1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkCanvas.h"
9 #include "include/core/SkColorFilter.h"
10 #include "include/core/SkMaskFilter.h"
11 #include "include/core/SkPath.h"
12 #include "include/core/SkString.h"
13 #include "include/core/SkVertices.h"
14 #include "include/private/SkColorData.h"
15 #include "include/utils/SkRandom.h"
16 #include "include/utils/SkShadowUtils.h"
17 #include "src/core/SkBlurMask.h"
18 #include "src/core/SkDevice.h"
19 #include "src/core/SkDrawShadowInfo.h"
20 #include "src/core/SkEffectPriv.h"
21 #include "src/core/SkPathPriv.h"
22 #include "src/core/SkRasterPipeline.h"
23 #include "src/core/SkResourceCache.h"
24 #include "src/core/SkTLazy.h"
25 #include "src/utils/SkShadowTessellator.h"
26 #include <new>
27 #if SK_SUPPORT_GPU
28 #include "src/gpu/effects/generated/GrBlurredEdgeFragmentProcessor.h"
29 #include "src/gpu/geometry/GrShape.h"
30 #endif
31
32 /**
33 * Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
34 * then blends with the color's G value.
35 * Final result is black with alpha of Gaussian(B)*G.
36 * The assumption is that the original color's alpha is 1.
37 */
38 class SkGaussianColorFilter : public SkColorFilter {
39 public:
Make()40 static sk_sp<SkColorFilter> Make() {
41 return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
42 }
43
44 #if SK_SUPPORT_GPU
45 std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(
46 GrRecordingContext*, const GrColorSpaceInfo&) const override;
47 #endif
48
49 protected:
flatten(SkWriteBuffer &) const50 void flatten(SkWriteBuffer&) const override {}
onAppendStages(const SkStageRec & rec,bool shaderIsOpaque) const51 bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override {
52 rec.fPipeline->append(SkRasterPipeline::gauss_a_to_rgba);
53 return true;
54 }
55 private:
56 SK_FLATTENABLE_HOOKS(SkGaussianColorFilter)
57
SkGaussianColorFilter()58 SkGaussianColorFilter() : INHERITED() {}
59
60 typedef SkColorFilter INHERITED;
61 };
62
CreateProc(SkReadBuffer &)63 sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
64 return Make();
65 }
66
67 #if SK_SUPPORT_GPU
68
asFragmentProcessor(GrRecordingContext *,const GrColorSpaceInfo &) const69 std::unique_ptr<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(
70 GrRecordingContext*, const GrColorSpaceInfo&) const {
71 return GrBlurredEdgeFragmentProcessor::Make(GrBlurredEdgeFragmentProcessor::Mode::kGaussian);
72 }
73 #endif
74
75 ///////////////////////////////////////////////////////////////////////////////////////////////////
76
77 namespace {
78
resource_cache_shared_id()79 uint64_t resource_cache_shared_id() {
80 return 0x2020776f64616873llu; // 'shadow '
81 }
82
83 /** Factory for an ambient shadow mesh with particular shadow properties. */
84 struct AmbientVerticesFactory {
85 SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
86 bool fTransparent;
87 SkVector fOffset;
88
isCompatible__anonb977c80b0111::AmbientVerticesFactory89 bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
90 if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
91 return false;
92 }
93 *translate = that.fOffset;
94 return true;
95 }
96
makeVertices__anonb977c80b0111::AmbientVerticesFactory97 sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
98 SkVector* translate) const {
99 SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
100 // pick a canonical place to generate shadow
101 SkMatrix noTrans(ctm);
102 if (!ctm.hasPerspective()) {
103 noTrans[SkMatrix::kMTransX] = 0;
104 noTrans[SkMatrix::kMTransY] = 0;
105 }
106 *translate = fOffset;
107 return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
108 }
109 };
110
111 /** Factory for an spot shadow mesh with particular shadow properties. */
112 struct SpotVerticesFactory {
113 enum class OccluderType {
114 // The umbra cannot be dropped out because either the occluder is not opaque,
115 // or the center of the umbra is visible.
116 kTransparent,
117 // The umbra can be dropped where it is occluded.
118 kOpaquePartialUmbra,
119 // It is known that the entire umbra is occluded.
