColor(i + 1);
387 SkASSERT(t_l <= t_r);
388 if (t_l < t_r) {
389 init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r);
390 stopCount += 1;
391 }
392 t_l = t_r;
393 c_l = c_r;
394 }
395
396 ctx->ts[stopCount] = t_l;
397 add_const_color(ctx, stopCount++, c_l);
398
399 ctx->stopCount = stopCount;
400 p->append(SkRasterPipeline::gradient, ctx);
401 }
402 }
403
404 if (decal_ctx) {
405 p->append(SkRasterPipeline::check_decal_mask, decal_ctx);
406 }
407
408 if (!premulGrad && !this->colorsAreOpaque()) {
409 p->append(SkRasterPipeline::premul);
410 }
411
412 p->extend(postPipeline);
413
414 return true;
415 }
416
417
isOpaque() const418 bool SkGradientShaderBase::isOpaque() const {
419 return fColorsAreOpaque && (this->getTileMode() != SkTileMode::kDecal);
420 }
421
rounded_divide(unsigned numer,unsigned denom)422 static unsigned rounded_divide(unsigned numer, unsigned denom) {
423 return (numer + (denom >> 1)) / denom;
424 }
425
onAsLuminanceColor(SkColor * lum) const426 bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const {
427 // we just compute an average color.
428 // possibly we could weight this based on the proportional width for each color
429 // assuming they are not evenly distributed in the fPos array.
430 int r = 0;
431 int g = 0;
432 int b = 0;
433 const int n = fColorCount;
434 // TODO: use linear colors?
435 for (int i = 0; i < n; ++i) {
436 SkColor c = this->getLegacyColor(i);
437 r += SkColorGetR(c);
438 g += SkColorGetG(c);
439 b += SkColorGetB(c);
440 }
441 *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n));
442 return true;
443 }
444
SkColor4fXformer(const SkColor4f * colors,int colorCount,SkColorSpace * src,SkColorSpace * dst)445 SkColor4fXformer::SkColor4fXformer(const SkColor4f* colors, int colorCount,
446 SkColorSpace* src, SkColorSpace* dst) {
447 fColors = colors;
448
449 if (dst && !SkColorSpace::Equals(src, dst)) {
450 fStorage.reset(colorCount);
451
452 auto info = SkImageInfo::Make(colorCount,1, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType);
453
454 SkConvertPixels(info.makeColorSpace(sk_ref_sp(dst)), fStorage.begin(), info.minRowBytes(),
455 info.makeColorSpace(sk_ref_sp(src)), fColors , info.minRowBytes());
456
457 fColors = fStorage.begin();
458 }
459 }
460
commonAsAGradient(GradientInfo * info) const461 void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const {
462 if (info) {
463 if (info->fColorCount >= fColorCount) {
464 if (info->fColors) {
465 for (int i = 0; i < fColorCount; ++i) {
466 info->fColors[i] = this->getLegacyColor(i);
467 }
468 }
469 if (info->fColorOffsets) {
470 for (int i = 0; i < fColorCount; ++i) {
471 info->fColorOffsets[i] = this->getPos(i);
472 }
473 }
474 }
475 info->fColorCount = fColorCount;
476 info->fTileMode = fTileMode;
477 info->fGradientFlags = fGradFlags;
478 }
479 }
480
481 ///////////////////////////////////////////////////////////////////////////////
482 ///////////////////////////////////////////////////////////////////////////////
483
484 // Return true if these parameters are valid/legal/safe to construct a gradient
485 //
valid_grad(const SkColor4f colors[],const SkScalar pos[],int count,SkTileMode tileMode)486 static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count,
487 SkTileMode tileMode) {
488 return nullptr != colors && count >= 1 && (unsigned)tileMode < kSkTileModeCount;
489 }
490
desc_init(SkGradientShaderBase::Descriptor * desc,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)491 static void desc_init(SkGradientShaderBase::Descriptor* desc,
492 const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace,
493 const SkScalar pos[], int colorCount,
494 SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) {
495 SkASSERT(colorCount > 1);
496
497 desc->fColors = colors;
498 desc->fColorSpace = std::move(colorSpace);
499 desc->fPos = pos;
500 desc->fCount = colorCount;
501 desc->fTileMode = mode;
502 desc->fGradFlags = flags;
503 desc->fLocalMatrix = localMatrix;
504 }
505
average_gradient_color(const SkColor4f colors[],const SkScalar pos[],int colorCount)506 static SkColor4f average_gradient_color(const SkColor4f colors[], const SkScalar pos[],
507 int colorCount) {
508 // The gradient is a piecewise linear interpolation between colors. For a given interval,
509 // the integral between the two endpoints is 0.5 * (ci + cj) * (pj - pi), which provides that
510 // intervals average color. The overall average color is thus the sum of each piece. The thing
511 // to keep in mind is that the provided gradient definition may implicitly use p=0 and p=1.
