1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/SkSLGLSLCodeGenerator.h"
9
10 #include "src/sksl/SkSLCompiler.h"
11 #include "src/sksl/ir/SkSLExpressionStatement.h"
12 #include "src/sksl/ir/SkSLExtension.h"
13 #include "src/sksl/ir/SkSLIndexExpression.h"
14 #include "src/sksl/ir/SkSLModifiersDeclaration.h"
15 #include "src/sksl/ir/SkSLNop.h"
16 #include "src/sksl/ir/SkSLVariableReference.h"
17
18 #ifndef SKSL_STANDALONE
19 #include "include/private/SkOnce.h"
20 #endif
21
22 namespace SkSL {
23
write(const char * s)24 void GLSLCodeGenerator::write(const char* s) {
25 if (s[0] == 0) {
26 return;
27 }
28 if (fAtLineStart) {
29 for (int i = 0; i < fIndentation; i++) {
30 fOut->writeText(" ");
31 }
32 }
33 fOut->writeText(s);
34 fAtLineStart = false;
35 }
36
writeLine(const char * s)37 void GLSLCodeGenerator::writeLine(const char* s) {
38 this->write(s);
39 fOut->writeText(fLineEnding);
40 fAtLineStart = true;
41 }
42
write(const String & s)43 void GLSLCodeGenerator::write(const String& s) {
44 this->write(s.c_str());
45 }
46
write(StringFragment s)47 void GLSLCodeGenerator::write(StringFragment s) {
48 if (!s.fLength) {
49 return;
50 }
51 if (fAtLineStart) {
52 for (int i = 0; i < fIndentation; i++) {
53 fOut->writeText(" ");
54 }
55 }
56 fOut->write(s.fChars, s.fLength);
57 fAtLineStart = false;
58 }
59
writeLine(const String & s)60 void GLSLCodeGenerator::writeLine(const String& s) {
61 this->writeLine(s.c_str());
62 }
63
writeLine()64 void GLSLCodeGenerator::writeLine() {
65 this->writeLine("");
66 }
67
writeExtension(const String & name)68 void GLSLCodeGenerator::writeExtension(const String& name) {
69 this->writeExtension(name, true);
70 }
71
writeExtension(const String & name,bool require)72 void GLSLCodeGenerator::writeExtension(const String& name, bool require) {
73 fExtensions.writeText("#extension ");
74 fExtensions.write(name.c_str(), name.length());
75 fExtensions.writeText(require ? " : require\n" : " : enable\n");
76 }
77
usesPrecisionModifiers() const78 bool GLSLCodeGenerator::usesPrecisionModifiers() const {
79 return fProgram.fSettings.fCaps->usesPrecisionModifiers();
80 }
81
getTypeName(const Type & type)82 String GLSLCodeGenerator::getTypeName(const Type& type) {
83 switch (type.kind()) {
84 case Type::kVector_Kind: {
85 Type component = type.componentType();
86 String result;
87 if (component == *fContext.fFloat_Type || component == *fContext.fHalf_Type) {
88 result = "vec";
89 }
90 else if (component == *fContext.fDouble_Type) {
91 result = "dvec";
92 }
93 else if (component.isSigned()) {
94 result = "ivec";
95 }
96 else if (component.isUnsigned()) {
97 result = "uvec";
98 }
99 else if (component == *fContext.fBool_Type) {
100 result = "bvec";
101 }
102 else {
103 ABORT("unsupported vector type");
104 }
105 result += to_string(type.columns());
106 return result;
107 }
108 case Type::kMatrix_Kind: {
109 String result;
110 Type component = type.componentType();
111 if (component == *fContext.fFloat_Type || component == *fContext.fHalf_Type) {
112 result = "mat";
113 }
114 else if (component == *fContext.fDouble_Type) {
115 result = "dmat";
116 }
117 else {
118 ABORT("unsupported matrix type");
119 }
120 result += to_string(type.columns());
121 if (type.columns() != type.rows()) {
122 result += "x";
123 result += to_string(type.rows());
124 }
125 return result;
126 }
127 case Type::kArray_Kind: {
128 String result = this->getTypeName(type.componentType()) + "[";
129 if (type.columns() != -1) {
130 result += to_string(type.columns());
131 }
132 result += "]";
133 return result;
134 }
135 case Type::kScalar_Kind: {
136 if (type == *fContext.fHalf_Type) {
137 return "float";
138 }
139 else if (type == *fContext.fShort_Type) {
140 return "int";
141 }
142 else if (type == *fContext.fUShort_Type) {
143 return "uint";
144 }
145 else if (type == *fContext.fByte_Type) {
146 return "int";
147 }
148 else if (type == *fContext.fUByte_Type) {
149 return "uint";
150 }
151 else {
152 return type.name();
153 }
154 break;
155 }
156 default:
157 return type.name();
158 }
159 }
160
writeType(const Type & type)161 void GLSLCodeGenerator::writeType(const Type& type) {
162 if (type.kind() == Type::kStruct_Kind) {
163 for (const Type* search : fWrittenStructs) {
164 if (*search == type) {
165 // already written
166 this->write(type.fName);
167 return;
168 }
169 }
170 fWrittenStructs.push_back(&type);
171 this->write("struct ");
172 this->write(type.fName);
173 this->writeLine(" {");
174 fIndentation++;
175 for (const auto& f : type.fields()) {
176 this->writeModifiers(f.fModifiers, false);
177 this->writeTypePrecision(*f.fType);
178 // sizes (which must be static in structs) are part of the type name here
179 this->writeType(*f.fType);
180 this->write(" ");
181 this->write(f.fName);
182 this->writeLine(";");
183 }
184 fIndentation--;
185 this->write("}");
186 } else {
187 this->write(this->getTypeName(type));
188 }
189 }
190
writeExpression(const Expression & expr,Precedence parentPrecedence)191 void GLSLCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) {
192 switch (expr.fKind) {
193 case Expression::kBinary_Kind:
194 this->writeBinaryExpression((BinaryExpression&) expr, parentPrecedence);
195 break;
196 case Expression::kBoolLiteral_Kind:
197 this->writeBoolLiteral((BoolLiteral&) expr);
198 break;
199 case Expression::kConstructor_Kind:
200 this->writeConstructor((Constructor&) expr, parentPrecedence);
201 break;
202 case Expression::kIntLiteral_Kind:
203 this->writeIntLiteral((IntLiteral&) expr);
204 break;
205 case Expression::kFieldAccess_Kind:
206 this->writeFieldAccess(((FieldAccess&) expr));
207 break;
208 case Expression::kFloatLiteral_Kind:
209 this->writeFloatLiteral(((FloatLiteral&) expr));
210 break;
211 case Expression::kFunctionCall_Kind:
212 this->writeFunctionCall((FunctionCall&) expr);
213 break;
214 case Expression::kPrefix_Kind:
215 this->writePrefixExpression((PrefixExpression&) expr, parentPrecedence);
216 break;
217 case Expression::kPostfix_Kind:
218 this->writePostfixExpression((PostfixExpression&) expr, parentPrecedence);
219 break;
220 case Expression::kSetting_Kind:
221 this->writeSetting((Setting&) expr);
222 break;
223 case Expression::kSwizzle_Kind:
224 this->writeSwizzle((Swizzle&) expr);
225 break;
226 case Expression::kVariableReference_Kind:
227 this->writeVariableReference((VariableReference&) expr);
228 break;
229 case Expression::kTernary_Kind:
230 this->writeTernaryExpression((TernaryExpression&) expr, parentPrecedence);
231 break;
232 case Expression::kIndex_Kind:
233 this->writeIndexExpression((IndexExpression&) expr);
234 break;
235 default:
236 ABORT("unsupported expression: %s", expr.description().c_str());
237 }
238 }
239
is_abs(Expression & expr)240 static bool is_abs(Expression& expr) {
241 if (expr.fKind != Expression::kFunctionCall_Kind) {
242 return false;
243 }
244 return ((FunctionCall&) expr).fFunction.fName == "abs";
245 }
246
247 // turns min(abs(x), y) into ((tmpVar1 = abs(x)) < (tmpVar2 = y) ? tmpVar1 : tmpVar2) to avoid a
248 // Tegra3 compiler bug.
