• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 2010-2014, International Business Machines
6 * Corporation and others.  All Rights Reserved.
7 *******************************************************************************
8 * collationiterator.cpp
9 *
10 * created on: 2010oct27
11 * created by: Markus W. Scherer
12 */
13 
14 #include "utypeinfo.h"  // for 'typeid' to work
15 
16 #include "unicode/utypes.h"
17 
18 #if !UCONFIG_NO_COLLATION
19 
20 #include "unicode/ucharstrie.h"
21 #include "unicode/ustringtrie.h"
22 #include "charstr.h"
23 #include "cmemory.h"
24 #include "collation.h"
25 #include "collationdata.h"
26 #include "collationfcd.h"
27 #include "collationiterator.h"
28 #include "normalizer2impl.h"
29 #include "uassert.h"
30 #include "uvectr32.h"
31 
32 U_NAMESPACE_BEGIN
33 
~CEBuffer()34 CollationIterator::CEBuffer::~CEBuffer() {}
35 
36 UBool
ensureAppendCapacity(int32_t appCap,UErrorCode & errorCode)37 CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) {
38     int32_t capacity = buffer.getCapacity();
39     if((length + appCap) <= capacity) { return TRUE; }
40     if(U_FAILURE(errorCode)) { return FALSE; }
41     do {
42         if(capacity < 1000) {
43             capacity *= 4;
44         } else {
45             capacity *= 2;
46         }
47     } while(capacity < (length + appCap));
48     int64_t *p = buffer.resize(capacity, length);
49     if(p == NULL) {
50         errorCode = U_MEMORY_ALLOCATION_ERROR;
51         return FALSE;
52     }
53     return TRUE;
54 }
55 
56 // State of combining marks skipped in discontiguous contraction.
57 // We create a state object on first use and keep it around deactivated between uses.
58 class SkippedState : public UMemory {
59 public:
60     // Born active but empty.
SkippedState()61     SkippedState() : pos(0), skipLengthAtMatch(0) {}
clear()62     void clear() {
63         oldBuffer.remove();
64         pos = 0;
65         // The newBuffer is reset by setFirstSkipped().
66     }
67 
isEmpty() const68     UBool isEmpty() const { return oldBuffer.isEmpty(); }
69 
hasNext() const70     UBool hasNext() const { return pos < oldBuffer.length(); }
71 
72     // Requires hasNext().
next()73     UChar32 next() {
74         UChar32 c = oldBuffer.char32At(pos);
75         pos += U16_LENGTH(c);
76         return c;
77     }
78 
79     // Accounts for one more input code point read beyond the end of the marks buffer.
incBeyond()80     void incBeyond() {
81         U_ASSERT(!hasNext());
82         ++pos;
83     }
84 
85     // Goes backward through the skipped-marks buffer.
86     // Returns the number of code points read beyond the skipped marks
87     // that need to be backtracked through normal input.
backwardNumCodePoints(int32_t n)88     int32_t backwardNumCodePoints(int32_t n) {
89         int32_t length = oldBuffer.length();
90         int32_t beyond = pos - length;
91         if(beyond > 0) {
92             if(beyond >= n) {
93                 // Not back far enough to re-enter the oldBuffer.
94                 pos -= n;
95                 return n;
96             } else {
97                 // Back out all beyond-oldBuffer code points and re-enter the buffer.
98                 pos = oldBuffer.moveIndex32(length, beyond - n);
99                 return beyond;
100             }
101         } else {
102             // Go backwards from inside the oldBuffer.
103             pos = oldBuffer.moveIndex32(pos, -n);
104             return 0;
105         }
106     }
107 
setFirstSkipped(UChar32 c)108     void setFirstSkipped(UChar32 c) {
109         skipLengthAtMatch = 0;
110         newBuffer.setTo(c);
111     }
112 
skip(UChar32 c)113     void skip(UChar32 c) {
114         newBuffer.append(c);
115     }
116 
recordMatch()117     void recordMatch() { skipLengthAtMatch = newBuffer.length(); }
118 
119     // Replaces the characters we consumed with the newly skipped ones.
replaceMatch()120     void replaceMatch() {
121         // Note: UnicodeString.replace() pins pos to at most length().
122         oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch);
123         pos = 0;
124     }
125 
saveTrieState(const UCharsTrie & trie)126     void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); }
resetToTrieState(UCharsTrie & trie) const127     void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); }
128 
129 private:
130     // Combining marks skipped in previous discontiguous-contraction matching.
131     // After that discontiguous contraction was completed, we start reading them from here.
132     UnicodeString oldBuffer;
133     // Combining marks newly skipped in current discontiguous-contraction matching.