120 kOpaqueNoUmbra
121 };
122
123 SkVector fOffset;
124 SkPoint fLocalCenter;
125 SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
126 SkPoint3 fDevLightPos;
127 SkScalar fLightRadius;
128 OccluderType fOccluderType;
129
isCompatible__anonb977c80b0111::SpotVerticesFactory130 bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
131 if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
132 fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
133 return false;
134 }
135 switch (fOccluderType) {
136 case OccluderType::kTransparent:
137 case OccluderType::kOpaqueNoUmbra:
138 // 'this' and 'that' will either both have no umbra removed or both have all the
139 // umbra removed.
140 *translate = that.fOffset;
141 return true;
142 case OccluderType::kOpaquePartialUmbra:
143 // In this case we partially remove the umbra differently for 'this' and 'that'
144 // if the offsets don't match.
145 if (fOffset == that.fOffset) {
146 translate->set(0, 0);
147 return true;
148 }
149 return false;
150 }
151 SK_ABORT("Uninitialized occluder type?");
152 }
153
makeVertices__anonb977c80b0111::SpotVerticesFactory154 sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
155 SkVector* translate) const {
156 bool transparent = OccluderType::kTransparent == fOccluderType;
157 SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
158 if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) {
159 translate->set(0, 0);
160 return SkShadowTessellator::MakeSpot(path, ctm, zParams,
161 fDevLightPos, fLightRadius, transparent);
162 } else {
163 // pick a canonical place to generate shadow, with light centered over path
164 SkMatrix noTrans(ctm);
165 noTrans[SkMatrix::kMTransX] = 0;
166 noTrans[SkMatrix::kMTransY] = 0;
167 SkPoint devCenter(fLocalCenter);
168 noTrans.mapPoints(&devCenter, 1);
169 SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
170 *translate = fOffset;
171 return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
172 centerLightPos, fLightRadius, transparent);
173 }
174 }
175 };
176
177 /**
178 * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
179 * records are immutable this is not itself a Rec. When we need to update it we return this on
180 * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
181 * a new Rec with an adjusted size for any deletions/additions.
182 */
183 class CachedTessellations : public SkRefCnt {
184 public:
size() const185 size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
186
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const187 sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
188 SkVector* translate) const {
189 return fAmbientSet.find(ambient, matrix, translate);
190 }
191
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate)192 sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
193 const SkMatrix& matrix, SkVector* translate) {
194 return fAmbientSet.add(devPath, ambient, matrix, translate);
195 }
196
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const197 sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
198 SkVector* translate) const {
199 return fSpotSet.find(spot, matrix, translate);
200 }
201
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate)202 sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
203 const SkMatrix& matrix, SkVector* translate) {
204 return fSpotSet.add(devPath, spot, matrix, translate);
205 }
206
207 private:
208 template <typename FACTORY, int MAX_ENTRIES>
209 class Set {
210 public:
size() const211 size_t size() const { return fSize; }
212
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const213 sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
214 SkVector* translate) const {
215 for (int i = 0; i < MAX_ENTRIES; ++i) {
216 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
217 const SkMatrix& m = fEntries[i].fMatrix;
218 if (matrix.hasPerspective() || m.hasPerspective()) {
219 if (matrix != fEntries[i].fMatrix) {
220 continue;
221 }
222 } else if (matrix.getScaleX() != m.getScaleX() ||
223 matrix.getSkewX() != m.getSkewX() ||
224 matrix.getScaleY() != m.getScaleY() ||
225 matrix.getSkewY() != m.getSkewY()) {
226 continue;
227 }
228 return fEntries[i].fVertices;
229 }
230 }
231 return nullptr;
232 }
233
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate)234 sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
235 SkVector* translate) {
236 sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
237 if (!vertices) {
238 return nullptr;
239 }
240 int i;
241 if (fCount < MAX_ENTRIES) {
242 i = fCount++;
243 } else {
244 i = fRandom.nextULessThan(MAX_ENTRIES);
245 fSize -= fEntries[i].fVertices->approximateSize();
246 }
247 fEntries[i].fFactory = factory;
248 fEntries[i].fVertices = vertices;
249 fEntries[i].fMatrix = matrix;
250 fSize += vertices->approximateSize();
251 return vertices;
252 }
253
254 private:
255 struct Entry {
256 FACTORY fFactory;
257 sk_sp<SkVertices> fVertices;
258 SkMatrix fMatrix;
259 };
260 Entry fEntries[MAX_ENTRIES];
261 int fCount = 0;
262 size_t fSize = 0;
263 SkRandom fRandom;
264 };
265
266 Set<AmbientVerticesFactory, 4> fAmbientSet;
267 Set<SpotVerticesFactory, 4> fSpotSet;
268 };
269
270 /**
271 * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
272 * path. The key represents the path's geometry and not any shadow params.