writeMinAbsHack(Expression & absExpr,Expression & otherExpr)249 void GLSLCodeGenerator::writeMinAbsHack(Expression& absExpr, Expression& otherExpr) {
250 SkASSERT(!fProgram.fSettings.fCaps->canUseMinAndAbsTogether());
251 String tmpVar1 = "minAbsHackVar" + to_string(fVarCount++);
252 String tmpVar2 = "minAbsHackVar" + to_string(fVarCount++);
253 this->fFunctionHeader += String(" ") + this->getTypePrecision(absExpr.fType) +
254 this->getTypeName(absExpr.fType) + " " + tmpVar1 + ";\n";
255 this->fFunctionHeader += String(" ") + this->getTypePrecision(otherExpr.fType) +
256 this->getTypeName(otherExpr.fType) + " " + tmpVar2 + ";\n";
257 this->write("((" + tmpVar1 + " = ");
258 this->writeExpression(absExpr, kTopLevel_Precedence);
259 this->write(") < (" + tmpVar2 + " = ");
260 this->writeExpression(otherExpr, kAssignment_Precedence);
261 this->write(") ? " + tmpVar1 + " : " + tmpVar2 + ")");
262 }
263
writeInverseSqrtHack(const Expression & x)264 void GLSLCodeGenerator::writeInverseSqrtHack(const Expression& x) {
265 this->write("(1.0 / sqrt(");
266 this->writeExpression(x, kTopLevel_Precedence);
267 this->write("))");
268 }
269
writeDeterminantHack(const Expression & mat)270 void GLSLCodeGenerator::writeDeterminantHack(const Expression& mat) {
271 String name;
272 if (mat.fType == *fContext.fFloat2x2_Type || mat.fType == *fContext.fHalf2x2_Type) {
273 name = "_determinant2";
274 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
275 fWrittenIntrinsics.insert(name);
276 fExtraFunctions.writeText((
277 "float " + name + "(mat2 m) {"
278 " return m[0][0] * m[1][1] - m[0][1] * m[1][0];"
279 "}"
280 ).c_str());
281 }
282 }
283 else if (mat.fType == *fContext.fFloat3x3_Type || mat.fType == *fContext.fHalf3x3_Type) {
284 name = "_determinant3";
285 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
286 fWrittenIntrinsics.insert(name);
287 fExtraFunctions.writeText((
288 "float " + name + "(mat3 m) {"
289 " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];"
290 " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];"
291 " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];"
292 " float b01 = a22 * a11 - a12 * a21;"
293 " float b11 = -a22 * a10 + a12 * a20;"
294 " float b21 = a21 * a10 - a11 * a20;"
295 " return a00 * b01 + a01 * b11 + a02 * b21;"
296 "}"
297 ).c_str());
298 }
299 }
300 else if (mat.fType == *fContext.fFloat4x4_Type || mat.fType == *fContext.fHalf4x4_Type) {
301 name = "_determinant3";
302 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
303 fWrittenIntrinsics.insert(name);
304 fExtraFunctions.writeText((
305 "mat4 " + name + "(mat4 m) {"
306 " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];"
307 " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];"
308 " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];"
309 " float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];"
310 " float b00 = a00 * a11 - a01 * a10;"
311 " float b01 = a00 * a12 - a02 * a10;"
312 " float b02 = a00 * a13 - a03 * a10;"
313 " float b03 = a01 * a12 - a02 * a11;"
314 " float b04 = a01 * a13 - a03 * a11;"
315 " float b05 = a02 * a13 - a03 * a12;"
316 " float b06 = a20 * a31 - a21 * a30;"
317 " float b07 = a20 * a32 - a22 * a30;"
318 " float b08 = a20 * a33 - a23 * a30;"
319 " float b09 = a21 * a32 - a22 * a31;"
320 " float b10 = a21 * a33 - a23 * a31;"
321 " float b11 = a22 * a33 - a23 * a32;"
322 " return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;"
323 "}"
324 ).c_str());
325 }
326 }
327 else {
328 SkASSERT(false);
329 }
330 this->write(name + "(");
331 this->writeExpression(mat, kTopLevel_Precedence);
332 this->write(")");
333 }
334
writeInverseHack(const Expression & mat)335 void GLSLCodeGenerator::writeInverseHack(const Expression& mat) {
336 String name;
337 if (mat.fType == *fContext.fFloat2x2_Type || mat.fType == *fContext.fHalf2x2_Type) {
338 name = "_inverse2";
339 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
340 fWrittenIntrinsics.insert(name);
341 fExtraFunctions.writeText((
342 "mat2 " + name + "(mat2 m) {"
343 " return mat2(m[1][1], -m[0][1], -m[1][0], m[0][0]) / "
344 "(m[0][0] * m[1][1] - m[0][1] * m[1][0]);"
345 "}"
346 ).c_str());
347 }
348 }
349 else if (mat.fType == *fContext.fFloat3x3_Type || mat.fType == *fContext.fHalf3x3_Type) {
350 name = "_inverse3";
351 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
352 fWrittenIntrinsics.insert(name);
353 fExtraFunctions.writeText((
354 "mat3 " + name + "(mat3 m) {"
355 " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];"
356 " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];"
357 " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];"
358 " float b01 = a22 * a11 - a12 * a21;"
359 " float b11 = -a22 * a10 + a12 * a20;"
360 " float b21 = a21 * a10 - a11 * a20;"
361 " float det = a00 * b01 + a01 * b11 + a02 * b21;"
362 " return mat3(b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11),"
363 " b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10),"
364 " b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) / det;"
365 "}"
366 ).c_str());
367 }
368 }
369 else if (mat.fType == *fContext.fFloat4x4_Type || mat.fType == *fContext.fHalf4x4_Type) {
370 name = "_inverse4";
371 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
372 fWrittenIntrinsics.insert(name);
373 fExtraFunctions.writeText((
374 "mat4 " + name + "(mat4 m) {"
375 " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];"
376 " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];"
377 " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];"
378 " float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];"
379 " float b00 = a00 * a11 - a01 * a10;"
380 " float b01 = a00 * a12 - a02 * a10;"
381 " float b02 = a00 * a13 - a03 * a10;"
382 " float b03 = a01 * a12 - a02 * a11;"
383 " float b04 = a01 * a13 - a03 * a11;"
384 " float b05 = a02 * a13 - a03 * a12;"
385 " float b06 = a20 * a31 - a21 * a30;"
386 " float b07 = a20 * a32 - a22 * a30;"
387 " float b08 = a20 * a33 - a23 * a30;"
388 " float b09 = a21 * a32 - a22 * a31;"
389 " float b10 = a21 * a33 - a23 * a31;"
390 " float b11 = a22 * a33 - a23 * a32;"
391 " float det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - "
392 " b04 * b07 + b05 * b06;"
393 " return mat4("
394 " a11 * b11 - a12 * b10 + a13 * b09,"
395 " a02 * b10 - a01 * b11 - a03 * b09,"
396 " a31 * b05 - a32 * b04 + a33 * b03,"
397 " a22 * b04 - a21 * b05 - a23 * b03,"
398 " a12 * b08 - a10 * b11 - a13 * b07,"
399 " a00 * b11 - a02 * b08 + a03 * b07,"
400 " a32 * b02 - a30 * b05 - a33 * b01,"
401 " a20 * b05 - a22 * b02 + a23 * b01,"
402 " a10 * b10 - a11 * b08 + a13 * b06,"
403 " a01 * b08 - a00 * b10 - a03 * b06,"
404 " a30 * b04 - a31 * b02 + a33 * b00,"
405 " a21 * b02 - a20 * b04 - a23 * b00,"
406 " a11 * b07 - a10 * b09 - a12 * b06,"
407 " a00 * b09 - a01 * b07 + a02 * b06,"
408 " a31 * b01 - a30 * b03 - a32 * b00,"
409 " a20 * b03 - a21 * b01 + a22 * b00) / det;"
410 "}"
411 ).c_str());
412 }
413 }
414 else {
415 SkASSERT(false);