134     // These might have been read from the normal text or from the oldBuffer.
135     UnicodeString newBuffer;
136     // Reading index in oldBuffer,
137     // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()).
138     int32_t pos;
139     // newBuffer.length() at the time of the last matching character.
140     // When a partial match fails, we back out skipped and partial-matching input characters.
141     int32_t skipLengthAtMatch;
142     // We save the trie state before we attempt to match a character,
143     // so that we can skip it and try the next one.
144     UCharsTrie::State state;
145 };
146 
CollationIterator(const CollationIterator & other)147 CollationIterator::CollationIterator(const CollationIterator &other)
148         : UObject(other),
149           trie(other.trie),
150           data(other.data),
151           cesIndex(other.cesIndex),
152           skipped(NULL),
153           numCpFwd(other.numCpFwd),
154           isNumeric(other.isNumeric) {
155     UErrorCode errorCode = U_ZERO_ERROR;
156     int32_t length = other.ceBuffer.length;
157     if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) {
158         for(int32_t i = 0; i < length; ++i) {
159             ceBuffer.set(i, other.ceBuffer.get(i));
160         }
161         ceBuffer.length = length;
162     } else {
163         cesIndex = 0;
164     }
165 }
166 
~CollationIterator()167 CollationIterator::~CollationIterator() {
168     delete skipped;
169 }
170 
171 UBool
operator ==(const CollationIterator & other) const172 CollationIterator::operator==(const CollationIterator &other) const {
173     // Subclasses: Call this method and then add more specific checks.
174     // Compare the iterator state but not the collation data (trie & data fields):
175     // Assume that the caller compares the data.
176     // Ignore skipped since that should be unused between calls to nextCE().
177     // (It only stays around to avoid another memory allocation.)
178     if(!(typeid(*this) == typeid(other) &&
179             ceBuffer.length == other.ceBuffer.length &&
180             cesIndex == other.cesIndex &&
181             numCpFwd == other.numCpFwd &&
182             isNumeric == other.isNumeric)) {
183         return FALSE;
184     }
185     for(int32_t i = 0; i < ceBuffer.length; ++i) {
186         if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return FALSE; }
187     }
188     return TRUE;
189 }
190 
191 void
reset()192 CollationIterator::reset() {
193     cesIndex = ceBuffer.length = 0;
194     if(skipped != NULL) { skipped->clear(); }
195 }
196 
197 int32_t
fetchCEs(UErrorCode & errorCode)198 CollationIterator::fetchCEs(UErrorCode &errorCode) {
199     while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) {
200         // No need to loop for each expansion CE.
201         cesIndex = ceBuffer.length;
202     }
203     return ceBuffer.length;
204 }
205 
206 uint32_t
handleNextCE32(UChar32 & c,UErrorCode & errorCode)207 CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) {
208     c = nextCodePoint(errorCode);
209     return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c);
210 }
211 
212 UChar
handleGetTrailSurrogate()213 CollationIterator::handleGetTrailSurrogate() {
214     return 0;
215 }
216 
217 UBool
foundNULTerminator()218 CollationIterator::foundNULTerminator() {
219     return FALSE;
220 }
221 
222 UBool
forbidSurrogateCodePoints() const223 CollationIterator::forbidSurrogateCodePoints() const {
224     return FALSE;
225 }
226 
227 uint32_t
getDataCE32(UChar32 c) const228 CollationIterator::getDataCE32(UChar32 c) const {
229     return data->getCE32(c);
230 }
231 
232 uint32_t
getCE32FromBuilderData(uint32_t,UErrorCode & errorCode)233 CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) {
234     if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
235     return 0;
236 }
237 
238 int64_t
nextCEFromCE32(const CollationData * d,UChar32 c,uint32_t ce32,UErrorCode & errorCode)239 CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
240                                   UErrorCode &errorCode) {
241     --ceBuffer.length;  // Undo ceBuffer.incLength().