273 */
274 class CachedTessellationsRec : public SkResourceCache::Rec {
275 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)276 CachedTessellationsRec(const SkResourceCache::Key& key,
277 sk_sp<CachedTessellations> tessellations)
278 : fTessellations(std::move(tessellations)) {
279 fKey.reset(new uint8_t[key.size()]);
280 memcpy(fKey.get(), &key, key.size());
281 }
282
getKey() const283 const Key& getKey() const override {
284 return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
285 }
286
bytesUsed() const287 size_t bytesUsed() const override { return fTessellations->size(); }
288
getCategory() const289 const char* getCategory() const override { return "tessellated shadow masks"; }
290
refTessellations() const291 sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
292
293 template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const294 sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
295 SkVector* translate) const {
296 return fTessellations->find(factory, matrix, translate);
297 }
298
299 private:
300 std::unique_ptr<uint8_t[]> fKey;
301 sk_sp<CachedTessellations> fTessellations;
302 };
303
304 /**
305 * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
306 * vertices and a translation vector. If the CachedTessellations does not contain a suitable
307 * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
308 * to the caller. The caller will update it and reinsert it back into the cache.
309 */
310 template <typename FACTORY>
311 struct FindContext {
FindContext__anonb977c80b0111::FindContext312 FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
313 : fViewMatrix(viewMatrix), fFactory(factory) {}
314 const SkMatrix* const fViewMatrix;
315 // If this is valid after Find is called then we found the vertices and they should be drawn
316 // with fTranslate applied.
317 sk_sp<SkVertices> fVertices;
318 SkVector fTranslate = {0, 0};
319
320 // If this is valid after Find then the caller should add the vertices to the tessellation set
321 // and create a new CachedTessellationsRec and insert it into SkResourceCache.
322 sk_sp<CachedTessellations> fTessellationsOnFailure;
323
324 const FACTORY* fFactory;
325 };
326
327 /**
328 * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
329 * the FindContext are used to determine if the vertices are reusable. If so the vertices and
330 * necessary translation vector are set on the FindContext.
331 */
332 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)333 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
334 FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
335 const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
336 findContext->fVertices =
337 rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
338 if (findContext->fVertices) {
339 return true;
340 }
341 // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
342 // manipulated we will add a new Rec.
343 findContext->fTessellationsOnFailure = rec.refTessellations();
344 return false;
345 }
346
347 class ShadowedPath {
348 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)349 ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
350 : fPath(path)
351 , fViewMatrix(viewMatrix)
352 #if SK_SUPPORT_GPU
353 , fShapeForKey(*path, GrStyle::SimpleFill())
354 #endif
355 {}
356
path() const357 const SkPath& path() const { return *fPath; }
viewMatrix() const358 const SkMatrix& viewMatrix() const { return *fViewMatrix; }
359 #if SK_SUPPORT_GPU
360 /** Negative means the vertices should not be cached for this path. */
keyBytes() const361 int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const362 void writeKey(void* key) const {
363 fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
364 }
isRRect(SkRRect * rrect)365 bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
366 #else
keyBytes() const367 int keyBytes() const { return -1; }
writeKey(void * key) const368 void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)369 bool isRRect(SkRRect* rrect) { return false; }
370 #endif
371
372 private:
373 const SkPath* fPath;
374 const SkMatrix* fViewMatrix;
375 #if SK_SUPPORT_GPU
376 GrShape fShapeForKey;
377 #endif
378 };
379
380 // This creates a domain of keys in SkResourceCache used by this file.
