1# benchmark 2[![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark) 3[![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master) 4[![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark) 5[![slackin](https://slackin-iqtfqnpzxd.now.sh/badge.svg)](https://slackin-iqtfqnpzxd.now.sh/) 6 7A library to support the benchmarking of functions, similar to unit-tests. 8 9Discussion group: https://groups.google.com/d/forum/benchmark-discuss 10 11IRC channel: https://freenode.net #googlebenchmark 12 13[Known issues and common problems](#known-issues) 14 15[Additional Tooling Documentation](docs/tools.md) 16 17[Assembly Testing Documentation](docs/AssemblyTests.md) 18 19 20## Building 21 22The basic steps for configuring and building the library look like this: 23 24```bash 25$ git clone https://github.com/google/benchmark.git 26# Benchmark requires Google Test as a dependency. Add the source tree as a subdirectory. 27$ git clone https://github.com/google/googletest.git benchmark/googletest 28$ mkdir build && cd build 29$ cmake -G <generator> [options] ../benchmark 30# Assuming a makefile generator was used 31$ make 32``` 33 34Note that Google Benchmark requires Google Test to build and run the tests. This 35dependency can be provided two ways: 36 37* Checkout the Google Test sources into `benchmark/googletest` as above. 38* Otherwise, if `-DBENCHMARK_DOWNLOAD_DEPENDENCIES=ON` is specified during 39 configuration, the library will automatically download and build any required 40 dependencies. 41 42If you do not wish to build and run the tests, add `-DBENCHMARK_ENABLE_GTEST_TESTS=OFF` 43to `CMAKE_ARGS`. 44 45 46## Installation Guide 47 48For Ubuntu and Debian Based System 49 50First make sure you have git and cmake installed (If not please install it) 51 52``` 53sudo apt-get install git 54sudo apt-get install cmake 55``` 56 57Now, let's clone the repository and build it 58 59``` 60git clone https://github.com/google/benchmark.git 61cd benchmark 62git clone https://github.com/google/googletest.git 63mkdir build 64cd build 65cmake .. -DCMAKE_BUILD_TYPE=RELEASE 66make 67``` 68 69We need to install the library globally now 70 71``` 72sudo make install 73``` 74 75Now you have google/benchmark installed in your machine 76Note: Don't forget to link to pthread library while building 77 78## Stable and Experimental Library Versions 79 80The main branch contains the latest stable version of the benchmarking library; 81the API of which can be considered largely stable, with source breaking changes 82being made only upon the release of a new major version. 83 84Newer, experimental, features are implemented and tested on the 85[`v2` branch](https://github.com/google/benchmark/tree/v2). Users who wish 86to use, test, and provide feedback on the new features are encouraged to try 87this branch. However, this branch provides no stability guarantees and reserves 88the right to change and break the API at any time. 89 90##Prerequisite knowledge 91 92Before attempting to understand this framework one should ideally have some familiarity with the structure and format of the Google Test framework, upon which it is based. Documentation for Google Test, including a "Getting Started" (primer) guide, is available here: 93https://github.com/google/googletest/blob/master/googletest/docs/Documentation.md 94 95 96## Example usage 97### Basic usage 98Define a function that executes the code to be measured. 99 100```c++ 101#include <benchmark/benchmark.h> 102 103static void BM_StringCreation(benchmark::State& state) { 104 for (auto _ : state) 105 std::string empty_string; 106} 107// Register the function as a benchmark 108BENCHMARK(BM_StringCreation); 109 110// Define another benchmark 111static void BM_StringCopy(benchmark::State& state) { 112 std::string x = "hello"; 113 for (auto _ : state) 114 std::string copy(x); 115} 116BENCHMARK(BM_StringCopy); 117 118BENCHMARK_MAIN(); 119``` 120 121Don't forget to inform your linker to add benchmark library e.g. through 122`-lbenchmark` compilation flag. Alternatively, you may leave out the 123`BENCHMARK_MAIN();` at the end of the source file and link against 124`-lbenchmark_main` to get the same default behavior. 125 126The benchmark library will reporting the timing for the code within the `for(...)` loop. 127 128### Passing arguments 129Sometimes a family of benchmarks can be implemented with just one routine that 130takes an extra argument to specify which one of the family of benchmarks to 131run. For example, the following code defines a family of benchmarks for 132measuring the speed of `memcpy()` calls of different lengths: 133 134```c++ 135static void BM_memcpy(benchmark::State& state) { 136 char* src = new char[state.range(0)]; 137 char* dst = new char[state.range(0)]; 138 memset(src, 'x', state.range(0)); 139 for (auto _ : state) 140 memcpy(dst, src, state.range(0)); 141 state.SetBytesProcessed(int64_t(state.iterations()) * 142 int64_t(state.range(0))); 143 delete[] src; 144 delete[] dst; 145} 146BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); 147``` 148 149The preceding code is quite repetitive, and can be replaced with the following 150short-hand. The following invocation will pick a few appropriate arguments in 151the specified range and will generate a benchmark for each such argument. 