242     appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
243     if(U_SUCCESS(errorCode)) {
244         return ceBuffer.get(cesIndex++);
245     } else {
246         return Collation::NO_CE_PRIMARY;
247     }
248 }
249 
250 void
appendCEsFromCE32(const CollationData * d,UChar32 c,uint32_t ce32,UBool forward,UErrorCode & errorCode)251 CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
252                                      UBool forward, UErrorCode &errorCode) {
253     while(Collation::isSpecialCE32(ce32)) {
254         switch(Collation::tagFromCE32(ce32)) {
255         case Collation::FALLBACK_TAG:
256         case Collation::RESERVED_TAG_3:
257             if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
258             return;
259         case Collation::LONG_PRIMARY_TAG:
260             ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode);
261             return;
262         case Collation::LONG_SECONDARY_TAG:
263             ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode);
264             return;
265         case Collation::LATIN_EXPANSION_TAG:
266             if(ceBuffer.ensureAppendCapacity(2, errorCode)) {
267                 ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32));
268                 ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32));
269                 ceBuffer.length += 2;
270             }
271             return;
272         case Collation::EXPANSION32_TAG: {
273             const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32);
274             int32_t length = Collation::lengthFromCE32(ce32);
275             if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
276                 do {
277                     ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++));
278                 } while(--length > 0);
279             }
280             return;
281         }
282         case Collation::EXPANSION_TAG: {
283             const int64_t *ces = d->ces + Collation::indexFromCE32(ce32);
284             int32_t length = Collation::lengthFromCE32(ce32);
285             if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
286                 do {
287                     ceBuffer.appendUnsafe(*ces++);
288                 } while(--length > 0);
289             }
290             return;
291         }
292         case Collation::BUILDER_DATA_TAG:
293             ce32 = getCE32FromBuilderData(ce32, errorCode);
294             if(U_FAILURE(errorCode)) { return; }
295             if(ce32 == Collation::FALLBACK_CE32) {
296                 d = data->base;
297                 ce32 = d->getCE32(c);
298             }
299             break;
300         case Collation::PREFIX_TAG:
301             if(forward) { backwardNumCodePoints(1, errorCode); }
302             ce32 = getCE32FromPrefix(d, ce32, errorCode);
303             if(forward) { forwardNumCodePoints(1, errorCode); }
304             break;
305         case Collation::CONTRACTION_TAG: {
306             const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
307             uint32_t defaultCE32 = CollationData::readCE32(p);  // Default if no suffix match.
308             if(!forward) {
309                 // Backward contractions are handled by previousCEUnsafe().
310                 // c has contractions but they were not found.
311                 ce32 = defaultCE32;
312                 break;
313             }
314             UChar32 nextCp;
315             if(skipped == NULL && numCpFwd < 0) {
316                 // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path,
317                 // avoiding the function call and the nextSkippedCodePoint() overhead.
318                 nextCp = nextCodePoint(errorCode);
319                 if(nextCp < 0) {
320                     // No more text.
321                     ce32 = defaultCE32;
322                     break;
323                 } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
324                         !CollationFCD::mayHaveLccc(nextCp)) {
325                     // All contraction suffixes start with characters with lccc!=0
326                     // but the next code point has lccc==0.
327                     backwardNumCodePoints(1, errorCode);
328                     ce32 = defaultCE32;
329                     break;
330                 }
331             } else {
332                 nextCp = nextSkippedCodePoint(errorCode);
333                 if(nextCp < 0) {
334                     // No more text.
335                     ce32 = defaultCE32;
336                     break;
337                 } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
338                         !CollationFCD::mayHaveLccc(nextCp)) {
339                     // All contraction suffixes start with characters with lccc!=0
340                     // but the next code point has lccc==0.
341                     backwardNumSkipped(1, errorCode);
342                     ce32 = defaultCE32;
343                     break;
344                 }
345             }
346             ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode);
347             if(ce32 == Collation::NO_CE32) {
348                 // CEs from a discontiguous contraction plus the skipped combining marks
349                 // have been appended already.
350                 return;
351             }
352             break;
353         }
354         case Collation::DIGIT_TAG:
355             if(isNumeric) {
356                 appendNumericCEs(ce32, forward, errorCode);
357                 return;
358             } else {
359                 // Fetch the non-numeric-collation CE32 and continue.
360                 ce32 = d->ce32s[Collation::indexFromCE32(ce32)];
361                 break;
362             }
363         case Collation::U0000_TAG:
364             U_ASSERT(c == 0);
365             if(forward && foundNULTerminator()) {
366                 // Handle NUL-termination. (Not needed in Java.)
367                 ceBuffer.append(Collation::NO_CE, errorCode);
368                 return;
369             } else {
370                 // Fetch the normal ce32 for U+0000 and continue.
371                 ce32 = d->ce32s[0];
372                 break;
373             }
374         case Collation::HANGUL_TAG: {
375             const uint32_t *jamoCE32s = d->jamoCE32s;
376             c -= Hangul::HANGUL_BASE;
377             UChar32 t = c % Hangul::JAMO_T_COUNT;
378             c /= Hangul::JAMO_T_COUNT;
379             UChar32 v = c % Hangul::JAMO_V_COUNT;
380             c /= Hangul::JAMO_V_COUNT;
381             if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) {
382                 // None of the Jamo CE32s are isSpecialCE32().
