• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_CONTAINERS_FLAT_TREE_H_
6 #define BASE_CONTAINERS_FLAT_TREE_H_
7 
8 #include <algorithm>
9 #include <iterator>
10 #include <type_traits>
11 #include <vector>
12 
13 #include "base/template_util.h"
14 
15 namespace base {
16 
17 enum FlatContainerDupes {
18   KEEP_FIRST_OF_DUPES,
19   KEEP_LAST_OF_DUPES,
20 };
21 
22 namespace internal {
23 
24 // This is a convenience method returning true if Iterator is at least a
25 // ForwardIterator and thus supports multiple passes over a range.
26 template <class Iterator>
is_multipass()27 constexpr bool is_multipass() {
28   return std::is_base_of<
29       std::forward_iterator_tag,
30       typename std::iterator_traits<Iterator>::iterator_category>::value;
31 }
32 
33 // This algorithm is like unique() from the standard library except it
34 // selects only the last of consecutive values instead of the first.
35 template <class Iterator, class BinaryPredicate>
LastUnique(Iterator first,Iterator last,BinaryPredicate compare)36 Iterator LastUnique(Iterator first, Iterator last, BinaryPredicate compare) {
37   Iterator replacable = std::adjacent_find(first, last, compare);
38 
39   // No duplicate elements found.
40   if (replacable == last)
41     return last;
42 
43   first = std::next(replacable);
44 
45   // Last element is a duplicate but all others are unique.
46   if (first == last)
47     return replacable;
48 
49   // This loop is based on std::adjacent_find but std::adjacent_find doesn't
50   // quite cut it.
51   for (Iterator next = std::next(first); next != last; ++next, ++first) {
52     if (!compare(*first, *next))
53       *replacable++ = std::move(*first);
54   }
55 
56   // Last element should be copied unconditionally.
57   *replacable++ = std::move(*first);
58   return replacable;
59 }
60 
61 // Uses SFINAE to detect whether type has is_transparent member.
62 template <typename T, typename = void>
63 struct IsTransparentCompare : std::false_type {};
64 template <typename T>
65 struct IsTransparentCompare<T, std::void_t<typename T::is_transparent>>
66     : std::true_type {};
67 
68 // Implementation -------------------------------------------------------------
69 
70 // Implementation of a sorted vector for backing flat_set and flat_map. Do not
71 // use directly.
72 //
73 // The use of "value" in this is like std::map uses, meaning it's the thing
74 // contained (in the case of map it's a <Kay, Mapped> pair). The Key is how
75 // things are looked up. In the case of a set, Key == Value. In the case of
76 // a map, the Key is a component of a Value.
77 //
78 // The helper class GetKeyFromValue provides the means to extract a key from a
79 // value for comparison purposes. It should implement:
80 //   const Key& operator()(const Value&).
81 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
82 class flat_tree {
83  private:
84   using underlying_type = std::vector<Value>;
85 
86  public:
87   // --------------------------------------------------------------------------
88   // Types.
89   //
90   using key_type = Key;
91   using key_compare = KeyCompare;
92   using value_type = Value;
93 
94   // Wraps the templated key comparison to compare values.
95   class value_compare : public key_compare {
96    public:
97     value_compare() = default;
98 
99     template <class Cmp>
100     explicit value_compare(Cmp&& compare_arg)
101         : KeyCompare(std::forward<Cmp>(compare_arg)) {}
102 
103     bool operator()(const value_type& left, const value_type& right) const {
104       GetKeyFromValue extractor;
105       return key_compare::operator()(extractor(left), extractor(right));
106     }
107   };
108 
109   using pointer = typename underlying_type::pointer;
110   using const_pointer = typename underlying_type::const_pointer;
111   using reference = typename underlying_type::reference;
112   using const_reference = typename underlying_type::const_reference;
113   using size_type = typename underlying_type::size_type;
114   using difference_type = typename underlying_type::difference_type;
115   using iterator = typename underlying_type::iterator;
116   using const_iterator = typename underlying_type::const_iterator;
117   using reverse_iterator = typename underlying_type::reverse_iterator;
118   using const_reverse_iterator =
119       typename underlying_type::const_reverse_iterator;
120 
121   // --------------------------------------------------------------------------
122   // Lifetime.
123   //
124   // Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity
125   // and take O(N * log(N)) + O(N) if extra memory is available (N is a range
126   // length).