512 Sk4f blend(0.0);
513 // Bake 1/(colorCount - 1) uniform stop difference into this scale factor
514 SkScalar wScale = pos ? 0.5 : 0.5 / (colorCount - 1);
515 for (int i = 0; i < colorCount - 1; ++i) {
516 // Calculate the average color for the interval between pos(i) and pos(i+1)
517 Sk4f c0 = Sk4f::Load(&colors[i]);
518 Sk4f c1 = Sk4f::Load(&colors[i + 1]);
519 // when pos == null, there are colorCount uniformly distributed stops, going from 0 to 1,
520 // so pos[i + 1] - pos[i] = 1/(colorCount-1)
521 SkScalar w = pos ? (pos[i + 1] - pos[i]) : SK_Scalar1;
522 blend += wScale * w * (c1 + c0);
523 }
524
525 // Now account for any implicit intervals at the start or end of the stop definitions
526 if (pos) {
527 if (pos[0] > 0.0) {
528 // The first color is fixed between p = 0 to pos[0], so 0.5 * (ci + cj) * (pj - pi)
529 // becomes 0.5 * (c + c) * (pj - 0) = c * pj
530 Sk4f c = Sk4f::Load(&colors[0]);
531 blend += pos[0] * c;
532 }
533 if (pos[colorCount - 1] < SK_Scalar1) {
534 // The last color is fixed between pos[n-1] to p = 1, so 0.5 * (ci + cj) * (pj - pi)
535 // becomes 0.5 * (c + c) * (1 - pi) = c * (1 - pi)
536 Sk4f c = Sk4f::Load(&colors[colorCount - 1]);
537 blend += (1 - pos[colorCount - 1]) * c;
538 }
539 }
540
541 SkColor4f avg;
542 blend.store(&avg);
543 return avg;
544 }
545
546 // The default SkScalarNearlyZero threshold of .0024 is too big and causes regressions for svg
547 // gradients defined in the wild.
548 static constexpr SkScalar kDegenerateThreshold = SK_Scalar1 / (1 << 15);
549
550 // Except for special circumstances of clamped gradients, every gradient shape--when degenerate--
551 // can be mapped to the same fallbacks. The specific shape factories must account for special
552 // clamped conditions separately, this will always return the last color for clamped gradients.
make_degenerate_gradient(const SkColor4f colors[],const SkScalar pos[],int colorCount,sk_sp<SkColorSpace> colorSpace,SkTileMode mode)553 static sk_sp<SkShader> make_degenerate_gradient(const SkColor4f colors[], const SkScalar pos[],
554 int colorCount, sk_sp<SkColorSpace> colorSpace,
555 SkTileMode mode) {
556 switch(mode) {
557 case SkTileMode::kDecal:
558 // normally this would reject the area outside of the interpolation region, so since
559 // inside region is empty when the radii are equal, the entire draw region is empty
560 return SkShaders::Empty();
561 case SkTileMode::kRepeat:
562 case SkTileMode::kMirror:
563 // repeat and mirror are treated the same: the border colors are never visible,
564 // but approximate the final color as infinite repetitions of the colors, so
565 // it can be represented as the average color of the gradient.
566 return SkShaders::Color(
567 average_gradient_color(colors, pos, colorCount), std::move(colorSpace));
568 case SkTileMode::kClamp:
569 // Depending on how the gradient shape degenerates, there may be a more specialized
570 // fallback representation for the factories to use, but this is a reasonable default.
