• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "ir.h"
25 #include "ir_builder.h"
26 #include "ir_optimization.h"
27 #include "ir_hierarchical_visitor.h"
28 #include "program/prog_instruction.h"
29 #include "program/prog_statevars.h"
30 #include "util/bitscan.h"
31 #include "builtin_functions.h"
32 #include "main/mtypes.h"
33 
34 using namespace ir_builder;
35 
36 #define imm1(x) new(mem_ctx) ir_constant((float) (x), 1)
37 #define imm3(x) new(mem_ctx) ir_constant((float) (x), 3)
38 
39 static ir_rvalue *
blend_multiply(ir_variable * src,ir_variable * dst)40 blend_multiply(ir_variable *src, ir_variable *dst)
41 {
42    /* f(Cs,Cd) = Cs*Cd */
43    return mul(src, dst);
44 }
45 
46 static ir_rvalue *
blend_screen(ir_variable * src,ir_variable * dst)47 blend_screen(ir_variable *src, ir_variable *dst)
48 {
49    /* f(Cs,Cd) = Cs+Cd-Cs*Cd */
50    return sub(add(src, dst), mul(src, dst));
51 }
52 
53 static ir_rvalue *
blend_overlay(ir_variable * src,ir_variable * dst)54 blend_overlay(ir_variable *src, ir_variable *dst)
55 {
56    void *mem_ctx = ralloc_parent(src);
57 
58    /* f(Cs,Cd) = 2*Cs*Cd, if Cd <= 0.5
59     *            1-2*(1-Cs)*(1-Cd), otherwise
60     */
61    ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
62    ir_rvalue *rule_2 =
63       sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
64    return csel(lequal(dst, imm3(0.5f)), rule_1, rule_2);
65 }
66 
67 static ir_rvalue *
blend_darken(ir_variable * src,ir_variable * dst)68 blend_darken(ir_variable *src, ir_variable *dst)
69 {
70    /* f(Cs,Cd) = min(Cs,Cd) */
71    return min2(src, dst);
72 }
73 
74 static ir_rvalue *
blend_lighten(ir_variable * src,ir_variable * dst)75 blend_lighten(ir_variable *src, ir_variable *dst)
76 {
77    /* f(Cs,Cd) = max(Cs,Cd) */
78    return max2(src, dst);
79 }
80 
81 static ir_rvalue *
blend_colordodge(ir_variable * src,ir_variable * dst)82 blend_colordodge(ir_variable *src, ir_variable *dst)
83 {
84    void *mem_ctx = ralloc_parent(src);
85 
86    /* f(Cs,Cd) =
87     *   0, if Cd <= 0
88     *   min(1,Cd/(1-Cs)), if Cd > 0 and Cs < 1
89     *   1, if Cd > 0 and Cs >= 1
90     */
91    return csel(lequal(dst, imm3(0)), imm3(0),
92                csel(gequal(src, imm3(1)), imm3(1),
93                     min2(imm3(1), div(dst, sub(imm3(1), src)))));
94 }
95 
96 static ir_rvalue *
blend_colorburn(ir_variable * src,ir_variable * dst)97 blend_colorburn(ir_variable *src, ir_variable *dst)
98 {
99    void *mem_ctx = ralloc_parent(src);
100 
101    /* f(Cs,Cd) =
102     *   1, if Cd >= 1
103     *   1 - min(1,(1-Cd)/Cs), if Cd < 1 and Cs > 0
104     *   0, if Cd < 1 and Cs <= 0
105     */
106    return csel(gequal(dst, imm3(1)), imm3(1),
107                csel(lequal(src, imm3(0)), imm3(0),
108                     sub(imm3(1), min2(imm3(1), div(sub(imm3(1), dst), src)))));
109 }
110 
111 static ir_rvalue *
blend_hardlight(ir_variable * src,ir_variable * dst)112 blend_hardlight(ir_variable *src, ir_variable *dst)
113 {
114    void *mem_ctx = ralloc_parent(src);
115 
116    /* f(Cs,Cd) = 2*Cs*Cd, if Cs <= 0.5
117     *            1-2*(1-Cs)*(1-Cd), otherwise
118     */
119    ir_rvalue *rule_1 = mul(imm3(2), mul(src, dst));
120    ir_rvalue *rule_2 =
121       sub(imm3(1), mul(imm3(2), mul(sub(imm3(1), src), sub(imm3(1), dst))));
122    return csel(lequal(src, imm3(0.5f)), rule_1, rule_2);
123 }
124 
125 static ir_rvalue *
blend_softlight(ir_variable * src,ir_variable * dst)126 blend_softlight(ir_variable *src, ir_variable *dst)
127 {
128    void *mem_ctx = ralloc_parent(src);
129 
130    /* f(Cs,Cd) =
131     *   Cd-(1-2*Cs)*Cd*(1-Cd),
132     *     if Cs <= 0.5
133     *   Cd+(2*Cs-1)*Cd*((16*Cd-12)*Cd+3),
134     *     if Cs > 0.5 and Cd <= 0.25
135     *   Cd+(2*Cs-1)*(sqrt(Cd)-Cd),
136     *     if Cs > 0.5 and Cd > 0.25
137     *
138     * We can simplify this to
139     *
140     * f(Cs,Cd) = Cd+(2*Cs-1)*g(Cs,Cd) where
141     * g(Cs,Cd) = Cd*Cd-Cd             if Cs <= 0.5
142     *            Cd*((16*Cd-12)*Cd+3) if Cs > 0.5 and Cd <= 0.25
143     *            sqrt(Cd)-Cd,         otherwise
144     */
145    ir_rvalue *factor_1 = mul(dst, sub(imm3(1), dst));
146    ir_rvalue *factor_2 =
147       mul(dst, add(mul(sub(mul(imm3(16), dst), imm3(12)), dst), imm3(3)));
148    ir_rvalue *factor_3 = sub(sqrt(dst), dst);
149    ir_rvalue *factor = csel(lequal(src, imm3(0.5f)), factor_1,
150                             csel(lequal(dst, imm3(0.25f)),
151                                         factor_2, factor_3));