127   //
128   // Assume that move constructors invalidate iterators and references.
129   //
130   // The constructors that take ranges, lists, and vectors do not require that
131   // the input be sorted.
132 
133   flat_tree();
134   explicit flat_tree(const key_compare& comp);
135 
136   template <class InputIterator>
137   flat_tree(InputIterator first,
138             InputIterator last,
139             FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES,
140             const key_compare& comp = key_compare());
141 
142   flat_tree(const flat_tree&);
143   flat_tree(flat_tree&&) noexcept = default;
144 
145   flat_tree(std::vector<value_type> items,
146             FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES,
147             const key_compare& comp = key_compare());
148 
149   flat_tree(std::initializer_list<value_type> ilist,
150             FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES,
151             const key_compare& comp = key_compare());
152 
153   ~flat_tree();
154 
155   // --------------------------------------------------------------------------
156   // Assignments.
157   //
158   // Assume that move assignment invalidates iterators and references.
159 
160   flat_tree& operator=(const flat_tree&);
161   flat_tree& operator=(flat_tree&&);
162   // Takes the first if there are duplicates in the initializer list.
163   flat_tree& operator=(std::initializer_list<value_type> ilist);
164 
165   // --------------------------------------------------------------------------
166   // Memory management.
167   //
168   // Beware that shrink_to_fit() simply forwards the request to the
169   // underlying_type and its implementation is free to optimize otherwise and
170   // leave capacity() to be greater that its size.
171   //
172   // reserve() and shrink_to_fit() invalidate iterators and references.
173 
174   void reserve(size_type new_capacity);
175   size_type capacity() const;
176   void shrink_to_fit();
177 
178   // --------------------------------------------------------------------------
179   // Size management.
180   //
181   // clear() leaves the capacity() of the flat_tree unchanged.
182 
183   void clear();
184 
185   size_type size() const;
186   size_type max_size() const;
187   bool empty() const;
188 
189   // --------------------------------------------------------------------------
190   // Iterators.
191 
192   iterator begin();
193   const_iterator begin() const;
194   const_iterator cbegin() const;
195 
196   iterator end();
197   const_iterator end() const;
198   const_iterator cend() const;
199 
200   reverse_iterator rbegin();
201   const_reverse_iterator rbegin() const;
202   const_reverse_iterator crbegin() const;
203 
204   reverse_iterator rend();
205   const_reverse_iterator rend() const;
206   const_reverse_iterator crend() const;
207 
208   // --------------------------------------------------------------------------
209   // Insert operations.
210   //
211   // Assume that every operation invalidates iterators and references.
212   // Insertion of one element can take O(size). Capacity of flat_tree grows in
213   // an implementation-defined manner.
214   //
215   // NOTE: Prefer to build a new flat_tree from a std::vector (or similar)
216   // instead of calling insert() repeatedly.
217 
218   std::pair<iterator, bool> insert(const value_type& val);
219   std::pair<iterator, bool> insert(value_type&& val);
220 
221   iterator insert(const_iterator position_hint, const value_type& x);
222   iterator insert(const_iterator position_hint, value_type&& x);
223 
224   // This method inserts the values from the range [first, last) into the
225   // current tree. In case of KEEP_LAST_OF_DUPES newly added elements can
226   // overwrite existing values.
227   template <class InputIterator>
228   void insert(InputIterator first,
229               InputIterator last,
230               FlatContainerDupes dupes = KEEP_FIRST_OF_DUPES);
231 
232   template <class... Args>
233   std::pair<iterator, bool> emplace(Args&&... args);
234 
235   template <class... Args>
236   iterator emplace_hint(const_iterator position_hint, Args&&... args);
237 
238   // --------------------------------------------------------------------------
239   // Erase operations.
240   //
241   // Assume that every operation invalidates iterators and references.
242   //
243   // erase(position), erase(first, last) can take O(size).
244   // erase(key) may take O(size) + O(log(size)).
245   //
246   // Prefer base::EraseIf() or some other variation on erase(remove(), end())
247   // idiom when deleting multiple non-consecutive elements.
248 
249   iterator erase(iterator position);
250   iterator erase(const_iterator position);
251   iterator erase(const_iterator first, const_iterator last);
252   template <typename K>
253   size_type erase(const K& key);
254 
255   // --------------------------------------------------------------------------
256   // Comparators.