571 return SkShaders::Color(colors[colorCount - 1], std::move(colorSpace));
572 }
573 SkDEBUGFAIL("Should not be reached");
574 return nullptr;
575 }
576
577 // assumes colors is SkColor4f* and pos is SkScalar*
578 #define EXPAND_1_COLOR(count) \
579 SkColor4f tmp[2]; \
580 do { \
581 if (1 == count) { \
582 tmp[0] = tmp[1] = colors[0]; \
583 colors = tmp; \
584 pos = nullptr; \
585 count = 2; \
586 } \
587 } while (0)
588
589 struct ColorStopOptimizer {
ColorStopOptimizerColorStopOptimizer590 ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, int count, SkTileMode mode)
591 : fColors(colors)
592 , fPos(pos)
593 , fCount(count) {
594
595 if (!pos || count != 3) {
596 return;
597 }
598
599 if (SkScalarNearlyEqual(pos[0], 0.0f) &&
600 SkScalarNearlyEqual(pos[1], 0.0f) &&
601 SkScalarNearlyEqual(pos[2], 1.0f)) {
602
603 if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode ||
604 colors[0] == colors[1]) {
605
606 // Ignore the leftmost color/pos.
607 fColors += 1;
608 fPos += 1;
609 fCount = 2;
610 }
611 } else if (SkScalarNearlyEqual(pos[0], 0.0f) &&
612 SkScalarNearlyEqual(pos[1], 1.0f) &&
613 SkScalarNearlyEqual(pos[2], 1.0f)) {
614
615 if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode ||
616 colors[1] == colors[2]) {
617
618 // Ignore the rightmost color/pos.
619 fCount = 2;
620 }
621 }
622 }
623
624 const SkColor4f* fColors;
625 const SkScalar* fPos;
626 int fCount;
627 };
628
629 struct ColorConverter {
ColorConverterColorConverter630 ColorConverter(const SkColor* colors, int count) {
631 const float ONE_OVER_255 = 1.f / 255;
632 for (int i = 0; i < count; ++i) {
633 fColors4f.push_back({
634 SkColorGetR(colors[i]) * ONE_OVER_255,
635 SkColorGetG(colors[i]) * ONE_OVER_255,
636 SkColorGetB(colors[i]) * ONE_OVER_255,
637 SkColorGetA(colors[i]) * ONE_OVER_255 });
638 }
639 }
640
641 SkSTArray<2, SkColor4f, true> fColors4f;
642 };
643
MakeLinear(const SkPoint pts[2],const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)644 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
645 const SkColor colors[],
646 const SkScalar pos[], int colorCount,
647 SkTileMode mode,
648 uint32_t flags,
649 const SkMatrix* localMatrix) {
650 ColorConverter converter(colors, colorCount);
651 return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags,
652 localMatrix);
653 }
654
MakeLinear(const SkPoint pts[2],const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)655 sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
656 const SkColor4f colors[],
657 sk_sp<SkColorSpace> colorSpace,
658 const SkScalar pos[], int colorCount,
659 SkTileMode mode,
660 uint32_t flags,
661 const SkMatrix* localMatrix) {
662 if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) {
663 return nullptr;
664 }
665 if (!valid_grad(colors, pos, colorCount, mode)) {
666 return nullptr;
667 }
668 if (1 == colorCount) {
669 return SkShaders::Color(colors[0], std::move(colorSpace));
670 }
671 if (localMatrix && !localMatrix->invert(nullptr)) {
672 return nullptr;
673 }
674
675 if (SkScalarNearlyZero((pts[1] - pts[0]).length(), kDegenerateThreshold)) {
676 // Degenerate gradient, the only tricky complication is when in clamp mode, the limit of
677 // the gradient approaches two half planes of solid color (first and last). However, they
678 // are divided by the line perpendicular to the start and end point, which becomes undefined
679 // once start and end are exactly the same, so just use the end color for a stable solution.