383                 // Avoid recursive function calls and per-Jamo tests.
384                 if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) {
385                     ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c]));
386                     ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v]));
387                     ceBuffer.length += 2;
388                     if(t != 0) {
389                         ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t]));
390                     }
391                 }
392                 return;
393             } else {
394                 // We should not need to compute each Jamo code point.
395                 // In particular, there should be no offset or implicit ce32.
396                 appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode);
397                 appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode);
398                 if(t == 0) { return; }
399                 // offset 39 = 19 + 21 - 1:
400                 // 19 = JAMO_L_COUNT
401                 // 21 = JAMO_T_COUNT
402                 // -1 = omit t==0
403                 ce32 = jamoCE32s[39 + t];
404                 c = U_SENTINEL;
405                 break;
406             }
407         }
408         case Collation::LEAD_SURROGATE_TAG: {
409             U_ASSERT(forward);  // Backward iteration should never see lead surrogate code _unit_ data.
410             U_ASSERT(U16_IS_LEAD(c));
411             UChar trail;
412             if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) {
413                 c = U16_GET_SUPPLEMENTARY(c, trail);
414                 ce32 &= Collation::LEAD_TYPE_MASK;
415                 if(ce32 == Collation::LEAD_ALL_UNASSIGNED) {
416                     ce32 = Collation::UNASSIGNED_CE32;  // unassigned-implicit
417                 } else if(ce32 == Collation::LEAD_ALL_FALLBACK ||
418                         (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) {
419                     // fall back to the base data
420                     d = d->base;
421                     ce32 = d->getCE32FromSupplementary(c);
422                 }
423             } else {
424                 // c is an unpaired surrogate.
425                 ce32 = Collation::UNASSIGNED_CE32;
426             }
427             break;
428         }
429         case Collation::OFFSET_TAG:
430             U_ASSERT(c >= 0);
431             ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode);
432             return;
433         case Collation::IMPLICIT_TAG:
434             U_ASSERT(c >= 0);
435             if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) {
436                 ce32 = Collation::FFFD_CE32;
437                 break;
438             } else {
439                 ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode);
440                 return;
441             }
442         }
443     }
444     ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode);
445 }
446 
447 uint32_t
getCE32FromPrefix(const CollationData * d,uint32_t ce32,UErrorCode & errorCode)448 CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32,
449                                      UErrorCode &errorCode) {
450     const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
451     ce32 = CollationData::readCE32(p);  // Default if no prefix match.
452     p += 2;
453     // Number of code points read before the original code point.
454     int32_t lookBehind = 0;
455     UCharsTrie prefixes(p);
456     for(;;) {
457         UChar32 c = previousCodePoint(errorCode);
458         if(c < 0) { break; }
459         ++lookBehind;
460         UStringTrieResult match = prefixes.nextForCodePoint(c);
461         if(USTRINGTRIE_HAS_VALUE(match)) {
462             ce32 = (uint32_t)prefixes.getValue();
463         }
464         if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
465     }
466     forwardNumCodePoints(lookBehind, errorCode);
467     return ce32;
468 }
469 
470 UChar32
nextSkippedCodePoint(UErrorCode & errorCode)471 CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) {
472     if(skipped != NULL && skipped->hasNext()) { return skipped->next(); }
473     if(numCpFwd == 0) { return U_SENTINEL; }
474     UChar32 c = nextCodePoint(errorCode);
475     if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); }
476     if(numCpFwd > 0 && c >= 0) { --numCpFwd; }
477     return c;
478 }
479 
480 void
backwardNumSkipped(int32_t n,UErrorCode & errorCode)481 CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) {
482     if(skipped != NULL && !skipped->isEmpty()) {
483         n = skipped->backwardNumCodePoints(n);
484     }
485     backwardNumCodePoints(n, errorCode);
486     if(numCpFwd >= 0) { numCpFwd += n; }
487 }
488 
489 uint32_t
nextCE32FromContraction(const CollationData * d,uint32_t contractionCE32,const UChar * p,uint32_t ce32,UChar32 c,UErrorCode & errorCode)490 CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32,
491                                            const UChar *p, uint32_t ce32, UChar32 c,
492                                            UErrorCode &errorCode) {
493     // c: next code point after the original one
494 
495     // Number of code points read beyond the original code point.
496     // Needed for discontiguous contraction matching.
497     int32_t lookAhead = 1;
498     // Number of code points read since the last match (initially only c).
499     int32_t sinceMatch = 1;
500     // Normally we only need a contiguous match,
501     // and therefore need not remember the suffixes state from before a mismatch for retrying.