257 
258   key_compare key_comp() const;
259   value_compare value_comp() const;
260 
261   // --------------------------------------------------------------------------
262   // Search operations.
263   //
264   // Search operations have O(log(size)) complexity.
265 
266   template <typename K>
267   size_type count(const K& key) const;
268 
269   template <typename K>
270   iterator find(const K& key);
271 
272   template <typename K>
273   const_iterator find(const K& key) const;
274 
275   template <typename K>
276   std::pair<iterator, iterator> equal_range(const K& key);
277 
278   template <typename K>
279   std::pair<const_iterator, const_iterator> equal_range(const K& key) const;
280 
281   template <typename K>
282   iterator lower_bound(const K& key);
283 
284   template <typename K>
285   const_iterator lower_bound(const K& key) const;
286 
287   template <typename K>
288   iterator upper_bound(const K& key);
289 
290   template <typename K>
291   const_iterator upper_bound(const K& key) const;
292 
293   // --------------------------------------------------------------------------
294   // General operations.
295   //
296   // Assume that swap invalidates iterators and references.
297   //
298   // Implementation note: currently we use operator==() and operator<() on
299   // std::vector, because they have the same contract we need, so we use them
300   // directly for brevity and in case it is more optimal than calling equal()
301   // and lexicograhpical_compare(). If the underlying container type is changed,
302   // this code may need to be modified.
303 
304   void swap(flat_tree& other) noexcept;
305 
306   friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) {
307     return lhs.impl_.body_ == rhs.impl_.body_;
308   }
309 
310   friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) {
311     return !(lhs == rhs);
312   }
313 
314   friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) {
315     return lhs.impl_.body_ < rhs.impl_.body_;
316   }
317 
318   friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) {
319     return rhs < lhs;
320   }
321 
322   friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) {
323     return !(lhs < rhs);
324   }
325 
326   friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) {
327     return !(lhs > rhs);
328   }
329 
330   friend void swap(flat_tree& lhs, flat_tree& rhs) noexcept { lhs.swap(rhs); }
331 
332  protected:
333   // Emplaces a new item into the tree that is known not to be in it. This
334   // is for implementing map operator[].
335   template <class... Args>
336   iterator unsafe_emplace(const_iterator position, Args&&... args);
337 
338   // Attempts to emplace a new element with key |key|. Only if |key| is not yet
339   // present, construct value_type from |args| and insert it. Returns an
340   // iterator to the element with key |key| and a bool indicating whether an
341   // insertion happened.
342   template <class K, class... Args>
343   std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args);
344 
345   // Similar to |emplace_key_args|, but checks |hint| first as a possible
346   // insertion position.
347   template <class K, class... Args>
348   std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint,
349                                                   const K& key,
350                                                   Args&&... args);
351 
352  private:
353   // Helper class for e.g. lower_bound that can compare a value on the left
354   // to a key on the right.
355   struct KeyValueCompare {
356     // The key comparison object must outlive this class.
357     explicit KeyValueCompare(const key_compare& key_comp)
358         : key_comp_(key_comp) {}
359 
360     template <typename T, typename U>
361     bool operator()(const T& lhs, const U& rhs) const {
362       return key_comp_(extract_if_value_type(lhs), extract_if_value_type(rhs));
363     }
364 
365    private:
366     const key_type& extract_if_value_type(const value_type& v) const {
367       GetKeyFromValue extractor;
368       return extractor(v);
369     }
370 
371     template <typename K>
372     const K& extract_if_value_type(const K& k) const {
373       return k;
374     }
375 
376     const key_compare& key_comp_;
377   };
378 
379   const flat_tree& as_const() { return *this; }
380 
381   iterator const_cast_it(const_iterator c_it) {
382     auto distance = std::distance(cbegin(), c_it);
383     return std::next(begin(), distance);
384   }
385 
386   // This method is inspired by both std::map::insert(P&&) and
387   // std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent
388   // element is not present yet, otherwise it overwrites. It returns an iterator
389   // to the modified element and a flag indicating whether insertion or
390   // assignment happened.
391   template <class V>
392   std::pair<iterator, bool> insert_or_assign(V&& val) {
393     auto position = lower_bound(GetKeyFromValue()(val));
394 
395     if (position == end() || value_comp()(val, *position))
396       return {impl_.body_.emplace(position, std::forward<V>(val)), true};
397 
398     *position = std::forward<V>(val);
399     return {position, false};
400   }
401 
402   // This method is similar to insert_or_assign, with the following differences:
403   // - Instead of searching [begin(), end()) it only searches [first, last).