680 return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
681 }
682
683 ColorStopOptimizer opt(colors, pos, colorCount, mode);
684
685 SkGradientShaderBase::Descriptor desc;
686 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
687 localMatrix);
688 return sk_make_sp<SkLinearGradient>(pts, desc);
689 }
690
MakeRadial(const SkPoint & center,SkScalar radius,const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)691 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
692 const SkColor colors[],
693 const SkScalar pos[], int colorCount,
694 SkTileMode mode,
695 uint32_t flags,
696 const SkMatrix* localMatrix) {
697 ColorConverter converter(colors, colorCount);
698 return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode,
699 flags, localMatrix);
700 }
701
MakeRadial(const SkPoint & center,SkScalar radius,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)702 sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
703 const SkColor4f colors[],
704 sk_sp<SkColorSpace> colorSpace,
705 const SkScalar pos[], int colorCount,
706 SkTileMode mode,
707 uint32_t flags,
708 const SkMatrix* localMatrix) {
709 if (radius < 0) {
710 return nullptr;
711 }
712 if (!valid_grad(colors, pos, colorCount, mode)) {
713 return nullptr;
714 }
715 if (1 == colorCount) {
716 return SkShaders::Color(colors[0], std::move(colorSpace));
717 }
718 if (localMatrix && !localMatrix->invert(nullptr)) {
719 return nullptr;
720 }
721
722 if (SkScalarNearlyZero(radius, kDegenerateThreshold)) {
723 // Degenerate gradient optimization, and no special logic needed for clamped radial gradient
724 return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
725 }
726
727 ColorStopOptimizer opt(colors, pos, colorCount, mode);
728
729 SkGradientShaderBase::Descriptor desc;
730 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
731 localMatrix);
732 return sk_make_sp<SkRadialGradient>(center, radius, desc);
733 }
734
MakeTwoPointConical(const SkPoint & start,SkScalar startRadius,const SkPoint & end,SkScalar endRadius,const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)735 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
736 SkScalar startRadius,
737 const SkPoint& end,
738 SkScalar endRadius,
739 const SkColor colors[],
740 const SkScalar pos[],
741 int colorCount,
742 SkTileMode mode,
743 uint32_t flags,
744 const SkMatrix* localMatrix) {
745 ColorConverter converter(colors, colorCount);
746 return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(),
747 nullptr, pos, colorCount, mode, flags, localMatrix);
748 }
749
MakeTwoPointConical(const SkPoint & start,SkScalar startRadius,const SkPoint & end,SkScalar endRadius,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,uint32_t flags,const SkMatrix * localMatrix)750 sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
751 SkScalar startRadius,
752 const SkPoint& end,
753 SkScalar endRadius,
754 const SkColor4f colors[],
755 sk_sp<SkColorSpace> colorSpace,
756 const SkScalar pos[],
757 int colorCount,
758 SkTileMode mode,
759 uint32_t flags,
760 const SkMatrix* localMatrix) {
761 if (startRadius < 0 || endRadius < 0) {
762 return nullptr;
763 }
764 if (!valid_grad(colors, pos, colorCount, mode)) {
765 return nullptr;
766 }
767 if (SkScalarNearlyZero((start - end).length(), kDegenerateThreshold)) {
768 // If the center positions are the same, then the gradient is the radial variant of a 2 pt
769 // conical gradient, an actual radial gradient (startRadius == 0), or it is fully degenerate
770 // (startRadius == endRadius).
771 if (SkScalarNearlyEqual(startRadius, endRadius, kDegenerateThreshold)) {
772 // Degenerate case, where the interpolation region area approaches zero. The proper
773 // behavior depends on the tile mode, which is consistent with the default degenerate
774 // gradient behavior, except when mode = clamp and the radii > 0.
775 if (mode == SkTileMode::kClamp && endRadius > kDegenerateThreshold) {
776 // The interpolation region becomes an infinitely thin ring at the radius, so the
777 // final gradient will be the first color repeated from p=0 to 1, and then a hard
778 // stop switching to the last color at p=1.
779 static constexpr SkScalar circlePos[3] = {0, 1, 1};
780 SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]};
781 return MakeRadial(start, endRadius, reColors, std::move(colorSpace),
782 circlePos, 3, mode, flags, localMatrix);
783 } else {
784 // Otherwise use the default degenerate case
785 return make_degenerate_gradient(
786 colors, pos, colorCount, std::move(colorSpace), mode);
787 }
788 } else if (SkScalarNearlyZero(startRadius, kDegenerateThreshold)) {
789 // We can treat this gradient as radial, which is faster. If we got here, we know
790 // that endRadius is not equal to 0, so this produces a meaningful gradient
791 return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount,
792 mode, flags, localMatrix);
793 }
794 // Else it's the 2pt conical radial variant with no degenerate radii, so fall through to the
795 // regular 2pt constructor.