381 static void* kNamespace;
382
383 // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
384 class ShadowInvalidator : public SkPathRef::GenIDChangeListener {
385 public:
ShadowInvalidator(const SkResourceCache::Key & key)386 ShadowInvalidator(const SkResourceCache::Key& key) {
387 fKey.reset(new uint8_t[key.size()]);
388 memcpy(fKey.get(), &key, key.size());
389 }
390
391 private:
getKey() const392 const SkResourceCache::Key& getKey() const {
393 return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
394 }
395
396 // always purge
FindVisitor(const SkResourceCache::Rec &,void *)397 static bool FindVisitor(const SkResourceCache::Rec&, void*) {
398 return false;
399 }
400
onChange()401 void onChange() override {
402 SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr);
403 }
404
405 std::unique_ptr<uint8_t[]> fKey;
406 };
407
408 /**
409 * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
410 * they are first found in SkResourceCache.
411 */
412 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty,bool)> drawProc,ShadowedPath & path,SkColor color)413 bool draw_shadow(const FACTORY& factory,
414 std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
415 SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) {
416 FindContext<FACTORY> context(&path.viewMatrix(), &factory);
417
418 SkResourceCache::Key* key = nullptr;
419 SkAutoSTArray<32 * 4, uint8_t> keyStorage;
420 int keyDataBytes = path.keyBytes();
421 if (keyDataBytes >= 0) {
422 keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
423 key = new (keyStorage.begin()) SkResourceCache::Key();
424 path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
425 key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
426 SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
427 }
428
429 sk_sp<SkVertices> vertices;
430 bool foundInCache = SkToBool(context.fVertices);
431 if (foundInCache) {
432 vertices = std::move(context.fVertices);
433 } else {
434 // TODO: handle transforming the path as part of the tessellator
435 if (key) {
436 // Update or initialize a tessellation set and add it to the cache.
437 sk_sp<CachedTessellations> tessellations;
438 if (context.fTessellationsOnFailure) {
439 tessellations = std::move(context.fTessellationsOnFailure);
440 } else {
441 tessellations.reset(new CachedTessellations());
442 }
443 vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
444 &context.fTranslate);
445 if (!vertices) {
446 return false;
447 }
448 auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
449 SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key));
450 SkResourceCache::Add(rec);
451 } else {
452 vertices = factory.makeVertices(path.path(), path.viewMatrix(),
453 &context.fTranslate);
454 if (!vertices) {
455 return false;
456 }
457 }
458 }
459
460 SkPaint paint;
461 // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
462 // that against our 'color' param.
463 paint.setColorFilter(
464 SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed(
465 SkGaussianColorFilter::Make()));
466
467 drawProc(vertices.get(), SkBlendMode::kModulate, paint,
468 context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective());
469
470 return true;
471 }
472 }
473
tilted(const SkPoint3 & zPlaneParams)474 static bool tilted(const SkPoint3& zPlaneParams) {
475 return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
476 }
477
map(const SkMatrix & m,const SkPoint3 & pt)478 static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) {
479 SkPoint3 result;
480 m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX);
481 result.fZ = pt.fZ;
482 return result;
483 }
484
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)485 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
486 SkColor* outAmbientColor, SkColor* outSpotColor) {
487 // For tonal color we only compute color values for the spot shadow.
488 // The ambient shadow is greyscale only.
489
490 // Ambient
491 *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
492
493 // Spot
494 int spotR = SkColorGetR(inSpotColor);
495 int spotG = SkColorGetG(inSpotColor);
496 int spotB = SkColorGetB(inSpotColor);
497 int max = SkTMax(SkTMax(spotR, spotG), spotB);
498 int min = SkTMin(SkTMin(spotR, spotG), spotB);
499 SkScalar luminance = 0.5f*(max + min)/255.f;
500 SkScalar origA = SkColorGetA(inSpotColor)/255.f;
501
502 // We compute a color alpha value based on the luminance of the color, scaled by an
503 // adjusted alpha value. We want the following properties to match the UX examples
504 // (assuming a = 0.25) and to ensure that we have reasonable results when the color
505 // is black and/or the alpha is 0:
506 // f(0, a) = 0
507 // f(luminance, 0) = 0
508 // f(1, 0.25) = .5
509 // f(0.5, 0.25) = .4
510 // f(1, 1) = 1
511 // The following functions match this as closely as possible.