416 }
417 this->write(name + "(");
418 this->writeExpression(mat, kTopLevel_Precedence);
419 this->write(")");
420 }
421
writeTransposeHack(const Expression & mat)422 void GLSLCodeGenerator::writeTransposeHack(const Expression& mat) {
423 String name = "transpose" + to_string(mat.fType.columns()) + to_string(mat.fType.rows());
424 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
425 fWrittenIntrinsics.insert(name);
426 String type = this->getTypeName(mat.fType);
427 const Type& base = mat.fType.componentType();
428 String transposed = this->getTypeName(base.toCompound(fContext,
429 mat.fType.rows(),
430 mat.fType.columns()));
431 fExtraFunctions.writeText((transposed + " " + name + "(" + type + " m) {\nreturn " +
432 transposed + "(").c_str());
433 const char* separator = "";
434 for (int row = 0; row < mat.fType.rows(); ++row) {
435 for (int column = 0; column < mat.fType.columns(); ++column) {
436 fExtraFunctions.writeText(separator);
437 fExtraFunctions.writeText(("m[" + to_string(column) + "][" + to_string(row) +
438 "]").c_str());
439 separator = ", ";
440 }
441 }
442 fExtraFunctions.writeText("); }");
443 }
444 this->write(name + "(");
445 this->writeExpression(mat, kTopLevel_Precedence);
446 this->write(")");
447 }
448
449 std::unordered_map<StringFragment, GLSLCodeGenerator::FunctionClass>*
450 GLSLCodeGenerator::fFunctionClasses = nullptr;
451
writeFunctionCall(const FunctionCall & c)452 void GLSLCodeGenerator::writeFunctionCall(const FunctionCall& c) {
453 #ifdef SKSL_STANDALONE
454 if (!fFunctionClasses) {
455 #else
456 static SkOnce once;
457 once([] {
458 #endif
459 fFunctionClasses = new std::unordered_map<StringFragment, FunctionClass>();
460 (*fFunctionClasses)["abs"] = FunctionClass::kAbs;
461 (*fFunctionClasses)["atan"] = FunctionClass::kAtan;
462 (*fFunctionClasses)["determinant"] = FunctionClass::kDeterminant;
463 (*fFunctionClasses)["dFdx"] = FunctionClass::kDFdx;
464 (*fFunctionClasses)["dFdy"] = FunctionClass::kDFdy;
465 (*fFunctionClasses)["fwidth"] = FunctionClass::kFwidth;
466 (*fFunctionClasses)["fma"] = FunctionClass::kFMA;
467 (*fFunctionClasses)["fract"] = FunctionClass::kFract;
468 (*fFunctionClasses)["inverse"] = FunctionClass::kInverse;
469 (*fFunctionClasses)["inverseSqrt"] = FunctionClass::kInverseSqrt;
470 (*fFunctionClasses)["min"] = FunctionClass::kMin;
471 (*fFunctionClasses)["pow"] = FunctionClass::kPow;
472 (*fFunctionClasses)["saturate"] = FunctionClass::kSaturate;
473 (*fFunctionClasses)["sample"] = FunctionClass::kTexture;
474 (*fFunctionClasses)["transpose"] = FunctionClass::kTranspose;
475 }
476 #ifndef SKSL_STANDALONE
477 );
478 #endif
479 const auto found = c.fFunction.fBuiltin ? fFunctionClasses->find(c.fFunction.fName) :
480 fFunctionClasses->end();
481 bool isTextureFunctionWithBias = false;
482 bool nameWritten = false;
483 if (found != fFunctionClasses->end()) {
484 switch (found->second) {
485 case FunctionClass::kAbs: {
486 if (!fProgram.fSettings.fCaps->emulateAbsIntFunction())
487 break;
488 SkASSERT(c.fArguments.size() == 1);
489 if (c.fArguments[0]->fType != *fContext.fInt_Type)
490 break;
491 // abs(int) on Intel OSX is incorrect, so emulate it:
492 String name = "_absemulation";
493 this->write(name);
494 nameWritten = true;
495 if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
496 fWrittenIntrinsics.insert(name);
497 fExtraFunctions.writeText((
498 "int " + name + "(int x) {\n"
499 " return x * sign(x);\n"
500 "}\n"
501 ).c_str());
502 }
503 break;
504 }
505 case FunctionClass::kAtan:
506 if (fProgram.fSettings.fCaps->mustForceNegatedAtanParamToFloat() &&
507 c.fArguments.size() == 2 &&
508 c.fArguments[1]->fKind == Expression::kPrefix_Kind) {
509 const PrefixExpression& p = (PrefixExpression&) *c.fArguments[1];
510 if (p.fOperator == Token::MINUS) {
511 this->write("atan(");
512 this->writeExpression(*c.fArguments[0], kSequence_Precedence);
513 this->write(", -1.0 * ");
514 this->writeExpression(*p.fOperand, kMultiplicative_Precedence);
515 this->write(")");
516 return;
517 }
518 }
519 break;
520 case FunctionClass::kDFdy:
521 if (fProgram.fSettings.fFlipY) {
522 // Flipping Y also negates the Y derivatives.
523 this->write("-dFdy");
524 nameWritten = true;
525 }
526 // fallthru
527 case FunctionClass::kDFdx:
528 case FunctionClass::kFwidth:
529 if (!fFoundDerivatives &&
530 fProgram.fSettings.fCaps->shaderDerivativeExtensionString()) {
531 SkASSERT(fProgram.fSettings.fCaps->shaderDerivativeSupport());
532 this->writeExtension(fProgram.fSettings.fCaps->shaderDerivativeExtensionString());
533 fFoundDerivatives = true;
534 }
535 break;
536 case FunctionClass::kDeterminant:
537 if (fProgram.fSettings.fCaps->generation() < k150_GrGLSLGeneration) {
538 SkASSERT(c.fArguments.size() == 1);
539 this->writeDeterminantHack(*c.fArguments[0]);
540 return;
541 }
542 break;
543 case FunctionClass::kFMA:
544 if (!fProgram.fSettings.fCaps->builtinFMASupport()) {
545 SkASSERT(c.fArguments.size() == 3);
546 this->write("((");
547 this->writeExpression(*c.fArguments[0], kSequence_Precedence);
548 this->write(") * (");
549 this->writeExpression(*c.fArguments[1], kSequence_Precedence);
550 this->write(") + (");
551 this->writeExpression(*c.fArguments[2], kSequence_Precedence);
552 this->write("))");
553 return;
554 }
555 break;
556 case FunctionClass::kFract:
557 if (!fProgram.fSettings.fCaps->canUseFractForNegativeValues()) {
558 SkASSERT(c.fArguments.size() == 1);
559 this->write("(0.5 - sign(");
560 this->writeExpression(*c.fArguments[0], kSequence_Precedence);
561 this->write(") * (0.5 - fract(abs(");
562 this->writeExpression(*c.fArguments[0], kSequence_Precedence);
563 this->write("))))");
564 return;
565 }
566 break;
567 case FunctionClass::kInverse:
568 if (fProgram.fSettings.fCaps->generation() < k140_GrGLSLGeneration) {
569 SkASSERT(c.fArguments.size() == 1);
570 this->writeInverseHack(*c.fArguments[0]);
571 return;
572 }
573 break;
574 case FunctionClass::kInverseSqrt:
575 if (fProgram.fSettings.fCaps->generation() < k130_GrGLSLGeneration) {
576 SkASSERT(c.fArguments.size() == 1);
577 this->writeInverseSqrtHack(*c.fArguments[0]);
578 return;
579 }
580 break;
581 case FunctionClass::kMin:
582 if (!fProgram.fSettings.fCaps->canUseMinAndAbsTogether()) {
583 SkASSERT(c.fArguments.size() == 2);
584 if (is_abs(*c.fArguments[0])) {
585 this->writeMinAbsHack(*c.fArguments[0], *c.fArguments[1]);
586 return;
587 }
588 if (is_abs(*c.fArguments[1])) {
589 // note that this violates the GLSL left-to-right evaluation semantics.
590 // I doubt it will ever end up mattering, but it's worth calling out.
591 this->writeMinAbsHack(*c.fArguments[1], *c.fArguments[0]);
592 return;
593 }
594 }
595 break;
596 case FunctionClass::kPow:
597 if (!fProgram.fSettings.fCaps->removePowWithConstantExponent()) {
598 break;
599 }
600 // pow(x, y) on some NVIDIA drivers causes crashes if y is a
601 // constant. It's hard to tell what constitutes "constant" here
602 // so just replace in all cases.