404   // - In case no equivalent element is found, val is appended to the end of the
405   //   underlying body and an iterator to the next bigger element in [first,
406   //   last) is returned.
407   template <class V>
408   std::pair<iterator, bool> append_or_assign(iterator first,
409                                              iterator last,
410                                              V&& val) {
411     auto position = std::lower_bound(first, last, val, value_comp());
412 
413     if (position == last || value_comp()(val, *position)) {
414       // emplace_back might invalidate position, which is why distance needs to
415       // be cached.
416       const difference_type distance = std::distance(begin(), position);
417       impl_.body_.emplace_back(std::forward<V>(val));
418       return {std::next(begin(), distance), true};
419     }
420 
421     *position = std::forward<V>(val);
422     return {position, false};
423   }
424 
425   // This method is similar to insert, with the following differences:
426   // - Instead of searching [begin(), end()) it only searches [first, last).
427   // - In case no equivalent element is found, val is appended to the end of the
428   //   underlying body and an iterator to the next bigger element in [first,
429   //   last) is returned.
430   template <class V>
431   std::pair<iterator, bool> append_unique(iterator first,
432                                           iterator last,
433                                           V&& val) {
434     auto position = std::lower_bound(first, last, val, value_comp());
435 
436     if (position == last || value_comp()(val, *position)) {
437       // emplace_back might invalidate position, which is why distance needs to
438       // be cached.
439       const difference_type distance = std::distance(begin(), position);
440       impl_.body_.emplace_back(std::forward<V>(val));
441       return {std::next(begin(), distance), true};
442     }
443 
444     return {position, false};
445   }
446 
447   void sort_and_unique(iterator first,
448                        iterator last,
449                        FlatContainerDupes dupes) {
450     // Preserve stability for the unique code below.
451     std::stable_sort(first, last, impl_.get_value_comp());
452 
453     auto comparator = [this](const value_type& lhs, const value_type& rhs) {
454       // lhs is already <= rhs due to sort, therefore
455       // !(lhs < rhs) <=> lhs == rhs.
456       return !impl_.get_value_comp()(lhs, rhs);
457     };
458 
459     iterator erase_after;
460     switch (dupes) {
461       case KEEP_FIRST_OF_DUPES:
462         erase_after = std::unique(first, last, comparator);
463         break;
464       case KEEP_LAST_OF_DUPES:
465         erase_after = LastUnique(first, last, comparator);
466         break;
467     }
468     erase(erase_after, last);
469   }
470 
471   // To support comparators that may not be possible to default-construct, we
472   // have to store an instance of Compare. Using this to store all internal
473   // state of flat_tree and using private inheritance to store compare lets us
474   // take advantage of an empty base class optimization to avoid extra space in
475   // the common case when Compare has no state.
476   struct Impl : private value_compare {
477     Impl() = default;
478 
479     template <class Cmp, class... Body>
480     explicit Impl(Cmp&& compare_arg, Body&&... underlying_type_args)
481         : value_compare(std::forward<Cmp>(compare_arg)),
482           body_(std::forward<Body>(underlying_type_args)...) {}
483 
484     const value_compare& get_value_comp() const { return *this; }
485     const key_compare& get_key_comp() const { return *this; }
486 
487     underlying_type body_;
488   } impl_;
489 
490   // If the compare is not transparent we want to construct key_type once.
491   template <typename K>
492   using KeyTypeOrK = typename std::
493       conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type;
494 };
495 
496 // ----------------------------------------------------------------------------
497 // Lifetime.
498 
499 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
500 flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree() = default;
501 
502 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
503 flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
504     const KeyCompare& comp)
505     : impl_(comp) {}
506 
507 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
508 template <class InputIterator>
509 flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
510     InputIterator first,
511     InputIterator last,
512     FlatContainerDupes dupe_handling,
513     const KeyCompare& comp)
514     : impl_(comp, first, last) {
515   sort_and_unique(begin(), end(), dupe_handling);
516 }
517 
518 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
519 flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
520     const flat_tree&) = default;
521 
522 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
523 flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
524     std::vector<value_type> items,
525     FlatContainerDupes dupe_handling,
526     const KeyCompare& comp)
527     : impl_(comp, std::move(items)) {
528   sort_and_unique(begin(), end(), dupe_handling);
529 }
530 
531 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
532 flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
533     std::initializer_list<value_type> ilist,
534     FlatContainerDupes dupe_handling,
535     const KeyCompare& comp)
536     : flat_tree(std::begin(ilist), std::end(ilist), dupe_handling, comp) {}
537 
538 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
539 flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::~flat_tree() = default;
540 
541 // ----------------------------------------------------------------------------
542 // Assignments.