152 153```c++ 154BENCHMARK(BM_memcpy)->Range(8, 8<<10); 155``` 156 157By default the arguments in the range are generated in multiples of eight and 158the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the 159range multiplier is changed to multiples of two. 160 161```c++ 162BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10); 163``` 164Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ]. 165 166You might have a benchmark that depends on two or more inputs. For example, the 167following code defines a family of benchmarks for measuring the speed of set 168insertion. 169 170```c++ 171static void BM_SetInsert(benchmark::State& state) { 172 std::set<int> data; 173 for (auto _ : state) { 174 state.PauseTiming(); 175 data = ConstructRandomSet(state.range(0)); 176 state.ResumeTiming(); 177 for (int j = 0; j < state.range(1); ++j) 178 data.insert(RandomNumber()); 179 } 180} 181BENCHMARK(BM_SetInsert) 182 ->Args({1<<10, 128}) 183 ->Args({2<<10, 128}) 184 ->Args({4<<10, 128}) 185 ->Args({8<<10, 128}) 186 ->Args({1<<10, 512}) 187 ->Args({2<<10, 512}) 188 ->Args({4<<10, 512}) 189 ->Args({8<<10, 512}); 190``` 191 192The preceding code is quite repetitive, and can be replaced with the following 193short-hand. The following macro will pick a few appropriate arguments in the 194product of the two specified ranges and will generate a benchmark for each such 195pair. 196 197```c++ 198BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}}); 199``` 200 201For more complex patterns of inputs, passing a custom function to `Apply` allows 202programmatic specification of an arbitrary set of arguments on which to run the 203benchmark. The following example enumerates a dense range on one parameter, 204and a sparse range on the second. 205 206```c++ 207static void CustomArguments(benchmark::internal::Benchmark* b) { 208 for (int i = 0; i <= 10; ++i) 209 for (int j = 32; j <= 1024*1024; j *= 8) 210 b->Args({i, j}); 211} 212BENCHMARK(BM_SetInsert)->Apply(CustomArguments); 213``` 214 215### Calculate asymptotic complexity (Big O) 216Asymptotic complexity might be calculated for a family of benchmarks. The 217following code will calculate the coefficient for the high-order term in the 218running time and the normalized root-mean square error of string comparison. 219 220```c++ 221static void BM_StringCompare(benchmark::State& state) { 222 std::string s1(state.range(0), '-'); 223 std::string s2(state.range(0), '-'); 224 for (auto _ : state) { 225 benchmark::DoNotOptimize(s1.compare(s2)); 226 } 227 state.SetComplexityN(state.range(0)); 228} 229BENCHMARK(BM_StringCompare) 230 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN); 231``` 232 233As shown in the following invocation, asymptotic complexity might also be 234calculated automatically. 235 236```c++ 237BENCHMARK(BM_StringCompare) 238 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(); 239``` 240 241The following code will specify asymptotic complexity with a lambda function, 242that might be used to customize high-order term calculation. 243 244```c++ 245BENCHMARK(BM_StringCompare)->RangeMultiplier(2) 246 ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; }); 247``` 248 249### Templated benchmarks 250Templated benchmarks work the same way: This example produces and consumes 251messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the 252absence of multiprogramming. 253 254```c++ 255template <class Q> int BM_Sequential(benchmark::State& state) { 256 Q q; 257 typename Q::value_type v; 258 for (auto _ : state) { 259 for (int i = state.range(0); i--; ) 260 q.push(v); 261 for (int e = state.range(0); e--; ) 262 q.Wait(&v); 263 } 264 // actually messages, not bytes: 265 state.SetBytesProcessed( 266 static_cast<int64_t>(state.iterations())*state.range(0)); 267} 268BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); 269``` 270 271Three macros are provided for adding benchmark templates. 272 273```c++ 274#ifdef BENCHMARK_HAS_CXX11 275#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters. 276#else // C++ < C++11 277#define BENCHMARK_TEMPLATE(func, arg1) 278#endif 279#define BENCHMARK_TEMPLATE1(func, arg1) 280#define BENCHMARK_TEMPLATE2(func, arg1, arg2) 281``` 282 283### A Faster KeepRunning loop 284 285In C++11 mode, a ranged-based for loop should be used in preference to 286the `KeepRunning` loop for running the benchmarks. For example: 287 288```c++ 289static void BM_Fast(benchmark::State &state) { 290 for (auto _ : state) { 291 FastOperation(); 292 } 293} 294BENCHMARK(BM_Fast); 295``` 296 297The reason the ranged-for loop is faster than using `KeepRunning`, is 298because `KeepRunning` requires a memory load and store of the iteration count 299ever iteration, whereas the ranged-for variant is able to keep the iteration count 300in a register. 