502     // If we are already processing skipped combining marks, then we do track the state.
503     UCharsTrie suffixes(p);
504     if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
505     UStringTrieResult match = suffixes.firstForCodePoint(c);
506     for(;;) {
507         UChar32 nextCp;
508         if(USTRINGTRIE_HAS_VALUE(match)) {
509             ce32 = (uint32_t)suffixes.getValue();
510             if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) {
511                 return ce32;
512             }
513             if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
514             sinceMatch = 1;
515         } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) {
516             // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text.
517             // Back up if necessary, and try a discontiguous contraction.
518             if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 &&
519                     // Discontiguous contraction matching extends an existing match.
520                     // If there is no match yet, then there is nothing to do.
521                     ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 ||
522                         sinceMatch < lookAhead)) {
523                 // The last character of at least one suffix has lccc!=0,
524                 // allowing for discontiguous contractions.
525                 // UCA S2.1.1 only processes non-starters immediately following
526                 // "a match in the table" (sinceMatch=1).
527                 if(sinceMatch > 1) {
528                     // Return to the state after the last match.
529                     // (Return to sinceMatch=0 and re-fetch the first partially-matched character.)
530                     backwardNumSkipped(sinceMatch, errorCode);
531                     c = nextSkippedCodePoint(errorCode);
532                     lookAhead -= sinceMatch - 1;
533                     sinceMatch = 1;
534                 }
535                 if(d->getFCD16(c) > 0xff) {
536                     return nextCE32FromDiscontiguousContraction(
537                         d, suffixes, ce32, lookAhead, c, errorCode);
538                 }
539             }
540             break;
541         } else {
542             // Continue after partial match (USTRINGTRIE_NO_VALUE) for c.
543             // It does not have a result value, therefore it is not itself "a match in the table".
544             // If a partially-matched c has ccc!=0 then
545             // it might be skipped in discontiguous contraction.
546             c = nextCp;
547             ++sinceMatch;
548         }
549         ++lookAhead;
550         match = suffixes.nextForCodePoint(c);
551     }
552     backwardNumSkipped(sinceMatch, errorCode);
553     return ce32;
554 }
555 
556 uint32_t
nextCE32FromDiscontiguousContraction(const CollationData * d,UCharsTrie & suffixes,uint32_t ce32,int32_t lookAhead,UChar32 c,UErrorCode & errorCode)557 CollationIterator::nextCE32FromDiscontiguousContraction(
558         const CollationData *d, UCharsTrie &suffixes, uint32_t ce32,
559         int32_t lookAhead, UChar32 c,
560         UErrorCode &errorCode) {
561     if(U_FAILURE(errorCode)) { return 0; }
562 
563     // UCA section 3.3.2 Contractions:
564     // Contractions that end with non-starter characters
565     // are known as discontiguous contractions.
566     // ... discontiguous contractions must be detected in input text
567     // whenever the final sequence of non-starter characters could be rearranged
568     // so as to make a contiguous matching sequence that is canonically equivalent.
569 
570     // UCA: http://www.unicode.org/reports/tr10/#S2.1
571     // S2.1 Find the longest initial substring S at each point that has a match in the table.
572     // S2.1.1 If there are any non-starters following S, process each non-starter C.
573     // S2.1.2 If C is not blocked from S, find if S + C has a match in the table.
574     //     Note: A non-starter in a string is called blocked
575     //     if there is another non-starter of the same canonical combining class or zero
576     //     between it and the last character of canonical combining class 0.
577     // S2.1.3 If there is a match, replace S by S + C, and remove C.
578 
579     // First: Is a discontiguous contraction even possible?
580     uint16_t fcd16 = d->getFCD16(c);
581     U_ASSERT(fcd16 > 0xff);  // The caller checked this already, as a shortcut.
582     UChar32 nextCp = nextSkippedCodePoint(errorCode);
583     if(nextCp < 0) {
584         // No further text.
585         backwardNumSkipped(1, errorCode);
586         return ce32;
587     }
588     ++lookAhead;
589     uint8_t prevCC = (uint8_t)fcd16;
590     fcd16 = d->getFCD16(nextCp);
591     if(fcd16 <= 0xff) {
592         // The next code point after c is a starter (S2.1.1 "process each non-starter").
593         backwardNumSkipped(2, errorCode);
594         return ce32;
595     }
596 
597     // We have read and matched (lookAhead-2) code points,
598     // read non-matching c and peeked ahead at nextCp.
599     // Return to the state before the mismatch and continue matching with nextCp.