543 
544 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
545 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=(
546     const flat_tree&) -> flat_tree& = default;
547 
548 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
549 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=(flat_tree &&)
550     -> flat_tree& = default;
551 
552 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
553 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=(
554     std::initializer_list<value_type> ilist) -> flat_tree& {
555   impl_.body_ = ilist;
556   sort_and_unique(begin(), end(), KEEP_FIRST_OF_DUPES);
557   return *this;
558 }
559 
560 // ----------------------------------------------------------------------------
561 // Memory management.
562 
563 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
564 void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::reserve(
565     size_type new_capacity) {
566   impl_.body_.reserve(new_capacity);
567 }
568 
569 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
570 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::capacity() const
571     -> size_type {
572   return impl_.body_.capacity();
573 }
574 
575 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
576 void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::shrink_to_fit() {
577   impl_.body_.shrink_to_fit();
578 }
579 
580 // ----------------------------------------------------------------------------
581 // Size management.
582 
583 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
584 void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::clear() {
585   impl_.body_.clear();
586 }
587 
588 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
589 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::size() const
590     -> size_type {
591   return impl_.body_.size();
592 }
593 
594 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
595 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::max_size() const
596     -> size_type {
597   return impl_.body_.max_size();
598 }
599 
600 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
601 bool flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::empty() const {
602   return impl_.body_.empty();
603 }
604 
605 // ----------------------------------------------------------------------------
606 // Iterators.
607 
608 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
609 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::begin() -> iterator {
610   return impl_.body_.begin();
611 }
612 
613 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
614 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::begin() const
615     -> const_iterator {
616   return impl_.body_.begin();
617 }
618 
619 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
620 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::cbegin() const
621     -> const_iterator {
622   return impl_.body_.cbegin();
623 }
624 
625 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
626 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::end() -> iterator {
627   return impl_.body_.end();
628 }
629 
630 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
631 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::end() const
632     -> const_iterator {
633   return impl_.body_.end();
634 }
635 
636 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
637 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::cend() const
638     -> const_iterator {
639   return impl_.body_.cend();
640 }
641 
642 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
643 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rbegin()
644     -> reverse_iterator {
645   return impl_.body_.rbegin();
646 }
647 
648 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
649 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rbegin() const
650     -> const_reverse_iterator {
651   return impl_.body_.rbegin();
652 }
653 
654 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
655 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::crbegin() const
656     -> const_reverse_iterator {
657   return impl_.body_.crbegin();
658 }
659 
660 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
661 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rend()
662     -> reverse_iterator {
663   return impl_.body_.rend();
664 }
665 
666 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
667 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rend() const
668     -> const_reverse_iterator {
669   return impl_.body_.rend();
670 }
671 
672 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
673 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::crend() const
674     -> const_reverse_iterator {
675   return impl_.body_.crend();
676 }
677 
678 // ----------------------------------------------------------------------------
679 // Insert operations.
680 //
681 // Currently we use position_hint the same way as eastl or boost:
682 // https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493
683 
684 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
685 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
686     const value_type& val) -> std::pair<iterator, bool> {
687   return emplace_key_args(GetKeyFromValue()(val), val);
688 }
689 
690 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
691 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
692     value_type&& val) -> std::pair<iterator, bool> {
693   return emplace_key_args(GetKeyFromValue()(val), std::move(val));
694 }
695 
696 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
697 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
698     const_iterator position_hint,
699     const value_type& val) -> iterator {
700   return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val)
701       .first;
702 }
703 
704 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
705 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
706     const_iterator position_hint,
707     value_type&& val) -> iterator {
708   return emplace_hint_key_args(position_hint, GetKeyFromValue()(val),
709                                std::move(val))
710       .first;
711 }
712 
713 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
714 template <class InputIterator>
715 void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
716     InputIterator first,
717     InputIterator last,
718     FlatContainerDupes dupes) {
719   if (first == last)
720     return;
721 
722   // Cache results whether existing elements should be overwritten and whether
723   // inserting new elements happens immediately or will be done in a batch.