301 302For example, an empty inner loop of using the ranged-based for method looks like: 303 304```asm 305# Loop Init 306 mov rbx, qword ptr [r14 + 104] 307 call benchmark::State::StartKeepRunning() 308 test rbx, rbx 309 je .LoopEnd 310.LoopHeader: # =>This Inner Loop Header: Depth=1 311 add rbx, -1 312 jne .LoopHeader 313.LoopEnd: 314``` 315 316Compared to an empty `KeepRunning` loop, which looks like: 317 318```asm 319.LoopHeader: # in Loop: Header=BB0_3 Depth=1 320 cmp byte ptr [rbx], 1 321 jne .LoopInit 322.LoopBody: # =>This Inner Loop Header: Depth=1 323 mov rax, qword ptr [rbx + 8] 324 lea rcx, [rax + 1] 325 mov qword ptr [rbx + 8], rcx 326 cmp rax, qword ptr [rbx + 104] 327 jb .LoopHeader 328 jmp .LoopEnd 329.LoopInit: 330 mov rdi, rbx 331 call benchmark::State::StartKeepRunning() 332 jmp .LoopBody 333.LoopEnd: 334``` 335 336Unless C++03 compatibility is required, the ranged-for variant of writing 337the benchmark loop should be preferred. 338 339## Passing arbitrary arguments to a benchmark 340In C++11 it is possible to define a benchmark that takes an arbitrary number 341of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)` 342macro creates a benchmark that invokes `func` with the `benchmark::State` as 343the first argument followed by the specified `args...`. 344The `test_case_name` is appended to the name of the benchmark and 345should describe the values passed. 346 347```c++ 348template <class ...ExtraArgs> 349void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) { 350 [...] 351} 352// Registers a benchmark named "BM_takes_args/int_string_test" that passes 353// the specified values to `extra_args`. 354BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc")); 355``` 356Note that elements of `...args` may refer to global variables. Users should 357avoid modifying global state inside of a benchmark. 358 359## Using RegisterBenchmark(name, fn, args...) 360 361The `RegisterBenchmark(name, func, args...)` function provides an alternative 362way to create and register benchmarks. 363`RegisterBenchmark(name, func, args...)` creates, registers, and returns a 364pointer to a new benchmark with the specified `name` that invokes 365`func(st, args...)` where `st` is a `benchmark::State` object. 366 367Unlike the `BENCHMARK` registration macros, which can only be used at the global 368scope, the `RegisterBenchmark` can be called anywhere. This allows for 369benchmark tests to be registered programmatically. 370 371Additionally `RegisterBenchmark` allows any callable object to be registered 372as a benchmark. Including capturing lambdas and function objects. 373 374For Example: 375```c++ 376auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ }; 377 378int main(int argc, char** argv) { 379 for (auto& test_input : { /* ... */ }) 380 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input); 381 benchmark::Initialize(&argc, argv); 382 benchmark::RunSpecifiedBenchmarks(); 383} 384``` 385 386### Multithreaded benchmarks 387In a multithreaded test (benchmark invoked by multiple threads simultaneously), 388it is guaranteed that none of the threads will start until all have reached 389the start of the benchmark loop, and all will have finished before any thread 390exits the benchmark loop. (This behavior is also provided by the `KeepRunning()` 391API) As such, any global setup or teardown can be wrapped in a check against the thread 392index: 393 394```c++ 395static void BM_MultiThreaded(benchmark::State& state) { 396 if (state.thread_index == 0) { 397 // Setup code here. 398 } 399 for (auto _ : state) { 400 // Run the test as normal. 401 } 402 if (state.thread_index == 0) { 403 // Teardown code here. 404 } 405} 406BENCHMARK(BM_MultiThreaded)->Threads(2); 407``` 408 409If the benchmarked code itself uses threads and you want to compare it to 410single-threaded code, you may want to use real-time ("wallclock") measurements 411for latency comparisons: 412 413```c++ 414BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime(); 415``` 416 417Without `UseRealTime`, CPU time is used by default. 418 419 420## Manual timing 421For benchmarking something for which neither CPU time nor real-time are 422correct or accurate enough, completely manual timing is supported using 423the `UseManualTime` function. 