603
604 // Change pow(x, y) into exp2(y * log2(x))
605 this->write("exp2(");
606 this->writeExpression(*c.fArguments[1], kMultiplicative_Precedence);
607 this->write(" * log2(");
608 this->writeExpression(*c.fArguments[0], kSequence_Precedence);
609 this->write("))");
610 return;
611 case FunctionClass::kSaturate:
612 SkASSERT(c.fArguments.size() == 1);
613 this->write("clamp(");
614 this->writeExpression(*c.fArguments[0], kSequence_Precedence);
615 this->write(", 0.0, 1.0)");
616 return;
617 case FunctionClass::kTexture: {
618 const char* dim = "";
619 bool proj = false;
620 switch (c.fArguments[0]->fType.dimensions()) {
621 case SpvDim1D:
622 dim = "1D";
623 isTextureFunctionWithBias = true;
624 if (c.fArguments[1]->fType == *fContext.fFloat_Type) {
625 proj = false;
626 } else {
627 SkASSERT(c.fArguments[1]->fType == *fContext.fFloat2_Type);
628 proj = true;
629 }
630 break;
631 case SpvDim2D:
632 dim = "2D";
633 if (c.fArguments[0]->fType != *fContext.fSamplerExternalOES_Type) {
634 isTextureFunctionWithBias = true;
635 }
636 if (c.fArguments[1]->fType == *fContext.fFloat2_Type) {
637 proj = false;
638 } else {
639 SkASSERT(c.fArguments[1]->fType == *fContext.fFloat3_Type);
640 proj = true;
641 }
642 break;
643 case SpvDim3D:
644 dim = "3D";
645 isTextureFunctionWithBias = true;
646 if (c.fArguments[1]->fType == *fContext.fFloat3_Type) {
647 proj = false;
648 } else {
649 SkASSERT(c.fArguments[1]->fType == *fContext.fFloat4_Type);
650 proj = true;
651 }
652 break;
653 case SpvDimCube:
654 dim = "Cube";
655 isTextureFunctionWithBias = true;
656 proj = false;
657 break;
658 case SpvDimRect:
659 dim = "Rect";
660 proj = false;
661 break;
662 case SpvDimBuffer:
663 SkASSERT(false); // doesn't exist
664 dim = "Buffer";
665 proj = false;
666 break;
667 case SpvDimSubpassData:
668 SkASSERT(false); // doesn't exist
669 dim = "SubpassData";
670 proj = false;
671 break;
672 }
673 if (fTextureFunctionOverride != "") {
674 this->write(fTextureFunctionOverride.c_str());
675 } else {
676 this->write("texture");
677 if (fProgram.fSettings.fCaps->generation() < k130_GrGLSLGeneration) {
678 this->write(dim);
679 }
680 if (proj) {
681 this->write("Proj");
682 }
683 }
684 nameWritten = true;
685 break;
686 }
687 case FunctionClass::kTranspose:
688 if (fProgram.fSettings.fCaps->generation() < k130_GrGLSLGeneration) {
689 SkASSERT(c.fArguments.size() == 1);
690 this->writeTransposeHack(*c.fArguments[0]);
691 return;
692 }
693 break;
694 }
695 }
696 if (!nameWritten) {
697 this->write(c.fFunction.fName);
698 }
699 this->write("(");
700 const char* separator = "";
701 for (const auto& arg : c.fArguments) {
702 this->write(separator);
703 separator = ", ";
704 this->writeExpression(*arg, kSequence_Precedence);
705 }
706 if (fProgram.fSettings.fSharpenTextures && isTextureFunctionWithBias) {
707 this->write(", -0.5");
708 }
709 this->write(")");
710 }
711
712 void GLSLCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) {
713 if (c.fArguments.size() == 1 &&
714 (this->getTypeName(c.fType) == this->getTypeName(c.fArguments[0]->fType) ||
715 (c.fType.kind() == Type::kScalar_Kind &&
716 c.fArguments[0]->fType == *fContext.fFloatLiteral_Type))) {
717 // in cases like half(float), they're different types as far as SkSL is concerned but the
718 // same type as far as GLSL is concerned. We avoid a redundant float(float) by just writing
719 // out the inner expression here.
720 this->writeExpression(*c.fArguments[0], parentPrecedence);
721 return;
722 }
723 this->writeType(c.fType);
724 this->write("(");
725 const char* separator = "";
726 for (const auto& arg : c.fArguments) {
727 this->write(separator);
728 separator = ", ";
729 this->writeExpression(*arg, kSequence_Precedence);
730 }
731 this->write(")");
732 }
733
734 void GLSLCodeGenerator::writeFragCoord() {
735 if (!fProgram.fSettings.fCaps->canUseFragCoord()) {
736 if (!fSetupFragCoordWorkaround) {
737 const char* precision = usesPrecisionModifiers() ? "highp " : "";
738 fFunctionHeader += precision;
739 fFunctionHeader += " float sk_FragCoord_InvW = 1. / sk_FragCoord_Workaround.w;\n";
740 fFunctionHeader += precision;
741 fFunctionHeader += " vec4 sk_FragCoord_Resolved = "
742 "vec4(sk_FragCoord_Workaround.xyz * sk_FragCoord_InvW, sk_FragCoord_InvW);\n";
743 // Ensure that we get exact .5 values for x and y.
744 fFunctionHeader += " sk_FragCoord_Resolved.xy = floor(sk_FragCoord_Resolved.xy) + "
745 "vec2(.5);\n";
746 fSetupFragCoordWorkaround = true;
747 }
748 this->write("sk_FragCoord_Resolved");
749 return;
750 }
751
752 // We only declare "gl_FragCoord" when we're in the case where we want to use layout qualifiers
753 // to reverse y. Otherwise it isn't necessary and whether the "in" qualifier appears in the
754 // declaration varies in earlier GLSL specs. So it is simpler to omit it.