724   const bool overwrite_existing = dupes == KEEP_LAST_OF_DUPES;
725   const bool insert_inplace =
726       is_multipass<InputIterator>() && std::next(first) == last;
727 
728   if (insert_inplace) {
729     if (overwrite_existing) {
730       for (; first != last; ++first)
731         insert_or_assign(*first);
732     } else
733       std::copy(first, last, std::inserter(*this, end()));
734     return;
735   }
736 
737   // Provide a convenience lambda to obtain an iterator pointing past the last
738   // old element. This needs to be dymanic due to possible re-allocations.
739   const size_type original_size = size();
740   auto middle = [this, original_size]() {
741     return std::next(begin(), original_size);
742   };
743 
744   // For batch updates initialize the first insertion point.
745   difference_type pos_first_new = original_size;
746 
747   // Loop over the input range while appending new values and overwriting
748   // existing ones, if applicable. Keep track of the first insertion point.
749   if (overwrite_existing) {
750     for (; first != last; ++first) {
751       std::pair<iterator, bool> result =
752           append_or_assign(begin(), middle(), *first);
753       if (result.second) {
754         pos_first_new =
755             std::min(pos_first_new, std::distance(begin(), result.first));
756       }
757     }
758   } else {
759     for (; first != last; ++first) {
760       std::pair<iterator, bool> result =
761           append_unique(begin(), middle(), *first);
762       if (result.second) {
763         pos_first_new =
764             std::min(pos_first_new, std::distance(begin(), result.first));
765       }
766     }
767   }
768 
769   // The new elements might be unordered and contain duplicates, so post-process
770   // the just inserted elements and merge them with the rest, inserting them at
771   // the previously found spot.
772   sort_and_unique(middle(), end(), dupes);
773   std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(),
774                      value_comp());
775 }
776 
777 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
778 template <class... Args>
779 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace(Args&&... args)
780     -> std::pair<iterator, bool> {
781   return insert(value_type(std::forward<Args>(args)...));
782 }
783 
784 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
785 template <class... Args>
786 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_hint(
787     const_iterator position_hint,
788     Args&&... args) -> iterator {
789   return insert(position_hint, value_type(std::forward<Args>(args)...));
790 }
791 
792 // ----------------------------------------------------------------------------
793 // Erase operations.
794 
795 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
796 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(
797     iterator position) -> iterator {
798   return impl_.body_.erase(position);
799 }
800 
801 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
802 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(
803     const_iterator position) -> iterator {
804   return impl_.body_.erase(position);
805 }
806 
807 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
808 template <typename K>
809 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(const K& val)
810     -> size_type {
811   auto eq_range = equal_range(val);
812   auto res = std::distance(eq_range.first, eq_range.second);
813   erase(eq_range.first, eq_range.second);
814   return res;
815 }
816 
817 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
818 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(
819     const_iterator first,
820     const_iterator last) -> iterator {
821   return impl_.body_.erase(first, last);
822 }
823 
824 // ----------------------------------------------------------------------------
825 // Comparators.
826 
827 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
828 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::key_comp() const
829     -> key_compare {
830   return impl_.get_key_comp();
831 }
832 
833 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
834 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::value_comp() const
835     -> value_compare {
836   return impl_.get_value_comp();
837 }
838 
839 // ----------------------------------------------------------------------------
840 // Search operations.