424 425When `UseManualTime` is used, the benchmarked code must call 426`SetIterationTime` once per iteration of the benchmark loop to 427report the manually measured time. 428 429An example use case for this is benchmarking GPU execution (e.g. OpenCL 430or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot 431be accurately measured using CPU time or real-time. Instead, they can be 432measured accurately using a dedicated API, and these measurement results 433can be reported back with `SetIterationTime`. 434 435```c++ 436static void BM_ManualTiming(benchmark::State& state) { 437 int microseconds = state.range(0); 438 std::chrono::duration<double, std::micro> sleep_duration { 439 static_cast<double>(microseconds) 440 }; 441 442 for (auto _ : state) { 443 auto start = std::chrono::high_resolution_clock::now(); 444 // Simulate some useful workload with a sleep 445 std::this_thread::sleep_for(sleep_duration); 446 auto end = std::chrono::high_resolution_clock::now(); 447 448 auto elapsed_seconds = 449 std::chrono::duration_cast<std::chrono::duration<double>>( 450 end - start); 451 452 state.SetIterationTime(elapsed_seconds.count()); 453 } 454} 455BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime(); 456``` 457 458### Preventing optimisation 459To prevent a value or expression from being optimized away by the compiler 460the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()` 461functions can be used. 462 463```c++ 464static void BM_test(benchmark::State& state) { 465 for (auto _ : state) { 466 int x = 0; 467 for (int i=0; i < 64; ++i) { 468 benchmark::DoNotOptimize(x += i); 469 } 470 } 471} 472``` 473 474`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either 475memory or a register. For GNU based compilers it acts as read/write barrier 476for global memory. More specifically it forces the compiler to flush pending 477writes to memory and reload any other values as necessary. 478 479Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>` 480in any way. `<expr>` may even be removed entirely when the result is already 481known. For example: 482 483```c++ 484 /* Example 1: `<expr>` is removed entirely. */ 485 int foo(int x) { return x + 42; } 486 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42); 487 488 /* Example 2: Result of '<expr>' is only reused */ 489 int bar(int) __attribute__((const)); 490 while (...) DoNotOptimize(bar(0)); // Optimized to: 491 // int __result__ = bar(0); 492 // while (...) DoNotOptimize(__result__); 493``` 494 495The second tool for preventing optimizations is `ClobberMemory()`. In essence 496`ClobberMemory()` forces the compiler to perform all pending writes to global 497memory. Memory managed by block scope objects must be "escaped" using 498`DoNotOptimize(...)` before it can be clobbered. In the below example 499`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized 500away. 501 502```c++ 503static void BM_vector_push_back(benchmark::State& state) { 504 for (auto _ : state) { 505 std::vector<int> v; 506 v.reserve(1); 507 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered. 508 v.push_back(42); 509 benchmark::ClobberMemory(); // Force 42 to be written to memory. 510 } 511} 512``` 513 514Note that `ClobberMemory()` is only available for GNU or MSVC based compilers. 515 516### Set time unit manually 517If a benchmark runs a few milliseconds it may be hard to visually compare the 518measured times, since the output data is given in nanoseconds per default. In 519order to manually set the time unit, you can specify it manually: 520 521```c++ 522BENCHMARK(BM_test)->Unit(benchmark::kMillisecond); 523``` 524 525## Controlling number of iterations 526In all cases, the number of iterations for which the benchmark is run is 527governed by the amount of time the benchmark takes. Concretely, the number of 528iterations is at least one, not more than 1e9, until CPU time is greater than 529the minimum time, or the wallclock time is 5x minimum time. The minimum time is 530set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on 531the registered benchmark object. 532 533## Reporting the mean, median and standard deviation by repeated benchmarks 534By default each benchmark is run once and that single result is reported. 535However benchmarks are often noisy and a single result may not be representative 536of the overall behavior. For this reason it's possible to repeatedly rerun the 537benchmark. 538 539The number of runs of each benchmark is specified globally by the 540`--benchmark_repetitions` flag or on a per benchmark basis by calling 541`Repetitions` on the registered benchmark object. When a benchmark is run more 542than once the mean, median and standard deviation of the runs will be reported. 543 544Additionally the `--benchmark_report_aggregates_only={true|false}` flag or 545`ReportAggregatesOnly(bool)` function can be used to change how repeated tests 546are reported. By default the result of each repeated run is reported. When this 547option is `true` only the mean, median and standard deviation of the runs is reported. 548Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides 549the value of the flag for that benchmark. 550 551## User-defined statistics for repeated benchmarks 552While having mean, median and standard deviation is nice, this may not be 553enough for everyone. For example you may want to know what is the largest 554observation, e.g. because you have some real-time constraints. This is easy. 555The following code will specify a custom statistic to be calculated, defined 556by a lambda function. 557 558```c++ 559void BM_spin_empty(benchmark::State& state) { 560 for (auto _ : state) { 561 for (int x = 0; x < state.range(0); ++x) { 562 benchmark::DoNotOptimize(x); 563 } 564 } 565} 566 567BENCHMARK(BM_spin_empty) 568 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double { 569 return *(std::max_element(std::begin(v), std::end(v))); 570 }) 571 ->Arg(512); 572``` 573 574## Fixtures 575Fixture tests are created by 576first defining a type that derives from `::benchmark::Fixture` and then 577creating/registering the tests using the following macros: 578 579* `BENCHMARK_F(ClassName, Method)` 580* `BENCHMARK_DEFINE_F(ClassName, Method)` 581* `BENCHMARK_REGISTER_F(ClassName, Method)` 582 583For Example: 584 585```c++ 586class MyFixture : public benchmark::Fixture {}; 587 588BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) { 589 for (auto _ : st) { 590 ... 591 } 592} 593 594BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) { 595 for (auto _ : st) { 596 ... 597 } 598} 599/* BarTest is NOT registered */ 600BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2); 601/* BarTest is now registered */ 602``` 603 604### Templated fixtures 605Also you can create templated fixture by using the following macros: 606 607* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)` 608* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)` 609 610For example: 611```c++ 612template<typename T> 613class MyFixture : public benchmark::Fixture {}; 614 615BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) { 616 for (auto _ : st) { 617 ... 618 } 619} 620 621BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) { 622 for (auto _ : st) { 623 ... 624 } 625} 626 627BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2); 628``` 629 630## User-defined counters 631 632You can add your own counters with user-defined names. The example below 633will add columns "Foo", "Bar" and "Baz" in its output: 634 635```c++ 636static void UserCountersExample1(benchmark::State& state) { 637 double numFoos = 0, numBars = 0, numBazs = 0; 638 for (auto _ : state) { 639 // ... count Foo,Bar,Baz events 640 } 641 state.counters["Foo"] = numFoos; 642 state.counters["Bar"] = numBars; 643 state.counters["Baz"] = numBazs; 644} 645``` 646 647The `state.counters` object is a `std::map` with `std::string` keys 648and `Counter` values. The latter is a `double`-like class, via an implicit 649conversion to `double&`. Thus you can use all of the standard arithmetic 650assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter. 651 652In multithreaded benchmarks, each counter is set on the calling thread only. 653When the benchmark finishes, the counters from each thread will be summed; 654the resulting sum is the value which will be shown for the benchmark. 655 656The `Counter` constructor accepts two parameters: the value as a `double` 657and a bit flag which allows you to show counters as rates and/or as 658per-thread averages: 659 660```c++ 661 // sets a simple counter 662 state.counters["Foo"] = numFoos; 663 664 // Set the counter as a rate. It will be presented divided 665 // by the duration of the benchmark. 666 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate); 667 668 // Set the counter as a thread-average quantity. It will 669 // be presented divided by the number of threads. 670 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads); 671 672 // There's also a combined flag: 673 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate); 674``` 675 676When you're compiling in C++11 mode or later you can use `insert()` with 677`std::initializer_list`: 678 679```c++ 680 // With C++11, this can be done: 681 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}}); 682 // ... instead of: 683 state.counters["Foo"] = numFoos; 684 state.counters["Bar"] = numBars; 685 state.counters["Baz"] = numBazs; 686``` 687 688### Counter reporting 689 690When using the console reporter, by default, user counters are are printed at 691the end after the table, the same way as ``bytes_processed`` and 692``items_processed``. This is best for cases in which there are few counters, 693or where there are only a couple of lines per benchmark. Here's an example of 694the default output: 695 696``` 697------------------------------------------------------------------------------ 698Benchmark Time CPU Iterations UserCounters... 