755 if (!fProgram.fSettings.fFlipY) {
756 this->write("gl_FragCoord");
757 } else if (const char* extension =
758 fProgram.fSettings.fCaps->fragCoordConventionsExtensionString()) {
759 if (!fSetupFragPositionGlobal) {
760 if (fProgram.fSettings.fCaps->generation() < k150_GrGLSLGeneration) {
761 this->writeExtension(extension);
762 }
763 fGlobals.writeText("layout(origin_upper_left) in vec4 gl_FragCoord;\n");
764 fSetupFragPositionGlobal = true;
765 }
766 this->write("gl_FragCoord");
767 } else {
768 if (!fSetupFragPositionLocal) {
769 fFunctionHeader += usesPrecisionModifiers() ? "highp " : "";
770 fFunctionHeader += " vec4 sk_FragCoord = vec4(gl_FragCoord.x, " SKSL_RTHEIGHT_NAME
771 " - gl_FragCoord.y, gl_FragCoord.z, gl_FragCoord.w);\n";
772 fSetupFragPositionLocal = true;
773 }
774 this->write("sk_FragCoord");
775 }
776 }
777
778 void GLSLCodeGenerator::writeVariableReference(const VariableReference& ref) {
779 switch (ref.fVariable.fModifiers.fLayout.fBuiltin) {
780 case SK_FRAGCOLOR_BUILTIN:
781 if (fProgram.fSettings.fCaps->mustDeclareFragmentShaderOutput()) {
782 this->write("sk_FragColor");
783 } else {
784 this->write("gl_FragColor");
785 }
786 break;
787 case SK_FRAGCOORD_BUILTIN:
788 this->writeFragCoord();
789 break;
790 case SK_WIDTH_BUILTIN:
791 this->write("u_skRTWidth");
792 break;
793 case SK_HEIGHT_BUILTIN:
794 this->write("u_skRTHeight");
795 break;
796 case SK_CLOCKWISE_BUILTIN:
797 this->write(fProgram.fSettings.fFlipY ? "(!gl_FrontFacing)" : "gl_FrontFacing");
798 break;
799 case SK_VERTEXID_BUILTIN:
800 this->write("gl_VertexID");
801 break;
802 case SK_INSTANCEID_BUILTIN:
803 this->write("gl_InstanceID");
804 break;
805 case SK_CLIPDISTANCE_BUILTIN:
806 this->write("gl_ClipDistance");
807 break;
808 case SK_IN_BUILTIN:
809 this->write("gl_in");
810 break;
811 case SK_INVOCATIONID_BUILTIN:
812 this->write("gl_InvocationID");
813 break;
814 case SK_LASTFRAGCOLOR_BUILTIN:
815 this->write(fProgram.fSettings.fCaps->fbFetchColorName());
816 break;
817 default:
818 this->write(ref.fVariable.fName);
819 }
820 }
821
822 void GLSLCodeGenerator::writeIndexExpression(const IndexExpression& expr) {
823 this->writeExpression(*expr.fBase, kPostfix_Precedence);
824 this->write("[");
825 this->writeExpression(*expr.fIndex, kTopLevel_Precedence);
826 this->write("]");
827 }
828
829 bool is_sk_position(const FieldAccess& f) {
830 return "sk_Position" == f.fBase->fType.fields()[f.fFieldIndex].fName;
831 }
832
833 void GLSLCodeGenerator::writeFieldAccess(const FieldAccess& f) {
834 if (f.fOwnerKind == FieldAccess::kDefault_OwnerKind) {
835 this->writeExpression(*f.fBase, kPostfix_Precedence);
836 this->write(".");
837 }
838 switch (f.fBase->fType.fields()[f.fFieldIndex].fModifiers.fLayout.fBuiltin) {
839 case SK_CLIPDISTANCE_BUILTIN:
840 this->write("gl_ClipDistance");
841 break;
842 default:
843 StringFragment name = f.fBase->fType.fields()[f.fFieldIndex].fName;
844 if (name == "sk_Position") {
845 this->write("gl_Position");
846 } else if (name == "sk_PointSize") {
847 this->write("gl_PointSize");
848 } else {
849 this->write(f.fBase->fType.fields()[f.fFieldIndex].fName);
850 }
851 }
852 }
853
854 void GLSLCodeGenerator::writeSwizzle(const Swizzle& swizzle) {
855 int last = swizzle.fComponents.back();
856 if (last == SKSL_SWIZZLE_0 || last == SKSL_SWIZZLE_1) {
857 this->writeType(swizzle.fType);
858 this->write("(");
859 }
860 this->writeExpression(*swizzle.fBase, kPostfix_Precedence);
861 this->write(".");
862 for (int c : swizzle.fComponents) {
863 if (c >= 0) {
864 this->write(&("x\0y\0z\0w\0"[c * 2]));
865 }
866 }
867 if (last == SKSL_SWIZZLE_0) {
868 this->write(", 0)");
869 }
870 else if (last == SKSL_SWIZZLE_1) {
871 this->write(", 1)");
872 }
873 }
874
875 GLSLCodeGenerator::Precedence GLSLCodeGenerator::GetBinaryPrecedence(Token::Kind op) {
876 switch (op) {
877 case Token::STAR: // fall through
878 case Token::SLASH: // fall through
879 case Token::PERCENT: return GLSLCodeGenerator::kMultiplicative_Precedence;
880 case Token::PLUS: // fall through
881 case Token::MINUS: return GLSLCodeGenerator::kAdditive_Precedence;
882 case Token::SHL: // fall through
883 case Token::SHR: return GLSLCodeGenerator::kShift_Precedence;
884 case Token::LT: // fall through
885 case Token::GT: // fall through
886 case Token::LTEQ: // fall through
887 case Token::GTEQ: return GLSLCodeGenerator::kRelational_Precedence;
888 case Token::EQEQ: // fall through
889 case Token::NEQ: return GLSLCodeGenerator::kEquality_Precedence;
890 case Token::BITWISEAND: return GLSLCodeGenerator::kBitwiseAnd_Precedence;
891 case Token::BITWISEXOR: return GLSLCodeGenerator::kBitwiseXor_Precedence;
892 case Token::BITWISEOR: return GLSLCodeGenerator::kBitwiseOr_Precedence;
893 case Token::LOGICALAND: return GLSLCodeGenerator::kLogicalAnd_Precedence;
894 case Token::LOGICALXOR: return GLSLCodeGenerator::kLogicalXor_Precedence;
895 case Token::LOGICALOR: return GLSLCodeGenerator::kLogicalOr_Precedence;
896 case Token::EQ: // fall through
897 case Token::PLUSEQ: // fall through
898 case Token::MINUSEQ: // fall through
899 case Token::STAREQ: // fall through
900 case Token::SLASHEQ: // fall through
901 case Token::PERCENTEQ: // fall through
902 case Token::SHLEQ: // fall through
903 case Token::SHREQ: // fall through
904 case Token::LOGICALANDEQ: // fall through
905 case Token::LOGICALXOREQ: // fall through
906 case Token::LOGICALOREQ: // fall through
907 case Token::BITWISEANDEQ: // fall through
908 case Token::BITWISEXOREQ: // fall through
909 case Token::BITWISEOREQ: return GLSLCodeGenerator::kAssignment_Precedence;
910 case Token::COMMA: return GLSLCodeGenerator::kSequence_Precedence;
911 default: ABORT("unsupported binary operator");
912 }
913 }
914
915 void GLSLCodeGenerator::writeBinaryExpression(const BinaryExpression& b,
916 Precedence parentPrecedence) {
917 if (fProgram.fSettings.fCaps->unfoldShortCircuitAsTernary() &&
918 (b.fOperator == Token::LOGICALAND || b.fOperator == Token::LOGICALOR)) {
919 this->writeShortCircuitWorkaroundExpression(b, parentPrecedence);
920 return;
921 }
922
923 Precedence precedence = GetBinaryPrecedence(b.fOperator);
924 if (precedence >= parentPrecedence) {
925 this->write("(");
926 }
927 bool positionWorkaround = fProgramKind == Program::Kind::kVertex_Kind &&
928 Compiler::IsAssignment(b.fOperator) &&
929 Expression::kFieldAccess_Kind == b.fLeft->fKind &&
930 is_sk_position((FieldAccess&) *b.fLeft) &&
931 !strstr(b.fRight->description().c_str(), "sk_RTAdjust") &&
932 !fProgram.fSettings.fCaps->canUseFragCoord();
933 if (positionWorkaround) {
934 this->write("sk_FragCoord_Workaround = (");
935 }
936 this->writeExpression(*b.fLeft, precedence);
937 this->write(" ");
938 this->write(Compiler::OperatorName(b.fOperator));
939 this->write(" ");
940 this->writeExpression(*b.fRight, precedence);
941 if (positionWorkaround) {
942 this->write(")");
943 }
944 if (precedence >= parentPrecedence) {
945 this->write(")");
946 }
947 }
948
949 void GLSLCodeGenerator::writeShortCircuitWorkaroundExpression(const BinaryExpression& b,
950 Precedence parentPrecedence) {