600     if(skipped == NULL || skipped->isEmpty()) {
601         if(skipped == NULL) {
602             skipped = new SkippedState();
603             if(skipped == NULL) {
604                 errorCode = U_MEMORY_ALLOCATION_ERROR;
605                 return 0;
606             }
607         }
608         suffixes.reset();
609         if(lookAhead > 2) {
610             // Replay the partial match so far.
611             backwardNumCodePoints(lookAhead, errorCode);
612             suffixes.firstForCodePoint(nextCodePoint(errorCode));
613             for(int32_t i = 3; i < lookAhead; ++i) {
614                 suffixes.nextForCodePoint(nextCodePoint(errorCode));
615             }
616             // Skip c (which did not match) and nextCp (which we will try now).
617             forwardNumCodePoints(2, errorCode);
618         }
619         skipped->saveTrieState(suffixes);
620     } else {
621         // Reset to the trie state before the failed match of c.
622         skipped->resetToTrieState(suffixes);
623     }
624 
625     skipped->setFirstSkipped(c);
626     // Number of code points read since the last match (at this point: c and nextCp).
627     int32_t sinceMatch = 2;
628     c = nextCp;
629     for(;;) {
630         UStringTrieResult match;
631         // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2)
632         if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) {
633             // "If there is a match, replace S by S + C, and remove C." (S2.1.3)
634             // Keep prevCC unchanged.
635             ce32 = (uint32_t)suffixes.getValue();
636             sinceMatch = 0;
637             skipped->recordMatch();
638             if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
639             skipped->saveTrieState(suffixes);
640         } else {
641             // No match for "S + C", skip C.
642             skipped->skip(c);
643             skipped->resetToTrieState(suffixes);
644             prevCC = (uint8_t)fcd16;
645         }
646         if((c = nextSkippedCodePoint(errorCode)) < 0) { break; }
647         ++sinceMatch;
648         fcd16 = d->getFCD16(c);
649         if(fcd16 <= 0xff) {
650             // The next code point after c is a starter (S2.1.1 "process each non-starter").
651             break;
652         }
653     }
654     backwardNumSkipped(sinceMatch, errorCode);
655     UBool isTopDiscontiguous = skipped->isEmpty();
656     skipped->replaceMatch();
657     if(isTopDiscontiguous && !skipped->isEmpty()) {
658         // We did get a match after skipping one or more combining marks,
659         // and we are not in a recursive discontiguous contraction.
660         // Append CEs from the contraction ce32
661         // and then from the combining marks that we skipped before the match.
662         c = U_SENTINEL;
663         for(;;) {
664             appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
665             // Fetch CE32s for skipped combining marks from the normal data, with fallback,
666             // rather than from the CollationData where we found the contraction.
667             if(!skipped->hasNext()) { break; }
668             c = skipped->next();
669             ce32 = getDataCE32(c);
670             if(ce32 == Collation::FALLBACK_CE32) {
671                 d = data->base;
672                 ce32 = d->getCE32(c);
673             } else {
674                 d = data;
675             }
676             // Note: A nested discontiguous-contraction match
677             // replaces consumed combining marks with newly skipped ones
678             // and resets the reading position to the beginning.
679         }
680         skipped->clear();
681         ce32 = Collation::NO_CE32;  // Signal to the caller that the result is in the ceBuffer.
682     }
683     return ce32;
684 }
685 
686 void
appendNumericCEs(uint32_t ce32,UBool forward,UErrorCode & errorCode)687 CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) {
688     // Collect digits.
689     CharString digits;
690     if(forward) {
691         for(;;) {
692             char digit = Collation::digitFromCE32(ce32);
693             digits.append(digit, errorCode);
694             if(numCpFwd == 0) { break; }
695             UChar32 c = nextCodePoint(errorCode);
696             if(c < 0) { break; }
697             ce32 = data->getCE32(c);
698             if(ce32 == Collation::FALLBACK_CE32) {
699                 ce32 = data->base->getCE32(c);
700             }
701             if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
702                 backwardNumCodePoints(1, errorCode);
703                 break;
704             }
705             if(numCpFwd > 0) { --numCpFwd; }
706         }
707     } else {
708         for(;;) {
709             char digit = Collation::digitFromCE32(ce32);
710             digits.append(digit, errorCode);
711             UChar32 c = previousCodePoint(errorCode);
712             if(c < 0) { break; }
713             ce32 = data->getCE32(c);
714             if(ce32 == Collation::FALLBACK_CE32) {
715                 ce32 = data->base->getCE32(c);
716             }
717             if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
718                 forwardNumCodePoints(1, errorCode);
719                 break;
720             }
721         }
722         // Reverse the digit string.