512 SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
513 SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
514 colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
515
516 // Similarly, we set the greyscale alpha based on luminance and alpha so that
517 // f(0, a) = a
518 // f(luminance, 0) = 0
519 // f(1, 0.25) = 0.15
520 SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
521
522 // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
523 // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
524 // which is an adjusted value of 'a'. Assuming SrcOver, a background color of B_rgb, and
525 // ignoring edge falloff, this becomes
526 //
527 // (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
528 //
529 // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
530 // set the alpha to (S_a + C_a - S_a*C_a).
531 SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
532 SkScalar tonalAlpha = colorScale + greyscaleAlpha;
533 SkScalar unPremulScale = colorScale / tonalAlpha;
534 *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
535 unPremulScale*spotR,
536 unPremulScale*spotG,
537 unPremulScale*spotB);
538 }
539
540 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & devLightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)541 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
542 const SkPoint3& devLightPos, SkScalar lightRadius,
543 SkColor ambientColor, SkColor spotColor,
544 uint32_t flags) {
545 SkMatrix inverse;
546 if (!canvas->getTotalMatrix().invert(&inverse)) {
547 return;
548 }
549 SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY);
550
551 SkDrawShadowRec rec;
552 rec.fZPlaneParams = zPlaneParams;
553 rec.fLightPos = { pt.fX, pt.fY, devLightPos.fZ };
554 rec.fLightRadius = lightRadius;
555 rec.fAmbientColor = ambientColor;
556 rec.fSpotColor = spotColor;
557 rec.fFlags = flags;
558
559 canvas->private_draw_shadow_rec(path, rec);
560 }
561
validate_rec(const SkDrawShadowRec & rec)562 static bool validate_rec(const SkDrawShadowRec& rec) {
563 return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
564 SkScalarIsFinite(rec.fLightRadius);
565 }
566
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)567 void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
568 auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
569 SkScalar tx, SkScalar ty, bool hasPerspective) {
570 if (vertices->vertexCount()) {
571 // For perspective shadows we've already computed the shadow in world space,
572 // and we can't translate it without changing it. Otherwise we concat the
573 // change in translation from the cached version.
574 SkAutoDeviceCTMRestore adr(
575 this,
576 hasPerspective ? SkMatrix::I()
577 : SkMatrix::Concat(this->ctm(), SkMatrix::MakeTrans(tx, ty)));
578 this->drawVertices(vertices, nullptr, 0, mode, paint);
579 }
580 };
581
582 if (!validate_rec(rec)) {
583 return;
584 }
585
586 SkMatrix viewMatrix = this->ctm();
587 SkAutoDeviceCTMRestore adr(this, SkMatrix::I());
588
589 ShadowedPath shadowedPath(&path, &viewMatrix);
590
591 bool tiltZPlane = tilted(rec.fZPlaneParams);
592 bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
593 bool uncached = tiltZPlane || path.isVolatile();
594
595 SkPoint3 zPlaneParams = rec.fZPlaneParams;
596 SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos);
597 float lightRadius = rec.fLightRadius;
598
599 if (SkColorGetA(rec.fAmbientColor) > 0) {
600 bool success = false;
601 if (uncached) {
602 sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
603 zPlaneParams,
604 transparent);
605 if (vertices) {
606 SkPaint paint;
607 // Run the vertex color through a GaussianColorFilter and then modulate the
608 // grayscale result of that against our 'color' param.
609 paint.setColorFilter(
610 SkColorFilters::Blend(rec.fAmbientColor,
611 SkBlendMode::kModulate)->makeComposed(
612 SkGaussianColorFilter::Make()));
613 this->drawVertices(vertices.get(), nullptr, 0, SkBlendMode::kModulate, paint);
614 success = true;
615 }
616 }
617
618 if (!success) {
619 AmbientVerticesFactory factory;
620 factory.fOccluderHeight = zPlaneParams.fZ;
621 factory.fTransparent = transparent;
622 if (viewMatrix.hasPerspective()) {
623 factory.fOffset.set(0, 0);
624 } else {
625 factory.fOffset.fX = viewMatrix.getTranslateX();
626 factory.fOffset.fY = viewMatrix.getTranslateY();
627 }
628
629 if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) {
630 // Pretransform the path to avoid transforming the stroke, below.