951 if (kTernary_Precedence >= parentPrecedence) {
952 this->write("(");
953 }
954
955 // Transform:
956 // a && b => a ? b : false
957 // a || b => a ? true : b
958 this->writeExpression(*b.fLeft, kTernary_Precedence);
959 this->write(" ? ");
960 if (b.fOperator == Token::LOGICALAND) {
961 this->writeExpression(*b.fRight, kTernary_Precedence);
962 } else {
963 BoolLiteral boolTrue(fContext, -1, true);
964 this->writeBoolLiteral(boolTrue);
965 }
966 this->write(" : ");
967 if (b.fOperator == Token::LOGICALAND) {
968 BoolLiteral boolFalse(fContext, -1, false);
969 this->writeBoolLiteral(boolFalse);
970 } else {
971 this->writeExpression(*b.fRight, kTernary_Precedence);
972 }
973 if (kTernary_Precedence >= parentPrecedence) {
974 this->write(")");
975 }
976 }
977
978 void GLSLCodeGenerator::writeTernaryExpression(const TernaryExpression& t,
979 Precedence parentPrecedence) {
980 if (kTernary_Precedence >= parentPrecedence) {
981 this->write("(");
982 }
983 this->writeExpression(*t.fTest, kTernary_Precedence);
984 this->write(" ? ");
985 this->writeExpression(*t.fIfTrue, kTernary_Precedence);
986 this->write(" : ");
987 this->writeExpression(*t.fIfFalse, kTernary_Precedence);
988 if (kTernary_Precedence >= parentPrecedence) {
989 this->write(")");
990 }
991 }
992
993 void GLSLCodeGenerator::writePrefixExpression(const PrefixExpression& p,
994 Precedence parentPrecedence) {
995 if (kPrefix_Precedence >= parentPrecedence) {
996 this->write("(");
997 }
998 this->write(Compiler::OperatorName(p.fOperator));
999 this->writeExpression(*p.fOperand, kPrefix_Precedence);
1000 if (kPrefix_Precedence >= parentPrecedence) {
1001 this->write(")");
1002 }
1003 }
1004
1005 void GLSLCodeGenerator::writePostfixExpression(const PostfixExpression& p,
1006 Precedence parentPrecedence) {
1007 if (kPostfix_Precedence >= parentPrecedence) {
1008 this->write("(");
1009 }
1010 this->writeExpression(*p.fOperand, kPostfix_Precedence);
1011 this->write(Compiler::OperatorName(p.fOperator));
1012 if (kPostfix_Precedence >= parentPrecedence) {
1013 this->write(")");
1014 }
1015 }
1016
1017 void GLSLCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
1018 this->write(b.fValue ? "true" : "false");
1019 }
1020
1021 void GLSLCodeGenerator::writeIntLiteral(const IntLiteral& i) {
1022 if (i.fType == *fContext.fUInt_Type) {
1023 this->write(to_string(i.fValue & 0xffffffff) + "u");
1024 } else if (i.fType == *fContext.fUShort_Type) {
1025 this->write(to_string(i.fValue & 0xffff) + "u");
1026 } else if (i.fType == *fContext.fUByte_Type) {
1027 this->write(to_string(i.fValue & 0xff) + "u");
1028 } else {
1029 this->write(to_string((int32_t) i.fValue));
1030 }
1031 }
1032
1033 void GLSLCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
1034 this->write(to_string(f.fValue));
1035 }
1036
1037 void GLSLCodeGenerator::writeSetting(const Setting& s) {
1038 ABORT("internal error; setting was not folded to a constant during compilation\n");
1039 }
1040
1041 void GLSLCodeGenerator::writeFunction(const FunctionDefinition& f) {
1042 fSetupFragPositionLocal = false;
1043 fSetupFragCoordWorkaround = false;
1044 if (fProgramKind != Program::kPipelineStage_Kind) {
1045 this->writeTypePrecision(f.fDeclaration.fReturnType);
1046 this->writeType(f.fDeclaration.fReturnType);
1047 this->write(" " + f.fDeclaration.fName + "(");
1048 const char* separator = "";
1049 for (const auto& param : f.fDeclaration.fParameters) {
1050 this->write(separator);
1051 separator = ", ";
1052 this->writeModifiers(param->fModifiers, false);
1053 std::vector<int> sizes;
1054 const Type* type = ¶m->fType;
1055 while (type->kind() == Type::kArray_Kind) {
1056 sizes.push_back(type->columns());
1057 type = &type->componentType();
1058 }
1059 this->writeTypePrecision(*type);
1060 this->writeType(*type);
1061 this->write(" " + param->fName);
1062 for (int s : sizes) {
1063 if (s <= 0) {
1064 this->write("[]");
1065 } else {
1066 this->write("[" + to_string(s) + "]");
1067 }
1068 }
1069 }
1070 this->writeLine(") {");
1071 fIndentation++;
1072 }
1073 fFunctionHeader = "";
1074 OutputStream* oldOut = fOut;
1075 StringStream buffer;
1076 fOut = &buffer;
1077 this->writeStatements(((Block&) *f.fBody).fStatements);
1078 if (fProgramKind != Program::kPipelineStage_Kind) {
1079 fIndentation--;
1080 this->writeLine("}");
1081 }
1082
1083 fOut = oldOut;
1084 this->write(fFunctionHeader);
1085 this->write(buffer.str());
1086 }
1087
1088 void GLSLCodeGenerator::writeModifiers(const Modifiers& modifiers,
1089 bool globalContext) {
1090 if (modifiers.fFlags & Modifiers::kFlat_Flag) {
1091 this->write("flat ");
1092 }
1093 if (modifiers.fFlags & Modifiers::kNoPerspective_Flag) {
1094 this->write("noperspective ");
1095 }
1096 String layout = modifiers.fLayout.description();
1097 if (layout.size()) {
1098 this->write(layout + " ");
1099 }
1100 if (modifiers.fFlags & Modifiers::kReadOnly_Flag) {
1101 this->write("readonly ");
1102 }
1103 if (modifiers.fFlags & Modifiers::kWriteOnly_Flag) {
1104 this->write("writeonly ");
1105 }
1106 if (modifiers.fFlags & Modifiers::kCoherent_Flag) {
1107 this->write("coherent ");
1108 }
1109 if (modifiers.fFlags & Modifiers::kVolatile_Flag) {
1110 this->write("volatile ");
1111 }
1112 if (modifiers.fFlags & Modifiers::kRestrict_Flag) {
1113 this->write("restrict ");
1114 }
1115 if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
1116 (modifiers.fFlags & Modifiers::kOut_Flag)) {
1117 this->write("inout ");
1118 } else if (modifiers.fFlags & Modifiers::kIn_Flag) {
1119 if (globalContext &&
1120 fProgram.fSettings.fCaps->generation() < GrGLSLGeneration::k130_GrGLSLGeneration) {
1121 this->write(fProgramKind == Program::kVertex_Kind ? "attribute "
1122 : "varying ");
1123 } else {
1124 this->write("in ");
1125 }
1126 } else if (modifiers.fFlags & Modifiers::kOut_Flag) {
1127 if (globalContext &&
1128 fProgram.fSettings.fCaps->generation() < GrGLSLGeneration::k130_GrGLSLGeneration) {
1129 this->write("varying ");
1130 } else {
1131 this->write("out ");
1132 }
1133 }
1134 if (modifiers.fFlags & Modifiers::kUniform_Flag) {
1135 this->write("uniform ");
1136 }
1137 if (modifiers.fFlags & Modifiers::kConst_Flag) {
1138 this->write("const ");
1139 }
1140 if (modifiers.fFlags & Modifiers::kPLS_Flag) {
1141 this->write("__pixel_localEXT ");
1142 }
1143 if (modifiers.fFlags & Modifiers::kPLSIn_Flag) {
1144 this->write("__pixel_local_inEXT ");
1145 }
1146 if (modifiers.fFlags & Modifiers::kPLSOut_Flag) {
1147 this->write("__pixel_local_outEXT ");
1148 }
1149 switch (modifiers.fLayout.fFormat) {
1150 case Layout::Format::kUnspecified:
1151 break;
1152 case Layout::Format::kRGBA32F: // fall through
1153 case Layout::Format::kR32F:
1154 this->write("highp ");
1155 break;
1156 case Layout::Format::kRGBA16F: // fall through
1157 case Layout::Format::kR16F: // fall through
1158 case Layout::Format::kLUMINANCE16F: // fall through
1159 case Layout::Format::kRG16F:
1160 this->write("mediump ");
1161 break;
1162 case Layout::Format::kRGBA8: // fall through
1163 case Layout::Format::kR8: // fall through