723         char *p = digits.data();
724         char *q = p + digits.length() - 1;
725         while(p < q) {
726             char digit = *p;
727             *p++ = *q;
728             *q-- = digit;
729         }
730     }
731     if(U_FAILURE(errorCode)) { return; }
732     int32_t pos = 0;
733     do {
734         // Skip leading zeros.
735         while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; }
736         // Write a sequence of CEs for at most 254 digits at a time.
737         int32_t segmentLength = digits.length() - pos;
738         if(segmentLength > 254) { segmentLength = 254; }
739         appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode);
740         pos += segmentLength;
741     } while(U_SUCCESS(errorCode) && pos < digits.length());
742 }
743 
744 void
appendNumericSegmentCEs(const char * digits,int32_t length,UErrorCode & errorCode)745 CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) {
746     U_ASSERT(1 <= length && length <= 254);
747     U_ASSERT(length == 1 || digits[0] != 0);
748     uint32_t numericPrimary = data->numericPrimary;
749     // Note: We use primary byte values 2..255: digits are not compressible.
750     if(length <= 7) {
751         // Very dense encoding for small numbers.
752         int32_t value = digits[0];
753         for(int32_t i = 1; i < length; ++i) {
754             value = value * 10 + digits[i];
755         }
756         // Primary weight second byte values:
757         //     74 byte values   2.. 75 for small numbers in two-byte primary weights.
758         //     40 byte values  76..115 for medium numbers in three-byte primary weights.
759         //     16 byte values 116..131 for large numbers in four-byte primary weights.
760         //    124 byte values 132..255 for very large numbers with 4..127 digit pairs.
761         int32_t firstByte = 2;
762         int32_t numBytes = 74;
763         if(value < numBytes) {
764             // Two-byte primary for 0..73, good for day & month numbers etc.
765             uint32_t primary = numericPrimary | ((firstByte + value) << 16);
766             ceBuffer.append(Collation::makeCE(primary), errorCode);
767             return;
768         }
769         value -= numBytes;
770         firstByte += numBytes;
771         numBytes = 40;
772         if(value < numBytes * 254) {
773             // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more.
774             uint32_t primary = numericPrimary |
775                 ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8);
776             ceBuffer.append(Collation::makeCE(primary), errorCode);
777             return;
778         }
779         value -= numBytes * 254;
780         firstByte += numBytes;
781         numBytes = 16;
782         if(value < numBytes * 254 * 254) {
783             // Four-byte primary for 10234..1042489=10234+16*254*254-1.
784             uint32_t primary = numericPrimary | (2 + value % 254);
785             value /= 254;
786             primary |= (2 + value % 254) << 8;
787             value /= 254;
788             primary |= (firstByte + value % 254) << 16;
789             ceBuffer.append(Collation::makeCE(primary), errorCode);
790             return;
791         }
792         // original value > 1042489
793     }
794     U_ASSERT(length >= 7);
795 
796     // The second primary byte value 132..255 indicates the number of digit pairs (4..127),
797     // then we generate primary bytes with those pairs.
798     // Omit trailing 00 pairs.
799     // Decrement the value for the last pair.
800 
801     // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255.
802     int32_t numPairs = (length + 1) / 2;
803     uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16);
804     // Find the length without trailing 00 pairs.
805     while(digits[length - 1] == 0 && digits[length - 2] == 0) {
806         length -= 2;
807     }
808     // Read the first pair.
809     uint32_t pair;
810     int32_t pos;
811     if(length & 1) {
812         // Only "half a pair" if we have an odd number of digits.
813         pair = digits[0];
814         pos = 1;
815     } else {
816         pair = digits[0] * 10 + digits[1];
817         pos = 2;
818     }
819     pair = 11 + 2 * pair;
820     // Add the pairs of digits between pos and length.
821     int32_t shift = 8;
822     while(pos < length) {
823         if(shift == 0) {
824             // Every three pairs/bytes we need to store a 4-byte-primary CE
825             // and start with a new CE with the '0' primary lead byte.
826             primary |= pair;
827             ceBuffer.append(Collation::makeCE(primary), errorCode);
828             primary = numericPrimary;
829             shift = 16;
830         } else {
831             primary |= pair << shift;
832             shift -= 8;
833         }
834         pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]);
835         pos += 2;
836     }
837     primary |= (pair - 1) << shift;
838     ceBuffer.append(Collation::makeCE(primary), errorCode);
839 }
840 
841 int64_t
previousCE(UVector32 & offsets,UErrorCode & errorCode)842 CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) {
843     if(ceBuffer.length > 0) {
844         // Return the previous buffered CE.