699------------------------------------------------------------------------------ 700BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8 701BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m 702BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2 703BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4 704BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8 705BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16 706BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32 707BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4 708BM_Factorial 26 ns 26 ns 26608979 40320 709BM_Factorial/real_time 26 ns 26 ns 26587936 40320 710BM_CalculatePiRange/1 16 ns 16 ns 45704255 0 711BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374 712BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746 713BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355 714``` 715 716If this doesn't suit you, you can print each counter as a table column by 717passing the flag `--benchmark_counters_tabular=true` to the benchmark 718application. This is best for cases in which there are a lot of counters, or 719a lot of lines per individual benchmark. Note that this will trigger a 720reprinting of the table header any time the counter set changes between 721individual benchmarks. Here's an example of corresponding output when 722`--benchmark_counters_tabular=true` is passed: 723 724``` 725--------------------------------------------------------------------------------------- 726Benchmark Time CPU Iterations Bar Bat Baz Foo 727--------------------------------------------------------------------------------------- 728BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8 729BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1 730BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2 731BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4 732BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8 733BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16 734BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32 735BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4 736-------------------------------------------------------------- 737Benchmark Time CPU Iterations 738-------------------------------------------------------------- 739BM_Factorial 26 ns 26 ns 26392245 40320 740BM_Factorial/real_time 26 ns 26 ns 26494107 40320 741BM_CalculatePiRange/1 15 ns 15 ns 45571597 0 742BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374 743BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746 744BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355 745BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184 746BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162 747BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416 748BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159 749BM_CalculatePi/threads:8 2255 ns 9943 ns 70936 750``` 751Note above the additional header printed when the benchmark changes from 752``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does 753not have the same counter set as ``BM_UserCounter``. 754 755## Exiting Benchmarks in Error 756 757When errors caused by external influences, such as file I/O and network 758communication, occur within a benchmark the 759`State::SkipWithError(const char* msg)` function can be used to skip that run 760of benchmark and report the error. Note that only future iterations of the 761`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop 762Users must explicitly exit the loop, otherwise all iterations will be performed. 763Users may explicitly return to exit the benchmark immediately. 764 765The `SkipWithError(...)` function may be used at any point within the benchmark, 766including before and after the benchmark loop. 767 768For example: 769 770```c++ 771static void BM_test(benchmark::State& state) { 772 auto resource = GetResource(); 773 if (!resource.good()) { 774 state.SkipWithError("Resource is not good!"); 775 // KeepRunning() loop will not be entered. 776 } 777 for (state.KeepRunning()) { 778 auto data = resource.read_data(); 779 if (!resource.good()) { 780 state.SkipWithError("Failed to read data!"); 781 break; // Needed to skip the rest of the iteration. 782 } 783 do_stuff(data); 784 } 785} 786 787static void BM_test_ranged_fo(benchmark::State & state) { 788 state.SkipWithError("test will not be entered"); 789 for (auto _ : state) { 790 state.SkipWithError("Failed!"); 791 break; // REQUIRED to prevent all further iterations. 