1164 case Layout::Format::kRGBA8I: // fall through
1165 case Layout::Format::kR8I:
1166 this->write("lowp ");
1167 break;
1168 }
1169 }
1170
1171 void GLSLCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) {
1172 if (intf.fTypeName == "sk_PerVertex") {
1173 return;
1174 }
1175 this->writeModifiers(intf.fVariable.fModifiers, true);
1176 this->writeLine(intf.fTypeName + " {");
1177 fIndentation++;
1178 const Type* structType = &intf.fVariable.fType;
1179 while (structType->kind() == Type::kArray_Kind) {
1180 structType = &structType->componentType();
1181 }
1182 for (const auto& f : structType->fields()) {
1183 this->writeModifiers(f.fModifiers, false);
1184 this->writeTypePrecision(*f.fType);
1185 this->writeType(*f.fType);
1186 this->writeLine(" " + f.fName + ";");
1187 }
1188 fIndentation--;
1189 this->write("}");
1190 if (intf.fInstanceName.size()) {
1191 this->write(" ");
1192 this->write(intf.fInstanceName);
1193 for (const auto& size : intf.fSizes) {
1194 this->write("[");
1195 if (size) {
1196 this->writeExpression(*size, kTopLevel_Precedence);
1197 }
1198 this->write("]");
1199 }
1200 }
1201 this->writeLine(";");
1202 }
1203
1204 void GLSLCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) {
1205 this->writeExpression(value, kTopLevel_Precedence);
1206 }
1207
1208 const char* GLSLCodeGenerator::getTypePrecision(const Type& type) {
1209 if (usesPrecisionModifiers()) {
1210 switch (type.kind()) {
1211 case Type::kScalar_Kind:
1212 if (type == *fContext.fShort_Type || type == *fContext.fUShort_Type ||
1213 type == *fContext.fByte_Type || type == *fContext.fUByte_Type) {
1214 if (fProgram.fSettings.fForceHighPrecision ||
1215 fProgram.fSettings.fCaps->incompleteShortIntPrecision()) {
1216 return "highp ";
1217 }
1218 return "mediump ";
1219 }
1220 if (type == *fContext.fHalf_Type) {
1221 return fProgram.fSettings.fForceHighPrecision ? "highp " : "mediump ";
1222 }
1223 if (type == *fContext.fFloat_Type || type == *fContext.fInt_Type ||
1224 type == *fContext.fUInt_Type) {
1225 return "highp ";
1226 }
1227 return "";
1228 case Type::kVector_Kind: // fall through
1229 case Type::kMatrix_Kind:
1230 return this->getTypePrecision(type.componentType());
1231 default:
1232 break;
1233 }
1234 }
1235 return "";
1236 }
1237
1238 void GLSLCodeGenerator::writeTypePrecision(const Type& type) {
1239 this->write(this->getTypePrecision(type));
1240 }
1241
1242 void GLSLCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, bool global) {
1243 if (!decl.fVars.size()) {
1244 return;
1245 }
1246 bool wroteType = false;
1247 for (const auto& stmt : decl.fVars) {
1248 VarDeclaration& var = (VarDeclaration&) *stmt;
1249 if (wroteType) {
1250 this->write(", ");
1251 } else {
1252 this->writeModifiers(var.fVar->fModifiers, global);
1253 this->writeTypePrecision(decl.fBaseType);
1254 this->writeType(decl.fBaseType);
1255 this->write(" ");
1256 wroteType = true;
1257 }
1258 this->write(var.fVar->fName);
1259 for (const auto& size : var.fSizes) {
1260 this->write("[");
1261 if (size) {
1262 this->writeExpression(*size, kTopLevel_Precedence);
1263 }
1264 this->write("]");
1265 }
1266 if (var.fValue) {
1267 this->write(" = ");
1268 this->writeVarInitializer(*var.fVar, *var.fValue);
1269 }
1270 if (!fFoundExternalSamplerDecl && var.fVar->fType == *fContext.fSamplerExternalOES_Type) {
1271 if (fProgram.fSettings.fCaps->externalTextureExtensionString()) {
1272 this->writeExtension(fProgram.fSettings.fCaps->externalTextureExtensionString());
1273 }
1274 if (fProgram.fSettings.fCaps->secondExternalTextureExtensionString()) {
1275 this->writeExtension(
1276 fProgram.fSettings.fCaps->secondExternalTextureExtensionString());
1277 }
1278 fFoundExternalSamplerDecl = true;
1279 }
1280 if (!fFoundRectSamplerDecl && var.fVar->fType == *fContext.fSampler2DRect_Type) {
1281 fFoundRectSamplerDecl = true;
1282 }
1283 }
1284 if (wroteType) {
1285 this->write(";");
1286 }
1287 }
1288
1289 void GLSLCodeGenerator::writeStatement(const Statement& s) {
1290 switch (s.fKind) {
1291 case Statement::kBlock_Kind:
1292 this->writeBlock((Block&) s);
1293 break;
1294 case Statement::kExpression_Kind:
1295 this->writeExpression(*((ExpressionStatement&) s).fExpression, kTopLevel_Precedence);
1296 this->write(";");
1297 break;
1298 case Statement::kReturn_Kind:
1299 this->writeReturnStatement((ReturnStatement&) s);
1300 break;
1301 case Statement::kVarDeclarations_Kind:
1302 this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration, false);
1303 break;
1304 case Statement::kIf_Kind:
1305 this->writeIfStatement((IfStatement&) s);
1306 break;
1307 case Statement::kFor_Kind:
1308 this->writeForStatement((ForStatement&) s);
1309 break;
1310 case Statement::kWhile_Kind:
1311 this->writeWhileStatement((WhileStatement&) s);
1312 break;
1313 case Statement::kDo_Kind:
1314 this->writeDoStatement((DoStatement&) s);
1315 break;
1316 case Statement::kSwitch_Kind:
1317 this->writeSwitchStatement((SwitchStatement&) s);
1318 break;
1319 case Statement::kBreak_Kind:
1320 this->write("break;");
1321 break;
1322 case Statement::kContinue_Kind:
1323 this->write("continue;");
1324 break;
1325 case Statement::kDiscard_Kind:
1326 this->write("discard;");
1327 break;
1328 case Statement::kNop_Kind:
1329 this->write(";");
1330 break;
1331 default:
1332 ABORT("unsupported statement: %s", s.description().c_str());
1333 }
1334 }
1335
1336 void GLSLCodeGenerator::writeStatements(const std::vector<std::unique_ptr<Statement>>& statements) {
1337 for (const auto& s : statements) {
1338 if (!s->isEmpty()) {
1339 this->writeStatement(*s);
1340 this->writeLine();
1341 }
1342 }
1343 }
1344
1345 void GLSLCodeGenerator::writeBlock(const Block& b) {
1346 this->writeLine("{");
1347 fIndentation++;
1348 this->writeStatements(b.fStatements);
1349 fIndentation--;
1350 this->write("}");
1351 }
1352
1353 void GLSLCodeGenerator::writeIfStatement(const IfStatement& stmt) {
1354 this->write("if (");
1355 this->writeExpression(*stmt.fTest, kTopLevel_Precedence);
1356 this->write(") ");
1357 this->writeStatement(*stmt.fIfTrue);
1358 if (stmt.fIfFalse) {
1359 this->write(" else ");
1360 this->writeStatement(*stmt.fIfFalse);
1361 }
1362 }
1363
1364 void GLSLCodeGenerator::writeForStatement(const ForStatement& f) {
1365 this->write("for (");
1366 if (f.fInitializer && !f.fInitializer->isEmpty()) {
1367 this->writeStatement(*f.fInitializer);
1368 } else {
1369 this->write("; ");
1370 }
1371 if (f.fTest) {
1372 if (fProgram.fSettings.fCaps->addAndTrueToLoopCondition()) {
1373 std::unique_ptr<Expression> and_true(new BinaryExpression(
1374 -1, f.fTest->clone(), Token::LOGICALAND,
1375 std::unique_ptr<BoolLiteral>(new BoolLiteral(fContext, -1,
1376 true)),
1377 *fContext.fBool_Type));
1378 this->writeExpression(*and_true, kTopLevel_Precedence);
1379 } else {
1380 this->writeExpression(*f.fTest, kTopLevel_Precedence);
1381 }
1382 }
1383 this->write("; ");
1384 if (f.fNext) {
1385 this->writeExpression(*f.fNext, kTopLevel_Precedence);
1386 }
1387 this->write(") ");
1388 this->writeStatement(*f.fStatement);
1389 }
1390
1391 void GLSLCodeGenerator::writeWhileStatement(const WhileStatement& w) {