631 SkPath devSpacePath;
632 path.transform(viewMatrix, &devSpacePath);
633 devSpacePath.setIsVolatile(true);
634
635 // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
636 // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
637 //
638 // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
639 // can be calculated by interpolating:
640 //
641 // original edge outer edge
642 // | |<---------- r ------>|
643 // |<------|--- f -------------->|
644 // | | |
645 // alpha = 1 alpha = a alpha = 0
646 //
647 // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
648 //
649 // We now need to outset the path to place the new edge in the center of the
650 // blur region:
651 //
652 // original new
653 // | |<------|--- r ------>|
654 // |<------|--- f -|------------>|
655 // | |<- o ->|<--- f/2 --->|
656 //
657 // r = o + f/2, so o = r - f/2
658 //
659 // We outset by using the stroker, so the strokeWidth is o/2.
660 //
661 SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
662 SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
663 SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
664 SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
665
666 // Now draw with blur
667 SkPaint paint;
668 paint.setColor(rec.fAmbientColor);
669 paint.setStrokeWidth(strokeWidth);
670 paint.setStyle(SkPaint::kStrokeAndFill_Style);
671 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
672 bool respectCTM = false;
673 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
674 this->drawPath(devSpacePath, paint);
675 }
676 }
677 }
678
679 if (SkColorGetA(rec.fSpotColor) > 0) {
680 bool success = false;
681 if (uncached) {
682 sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
683 zPlaneParams,
684 devLightPos, lightRadius,
685 transparent);
686 if (vertices) {
687 SkPaint paint;
688 // Run the vertex color through a GaussianColorFilter and then modulate the
689 // grayscale result of that against our 'color' param.
690 paint.setColorFilter(
691 SkColorFilters::Blend(rec.fSpotColor,
692 SkBlendMode::kModulate)->makeComposed(
693 SkGaussianColorFilter::Make()));
694 this->drawVertices(vertices.get(), nullptr, 0, SkBlendMode::kModulate, paint);
695 success = true;
696 }
697 }
698
699 if (!success) {
700 SpotVerticesFactory factory;
701 factory.fOccluderHeight = zPlaneParams.fZ;
702 factory.fDevLightPos = devLightPos;
703 factory.fLightRadius = lightRadius;
704
705 SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
706 factory.fLocalCenter = center;
707 viewMatrix.mapPoints(¢er, 1);
708 SkScalar radius, scale;
709 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
710 devLightPos.fY - center.fY, devLightPos.fZ,
711 lightRadius, &radius, &scale, &factory.fOffset);
712 SkRect devBounds;
713 viewMatrix.mapRect(&devBounds, path.getBounds());
714 if (transparent ||
715 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
716 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
717 // if the translation of the shadow is big enough we're going to end up
718 // filling the entire umbra, so we can treat these as all the same
719 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
720 } else if (factory.fOffset.length()*scale + scale < radius) {
721 // if we don't translate more than the blur distance, can assume umbra is covered
722 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra;
723 } else if (path.isConvex()) {
724 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra;
725 } else {
726 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
727 }
728 // need to add this after we classify the shadow
729 factory.fOffset.fX += viewMatrix.getTranslateX();
730 factory.fOffset.fY += viewMatrix.getTranslateY();
731
732 SkColor color = rec.fSpotColor;
733 #ifdef DEBUG_SHADOW_CHECKS
734 switch (factory.fOccluderType) {
735 case SpotVerticesFactory::OccluderType::kTransparent:
736 color = 0xFFD2B48C; // tan for transparent
737 break;
738 case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra:
739 color = 0xFFFFA500; // orange for opaque
740 break;
741 case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra:
742 color = 0xFFE5E500; // corn yellow for covered
743 break;
744 }
745 #endif
746 if (!draw_shadow(factory, drawVertsProc, shadowedPath, color)) {
747 // draw with blur
748 SkMatrix shadowMatrix;
749 if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
750 viewMatrix, zPlaneParams,
751 path.getBounds(),
752 &shadowMatrix, &radius)) {
753 return;
754 }
755 SkAutoDeviceCTMRestore adr(this, shadowMatrix);
756
757 SkPaint paint;
758 paint.setColor(rec.fSpotColor);
759 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
760 bool respectCTM = false;
761 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
762 this->drawPath(path, paint);
763 }
764 }
765 }
766 }
767