796 }
797
798 if (localMatrix && !localMatrix->invert(nullptr)) {
799 return nullptr;
800 }
801 EXPAND_1_COLOR(colorCount);
802
803 ColorStopOptimizer opt(colors, pos, colorCount, mode);
804
805 SkGradientShaderBase::Descriptor desc;
806 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
807 localMatrix);
808 return SkTwoPointConicalGradient::Create(start, startRadius, end, endRadius, desc);
809 }
810
MakeSweep(SkScalar cx,SkScalar cy,const SkColor colors[],const SkScalar pos[],int colorCount,SkTileMode mode,SkScalar startAngle,SkScalar endAngle,uint32_t flags,const SkMatrix * localMatrix)811 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
812 const SkColor colors[],
813 const SkScalar pos[],
814 int colorCount,
815 SkTileMode mode,
816 SkScalar startAngle,
817 SkScalar endAngle,
818 uint32_t flags,
819 const SkMatrix* localMatrix) {
820 ColorConverter converter(colors, colorCount);
821 return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount,
822 mode, startAngle, endAngle, flags, localMatrix);
823 }
824
MakeSweep(SkScalar cx,SkScalar cy,const SkColor4f colors[],sk_sp<SkColorSpace> colorSpace,const SkScalar pos[],int colorCount,SkTileMode mode,SkScalar startAngle,SkScalar endAngle,uint32_t flags,const SkMatrix * localMatrix)825 sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
826 const SkColor4f colors[],
827 sk_sp<SkColorSpace> colorSpace,
828 const SkScalar pos[],
829 int colorCount,
830 SkTileMode mode,
831 SkScalar startAngle,
832 SkScalar endAngle,
833 uint32_t flags,
834 const SkMatrix* localMatrix) {
835 if (!valid_grad(colors, pos, colorCount, mode)) {
836 return nullptr;
837 }
838 if (1 == colorCount) {
839 return SkShaders::Color(colors[0], std::move(colorSpace));
840 }
841 if (!SkScalarIsFinite(startAngle) || !SkScalarIsFinite(endAngle) || startAngle > endAngle) {
842 return nullptr;
843 }
844 if (localMatrix && !localMatrix->invert(nullptr)) {
845 return nullptr;
846 }
847
848 if (SkScalarNearlyEqual(startAngle, endAngle, kDegenerateThreshold)) {
849 // Degenerate gradient, which should follow default degenerate behavior unless it is
850 // clamped and the angle is greater than 0.
851 if (mode == SkTileMode::kClamp && endAngle > kDegenerateThreshold) {
852 // In this case, the first color is repeated from 0 to the angle, then a hardstop
853 // switches to the last color (all other colors are compressed to the infinitely thin
854 // interpolation region).
855 static constexpr SkScalar clampPos[3] = {0, 1, 1};
856 SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]};
857 return MakeSweep(cx, cy, reColors, std::move(colorSpace), clampPos, 3, mode, 0,
858 endAngle, flags, localMatrix);
859 } else {
860 return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
861 }
862 }
863
864 if (startAngle <= 0 && endAngle >= 360) {
865 // If the t-range includes [0,1], then we can always use clamping (presumably faster).
866 mode = SkTileMode::kClamp;
867 }
868
869 ColorStopOptimizer opt(colors, pos, colorCount, mode);
870
871 SkGradientShaderBase::Descriptor desc;
872 desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
873 localMatrix);
874
875 const SkScalar t0 = startAngle / 360,
876 t1 = endAngle / 360;
877
878 return sk_make_sp<SkSweepGradient>(SkPoint::Make(cx, cy), t0, t1, desc);
879 }
880
RegisterFlattenables()881 void SkGradientShader::RegisterFlattenables() {
882 SK_REGISTER_FLATTENABLE(SkLinearGradient);
883 SK_REGISTER_FLATTENABLE(SkRadialGradient);
884 SK_REGISTER_FLATTENABLE(SkSweepGradient);
885 SK_REGISTER_FLATTENABLE(SkTwoPointConicalGradient);
886 }
887