845         return ceBuffer.get(--ceBuffer.length);
846     }
847     offsets.removeAllElements();
848     int32_t limitOffset = getOffset();
849     UChar32 c = previousCodePoint(errorCode);
850     if(c < 0) { return Collation::NO_CE; }
851     if(data->isUnsafeBackward(c, isNumeric)) {
852         return previousCEUnsafe(c, offsets, errorCode);
853     }
854     // Simple, safe-backwards iteration:
855     // Get a CE going backwards, handle prefixes but no contractions.
856     uint32_t ce32 = data->getCE32(c);
857     const CollationData *d;
858     if(ce32 == Collation::FALLBACK_CE32) {
859         d = data->base;
860         ce32 = d->getCE32(c);
861     } else {
862         d = data;
863     }
864     if(Collation::isSimpleOrLongCE32(ce32)) {
865         return Collation::ceFromCE32(ce32);
866     }
867     appendCEsFromCE32(d, c, ce32, FALSE, errorCode);
868     if(U_SUCCESS(errorCode)) {
869         if(ceBuffer.length > 1) {
870             offsets.addElement(getOffset(), errorCode);
871             // For an expansion, the offset of each non-initial CE is the limit offset,
872             // consistent with forward iteration.
873             while(offsets.size() <= ceBuffer.length) {
874                 offsets.addElement(limitOffset, errorCode);
875             }
876         }
877         return ceBuffer.get(--ceBuffer.length);
878     } else {
879         return Collation::NO_CE_PRIMARY;
880     }
881 }
882 
883 int64_t
previousCEUnsafe(UChar32 c,UVector32 & offsets,UErrorCode & errorCode)884 CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) {
885     // We just move through the input counting safe and unsafe code points
886     // without collecting the unsafe-backward substring into a buffer and
887     // switching to it.
888     // This is to keep the logic simple. Otherwise we would have to handle
889     // prefix matching going before the backward buffer, switching
890     // to iteration and back, etc.
891     // In the most important case of iterating over a normal string,
892     // reading from the string itself is already maximally fast.
893     // The only drawback there is that after getting the CEs we always
894     // skip backward to the safe character rather than switching out
895     // of a backwardBuffer.
896     // But this should not be the common case for previousCE(),
897     // and correctness and maintainability are more important than
898     // complex optimizations.
899     // Find the first safe character before c.
900     int32_t numBackward = 1;
901     while((c = previousCodePoint(errorCode)) >= 0) {
902         ++numBackward;
903         if(!data->isUnsafeBackward(c, isNumeric)) {
904             break;
905         }
906     }
907     // Set the forward iteration limit.
908     // Note: This counts code points.
909     // We cannot enforce a limit in the middle of a surrogate pair or similar.
910     numCpFwd = numBackward;
911     // Reset the forward iterator.
912     cesIndex = 0;
913     U_ASSERT(ceBuffer.length == 0);
914     // Go forward and collect the CEs.
915     int32_t offset = getOffset();
916     while(numCpFwd > 0) {
917         // nextCE() normally reads one code point.
918         // Contraction matching and digit specials read more and check numCpFwd.
919         --numCpFwd;
920         // Append one or more CEs to the ceBuffer.
921         (void)nextCE(errorCode);
922         U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE);
923         // No need to loop for getting each expansion CE from nextCE().
924         cesIndex = ceBuffer.length;
925         // However, we need to write an offset for each CE.
926         // This is for CollationElementIterator::getOffset() to return
927         // intermediate offsets from the unsafe-backwards segment.
928         U_ASSERT(offsets.size() < ceBuffer.length);
929         offsets.addElement(offset, errorCode);
930         // For an expansion, the offset of each non-initial CE is the limit offset,
931         // consistent with forward iteration.
932         offset = getOffset();
933         while(offsets.size() < ceBuffer.length) {
934             offsets.addElement(offset, errorCode);
935         }
936     }
937     U_ASSERT(offsets.size() == ceBuffer.length);
938     // End offset corresponding to just after the unsafe-backwards segment.
939     offsets.addElement(offset, errorCode);
940     // Reset the forward iteration limit
941     // and move backward to before the segment for which we fetched CEs.
942     numCpFwd = -1;
943     backwardNumCodePoints(numBackward, errorCode);
944     // Use the collected CEs and return the last one.
945     cesIndex = 0;  // Avoid cesIndex > ceBuffer.length when that gets decremented.
946     if(U_SUCCESS(errorCode)) {
947         return ceBuffer.get(--ceBuffer.length);
948     } else {
949         return Collation::NO_CE_PRIMARY;
950     }
951 }
952 
953 U_NAMESPACE_END
954 
955 #endif  // !UCONFIG_NO_COLLATION
956