792 } 793} 794``` 795 796## Running a subset of the benchmarks 797 798The `--benchmark_filter=<regex>` option can be used to only run the benchmarks 799which match the specified `<regex>`. For example: 800 801```bash 802$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32 803Run on (1 X 2300 MHz CPU ) 8042016-06-25 19:34:24 805Benchmark Time CPU Iterations 806---------------------------------------------------- 807BM_memcpy/32 11 ns 11 ns 79545455 808BM_memcpy/32k 2181 ns 2185 ns 324074 809BM_memcpy/32 12 ns 12 ns 54687500 810BM_memcpy/32k 1834 ns 1837 ns 357143 811``` 812 813 814## Output Formats 815The library supports multiple output formats. Use the 816`--benchmark_format=<console|json|csv>` flag to set the format type. `console` 817is the default format. 818 819The Console format is intended to be a human readable format. By default 820the format generates color output. Context is output on stderr and the 821tabular data on stdout. Example tabular output looks like: 822``` 823Benchmark Time(ns) CPU(ns) Iterations 824---------------------------------------------------------------------- 825BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s 826BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s 827BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s 828``` 829 830The JSON format outputs human readable json split into two top level attributes. 831The `context` attribute contains information about the run in general, including 832information about the CPU and the date. 833The `benchmarks` attribute contains a list of every benchmark run. Example json 834output looks like: 835```json 836{ 837 "context": { 838 "date": "2015/03/17-18:40:25", 839 "num_cpus": 40, 840 "mhz_per_cpu": 2801, 841 "cpu_scaling_enabled": false, 842 "build_type": "debug" 843 }, 844 "benchmarks": [ 845 { 846 "name": "BM_SetInsert/1024/1", 847 "iterations": 94877, 848 "real_time": 29275, 849 "cpu_time": 29836, 850 "bytes_per_second": 134066, 851 "items_per_second": 33516 852 }, 853 { 854 "name": "BM_SetInsert/1024/8", 855 "iterations": 21609, 856 "real_time": 32317, 857 "cpu_time": 32429, 858 "bytes_per_second": 986770, 859 "items_per_second": 246693 860 }, 861 { 862 "name": "BM_SetInsert/1024/10", 863 "iterations": 21393, 864 "real_time": 32724, 865 "cpu_time": 33355, 866 "bytes_per_second": 1199226, 867 "items_per_second": 299807 868 } 869 ] 870} 871``` 872 873The CSV format outputs comma-separated values. The `context` is output on stderr 874and the CSV itself on stdout. Example CSV output looks like: 875``` 876name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label 877"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942, 878"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115, 879"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06, 880``` 881 882## Output Files 883The library supports writing the output of the benchmark to a file specified 884by `--benchmark_out=<filename>`. The format of the output can be specified 885using `--benchmark_out_format={json|console|csv}`. Specifying 886`--benchmark_out` does not suppress the console output. 887 888## Debug vs Release 889By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use: 890 891``` 892cmake -DCMAKE_BUILD_TYPE=Release 893``` 894 895To enable link-time optimisation, use 896 897``` 898cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true 899``` 900 901If you are using gcc, you might need to set `GCC_AR` and `GCC_RANLIB` cmake cache variables, if autodetection fails. 902If you are using clang, you may need to set `LLVMAR_EXECUTABLE`, `LLVMNM_EXECUTABLE` and `LLVMRANLIB_EXECUTABLE` cmake cache variables. 903 904## Linking against the library 905 906When the library is built using GCC it is necessary to link with `-pthread`, 907due to how GCC implements `std::thread`. 908 909For GCC 4.x failing to link to pthreads will lead to runtime exceptions, not linker errors. 910See [issue #67](https://github.com/google/benchmark/issues/67) for more details. 911 912## Compiler Support 913 914Google Benchmark uses C++11 when building the library. As such we require 915a modern C++ toolchain, both compiler and standard library. 916 917The following minimum versions are strongly recommended build the library: 918 919* GCC 4.8 920* Clang 3.4 921* Visual Studio 2013 922* Intel 2015 Update 1 923 924Anything older *may* work. 925 926Note: Using the library and its headers in C++03 is supported. C++11 is only 927required to build the library. 928 929## Disable CPU frequency scaling 930If you see this error: 931``` 932***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead. 933``` 934you might want to disable the CPU frequency scaling while running the benchmark: 935```bash 936sudo cpupower frequency-set --governor performance 937./mybench 938sudo cpupower frequency-set --governor powersave 939``` 940 941# Known Issues 942 943### Windows with CMake 944 945* Users must manually link `shlwapi.lib`. Failure to do so may result 946in unresolved symbols. 947 948### Solaris 949 950* Users must explicitly link with kstat library (-lkstat compilation flag). 951