841 
842 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
843 template <typename K>
844 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::count(
845     const K& key) const -> size_type {
846   auto eq_range = equal_range(key);
847   return std::distance(eq_range.first, eq_range.second);
848 }
849 
850 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
851 template <typename K>
852 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::find(const K& key)
853     -> iterator {
854   return const_cast_it(as_const().find(key));
855 }
856 
857 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
858 template <typename K>
859 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::find(
860     const K& key) const -> const_iterator {
861   auto eq_range = equal_range(key);
862   return (eq_range.first == eq_range.second) ? end() : eq_range.first;
863 }
864 
865 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
866 template <typename K>
867 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::equal_range(
868     const K& key) -> std::pair<iterator, iterator> {
869   auto res = as_const().equal_range(key);
870   return {const_cast_it(res.first), const_cast_it(res.second)};
871 }
872 
873 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
874 template <typename K>
875 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::equal_range(
876     const K& key) const -> std::pair<const_iterator, const_iterator> {
877   auto lower = lower_bound(key);
878 
879   GetKeyFromValue extractor;
880   if (lower == end() || impl_.get_key_comp()(key, extractor(*lower)))
881     return {lower, lower};
882 
883   return {lower, std::next(lower)};
884 }
885 
886 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
887 template <typename K>
888 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::lower_bound(
889     const K& key) -> iterator {
890   return const_cast_it(as_const().lower_bound(key));
891 }
892 
893 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
894 template <typename K>
895 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::lower_bound(
896     const K& key) const -> const_iterator {
897   static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value,
898                 "Requested type cannot be bound to the container's key_type "
899                 "which is required for a non-transparent compare.");
900 
901   const KeyTypeOrK<K>& key_ref = key;
902 
903   KeyValueCompare key_value(impl_.get_key_comp());
904   return std::lower_bound(begin(), end(), key_ref, key_value);
905 }
906 
907 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
908 template <typename K>
909 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::upper_bound(
910     const K& key) -> iterator {
911   return const_cast_it(as_const().upper_bound(key));
912 }
913 
914 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
915 template <typename K>
916 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::upper_bound(
917     const K& key) const -> const_iterator {
918   static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value,
919                 "Requested type cannot be bound to the container's key_type "
920                 "which is required for a non-transparent compare.");
921 
922   const KeyTypeOrK<K>& key_ref = key;
923 
924   KeyValueCompare key_value(impl_.get_key_comp());
925   return std::upper_bound(begin(), end(), key_ref, key_value);
926 }
927 
928 // ----------------------------------------------------------------------------
929 // General operations.
930 
931 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
932 void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::swap(
933     flat_tree& other) noexcept {
934   std::swap(impl_, other.impl_);
935 }
936 
937 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
938 template <class... Args>
939 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::unsafe_emplace(
940     const_iterator position,
941     Args&&... args) -> iterator {
942   return impl_.body_.emplace(position, std::forward<Args>(args)...);
943 }
944 
945 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
946 template <class K, class... Args>
947 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_key_args(
948     const K& key,
949     Args&&... args) -> std::pair<iterator, bool> {
950   auto lower = lower_bound(key);
951   if (lower == end() || key_comp()(key, GetKeyFromValue()(*lower)))
952     return {unsafe_emplace(lower, std::forward<Args>(args)...), true};
953   return {lower, false};
954 }
955 
956 template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
957 template <class K, class... Args>
958 auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_hint_key_args(
959     const_iterator hint,
960     const K& key,
961     Args&&... args) -> std::pair<iterator, bool> {
962   GetKeyFromValue extractor;
963   if ((hint == begin() || key_comp()(extractor(*std::prev(hint)), key))) {
964     if (hint == end() || key_comp()(key, extractor(*hint))) {
965       // *(hint - 1) < key < *hint => key did not exist and hint is correct.
966       return {unsafe_emplace(hint, std::forward<Args>(args)...), true};
967     }
968     if (!key_comp()(extractor(*hint), key)) {
969       // key == *hint => no-op, return correct hint.
970       return {const_cast_it(hint), false};
971     }
972   }
973   // hint was not helpful, dispatch to hintless version.
974   return emplace_key_args(key, std::forward<Args>(args)...);
975 }
976 
977 // For containers like sets, the key is the same as the value. This implements
978 // the GetKeyFromValue template parameter to flat_tree for this case.
979 template <class Key>
980 struct GetKeyFromValueIdentity {
981   const Key& operator()(const Key& k) const { return k; }
982 };
983 
984 }  // namespace internal
985 
986 // ----------------------------------------------------------------------------
987 // Free functions.
988 
989 // Erases all elements that match predicate. It has O(size) complexity.
990 template <class Key,
991           class Value,
992           class GetKeyFromValue,
993           class KeyCompare,
994           typename Predicate>
995 void EraseIf(base::internal::flat_tree<Key, Value, GetKeyFromValue, KeyCompare>&
996                  container,
997              Predicate pred) {
998   container.erase(std::remove_if(container.begin(), container.end(), pred),
999                   container.end());
1000 }
1001 
1002 }  // namespace base
1003 
1004 #endif  // BASE_CONTAINERS_FLAT_TREE_H_
1005