1392 this->write("while (");
1393 this->writeExpression(*w.fTest, kTopLevel_Precedence);
1394 this->write(") ");
1395 this->writeStatement(*w.fStatement);
1396 }
1397
1398 void GLSLCodeGenerator::writeDoStatement(const DoStatement& d) {
1399 if (!fProgram.fSettings.fCaps->rewriteDoWhileLoops()) {
1400 this->write("do ");
1401 this->writeStatement(*d.fStatement);
1402 this->write(" while (");
1403 this->writeExpression(*d.fTest, kTopLevel_Precedence);
1404 this->write(");");
1405 return;
1406 }
1407
1408 // Otherwise, do the do while loop workaround, to rewrite loops of the form:
1409 // do {
1410 // CODE;
1411 // } while (CONDITION)
1412 //
1413 // to loops of the form
1414 // bool temp = false;
1415 // while (true) {
1416 // if (temp) {
1417 // if (!CONDITION) {
1418 // break;
1419 // }
1420 // }
1421 // temp = true;
1422 // CODE;
1423 // }
1424 String tmpVar = "_tmpLoopSeenOnce" + to_string(fVarCount++);
1425 this->write("bool ");
1426 this->write(tmpVar);
1427 this->writeLine(" = false;");
1428 this->writeLine("while (true) {");
1429 fIndentation++;
1430 this->write("if (");
1431 this->write(tmpVar);
1432 this->writeLine(") {");
1433 fIndentation++;
1434 this->write("if (!");
1435 this->writeExpression(*d.fTest, kPrefix_Precedence);
1436 this->writeLine(") {");
1437 fIndentation++;
1438 this->writeLine("break;");
1439 fIndentation--;
1440 this->writeLine("}");
1441 fIndentation--;
1442 this->writeLine("}");
1443 this->write(tmpVar);
1444 this->writeLine(" = true;");
1445 this->writeStatement(*d.fStatement);
1446 this->writeLine();
1447 fIndentation--;
1448 this->write("}");
1449 }
1450
1451 void GLSLCodeGenerator::writeSwitchStatement(const SwitchStatement& s) {
1452 this->write("switch (");
1453 this->writeExpression(*s.fValue, kTopLevel_Precedence);
1454 this->writeLine(") {");
1455 fIndentation++;
1456 for (const auto& c : s.fCases) {
1457 if (c->fValue) {
1458 this->write("case ");
1459 this->writeExpression(*c->fValue, kTopLevel_Precedence);
1460 this->writeLine(":");
1461 } else {
1462 this->writeLine("default:");
1463 }
1464 fIndentation++;
1465 for (const auto& stmt : c->fStatements) {
1466 this->writeStatement(*stmt);
1467 this->writeLine();
1468 }
1469 fIndentation--;
1470 }
1471 fIndentation--;
1472 this->write("}");
1473 }
1474
1475 void GLSLCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
1476 this->write("return");
1477 if (r.fExpression) {
1478 this->write(" ");
1479 this->writeExpression(*r.fExpression, kTopLevel_Precedence);
1480 }
1481 this->write(";");
1482 }
1483
1484 void GLSLCodeGenerator::writeHeader() {
1485 this->write(fProgram.fSettings.fCaps->versionDeclString());
1486 this->writeLine();
1487 }
1488
1489 void GLSLCodeGenerator::writeProgramElement(const ProgramElement& e) {
1490 switch (e.fKind) {
1491 case ProgramElement::kExtension_Kind:
1492 this->writeExtension(((Extension&) e).fName);
1493 break;
1494 case ProgramElement::kVar_Kind: {
1495 VarDeclarations& decl = (VarDeclarations&) e;
1496 if (decl.fVars.size() > 0) {
1497 int builtin = ((VarDeclaration&) *decl.fVars[0]).fVar->fModifiers.fLayout.fBuiltin;
1498 if (builtin == -1) {
1499 // normal var
1500 this->writeVarDeclarations(decl, true);
1501 this->writeLine();
1502 } else if (builtin == SK_FRAGCOLOR_BUILTIN &&
1503 fProgram.fSettings.fCaps->mustDeclareFragmentShaderOutput() &&
1504 ((VarDeclaration&) *decl.fVars[0]).fVar->fWriteCount) {
1505 if (fProgram.fSettings.fFragColorIsInOut) {
1506 this->write("inout ");
1507 } else {
1508 this->write("out ");
1509 }
1510 if (usesPrecisionModifiers()) {
1511 this->write("mediump ");
1512 }
1513 this->writeLine("vec4 sk_FragColor;");
1514 }
1515 }
1516 break;
1517 }
1518 case ProgramElement::kInterfaceBlock_Kind:
1519 this->writeInterfaceBlock((InterfaceBlock&) e);
1520 break;
1521 case ProgramElement::kFunction_Kind:
1522 this->writeFunction((FunctionDefinition&) e);
1523 break;
1524 case ProgramElement::kModifiers_Kind: {
1525 const Modifiers& modifiers = ((ModifiersDeclaration&) e).fModifiers;
1526 if (!fFoundGSInvocations && modifiers.fLayout.fInvocations >= 0) {
1527 if (fProgram.fSettings.fCaps->gsInvocationsExtensionString()) {
1528 this->writeExtension(fProgram.fSettings.fCaps->gsInvocationsExtensionString());
1529 }
1530 fFoundGSInvocations = true;
1531 }
1532 this->writeModifiers(modifiers, true);
1533 this->writeLine(";");
1534 break;
1535 }
1536 case ProgramElement::kEnum_Kind:
1537 break;
1538 default:
1539 printf("%s\n", e.description().c_str());
1540 ABORT("unsupported program element");
1541 }
1542 }
1543
1544 void GLSLCodeGenerator::writeInputVars() {
1545 if (fProgram.fInputs.fRTWidth) {
1546 const char* precision = usesPrecisionModifiers() ? "highp " : "";
1547 fGlobals.writeText("uniform ");
1548 fGlobals.writeText(precision);
1549 fGlobals.writeText("float " SKSL_RTWIDTH_NAME ";\n");
1550 }
1551 if (fProgram.fInputs.fRTHeight) {
1552 const char* precision = usesPrecisionModifiers() ? "highp " : "";
1553 fGlobals.writeText("uniform ");
1554 fGlobals.writeText(precision);
1555 fGlobals.writeText("float " SKSL_RTHEIGHT_NAME ";\n");
1556 }
1557 }
1558
1559 bool GLSLCodeGenerator::generateCode() {
1560 if (fProgramKind != Program::kPipelineStage_Kind) {
1561 this->writeHeader();
1562 }
1563 if (Program::kGeometry_Kind == fProgramKind &&
1564 fProgram.fSettings.fCaps->geometryShaderExtensionString()) {
1565 this->writeExtension(fProgram.fSettings.fCaps->geometryShaderExtensionString());
1566 }
1567 OutputStream* rawOut = fOut;
1568 StringStream body;
1569 fOut = &body;
1570 for (const auto& e : fProgram) {
1571 this->writeProgramElement(e);
1572 }
1573 fOut = rawOut;
1574
1575 write_stringstream(fExtensions, *rawOut);
1576 this->writeInputVars();
1577 write_stringstream(fGlobals, *rawOut);
1578
1579 if (!fProgram.fSettings.fCaps->canUseFragCoord()) {
1580 Layout layout;
1581 switch (fProgram.fKind) {
1582 case Program::kVertex_Kind: {
1583 Modifiers modifiers(layout, Modifiers::kOut_Flag);
1584 this->writeModifiers(modifiers, true);
1585 if (this->usesPrecisionModifiers()) {
1586 this->write("highp ");
1587 }
1588 this->write("vec4 sk_FragCoord_Workaround;\n");
1589 break;
1590 }
1591 case Program::kFragment_Kind: {
1592 Modifiers modifiers(layout, Modifiers::kIn_Flag);
1593 this->writeModifiers(modifiers, true);
1594 if (this->usesPrecisionModifiers()) {
1595 this->write("highp ");
1596 }
1597 this->write("vec4 sk_FragCoord_Workaround;\n");
1598 break;
1599 }
1600 default:
1601 break;
1602 }
1603 }
1604
1605 if (this->usesPrecisionModifiers()) {
1606 this->writeLine("precision mediump float;");
1607 this->writeLine("precision mediump sampler2D;");
1608 if (fFoundExternalSamplerDecl &&
1609 !fProgram.fSettings.fCaps->noDefaultPrecisionForExternalSamplers()) {
1610 this->writeLine("precision mediump samplerExternalOES;");
1611 }
1612 if (fFoundRectSamplerDecl) {
1613 this->writeLine("precision mediump sampler2DRect;");
1614 }
1615 }
1616 write_stringstream(fExtraFunctions, *rawOut);
1617 write_stringstream(body, *rawOut);
1618 return true;
1619 }
1620
1621 }
1622