152    return add(dst, mul(sub(mul(imm3(2), src), imm3(1)), factor));
153 }
154 
155 static ir_rvalue *
blend_difference(ir_variable * src,ir_variable * dst)156 blend_difference(ir_variable *src, ir_variable *dst)
157 {
158    return abs(sub(dst, src));
159 }
160 
161 static ir_rvalue *
blend_exclusion(ir_variable * src,ir_variable * dst)162 blend_exclusion(ir_variable *src, ir_variable *dst)
163 {
164    void *mem_ctx = ralloc_parent(src);
165 
166    return add(src, sub(dst, mul(imm3(2), mul(src, dst))));
167 }
168 
169 /* Return the minimum of a vec3's components */
170 static ir_rvalue *
minv3(ir_variable * v)171 minv3(ir_variable *v)
172 {
173    return min2(min2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
174 }
175 
176 /* Return the maximum of a vec3's components */
177 static ir_rvalue *
maxv3(ir_variable * v)178 maxv3(ir_variable *v)
179 {
180    return max2(max2(swizzle_x(v), swizzle_y(v)), swizzle_z(v));
181 }
182 
183 static ir_rvalue *
lumv3(ir_variable * c)184 lumv3(ir_variable *c)
185 {
186    ir_constant_data data;
187    data.f[0] = 0.30;
188    data.f[1] = 0.59;
189    data.f[2] = 0.11;
190 
191    void *mem_ctx = ralloc_parent(c);
192 
193    /* dot(c, vec3(0.30, 0.59, 0.11)) */
194    return dot(c, new(mem_ctx) ir_constant(glsl_type::vec3_type, &data));
195 }
196 
197 static ir_rvalue *
satv3(ir_variable * c)198 satv3(ir_variable *c)
199 {
200    return sub(maxv3(c), minv3(c));
201 }
202 
203 /* Take the base RGB color <cbase> and override its luminosity with that
204  * of the RGB color <clum>.
205  *
206  * This follows the equations given in the ES 3.2 (June 15th, 2016)
207  * specification.  Revision 16 of GL_KHR_blend_equation_advanced and
208  * revision 9 of GL_NV_blend_equation_advanced specify a different set
209  * of equations.  Older revisions match ES 3.2's text, and dEQP expects
210  * the ES 3.2 rules implemented here.
211  */
212 static void
set_lum(ir_factory * f,ir_variable * color,ir_variable * cbase,ir_variable * clum)213 set_lum(ir_factory *f,
214         ir_variable *color,
215         ir_variable *cbase,
216         ir_variable *clum)
217 {
218    void *mem_ctx = f->mem_ctx;
219    f->emit(assign(color, add(cbase, sub(lumv3(clum), lumv3(cbase)))));
220 
221    ir_variable *llum = f->make_temp(glsl_type::float_type, "__blend_lum");
222    ir_variable *mincol = f->make_temp(glsl_type::float_type, "__blend_mincol");
223    ir_variable *maxcol = f->make_temp(glsl_type::float_type, "__blend_maxcol");
224 
225    f->emit(assign(llum, lumv3(color)));
226    f->emit(assign(mincol, minv3(color)));
227    f->emit(assign(maxcol, maxv3(color)));
228 
229    f->emit(if_tree(less(mincol, imm1(0)),
230                    assign(color, add(llum, div(mul(sub(color, llum), llum),
231                                                sub(llum, mincol)))),
232                    if_tree(greater(maxcol, imm1(1)),
233                            assign(color, add(llum, div(mul(sub(color, llum),
234                                                            sub(imm3(1), llum)),
235                                                        sub(maxcol, llum)))))));
236 
237 }
238 
239 /* Take the base RGB color <cbase> and override its saturation with
240  * that of the RGB color <csat>.  The override the luminosity of the
241  * result with that of the RGB color <clum>.
242  */
243 static void
set_lum_sat(ir_factory * f,ir_variable * color,ir_variable * cbase,ir_variable * csat,ir_variable * clum)244 set_lum_sat(ir_factory *f,
245             ir_variable *color,
246             ir_variable *cbase,
247             ir_variable *csat,
248             ir_variable *clum)
249 {
250    void *mem_ctx = f->mem_ctx;
251 
252    ir_rvalue *minbase = minv3(cbase);
253    ir_rvalue *ssat = satv3(csat);
254 
255    ir_variable *sbase = f->make_temp(glsl_type::float_type, "__blend_sbase");
256    f->emit(assign(sbase, satv3(cbase)));
257 
258    /* Equivalent (modulo rounding errors) to setting the
259     * smallest (R,G,B) component to 0, the largest to <ssat>,
260     * and interpolating the "middle" component based on its
261     * original value relative to the smallest/largest.
262     */
263    f->emit(if_tree(greater(sbase, imm1(0)),
264                    assign(color, div(mul(sub(cbase, minbase), ssat), sbase)),
265                    assign(color, imm3(0))));
266    set_lum(f, color, color, clum);
267 }
268 
269 static ir_rvalue *
is_mode(ir_variable * mode,enum gl_advanced_blend_mode q)270 is_mode(ir_variable *mode, enum gl_advanced_blend_mode q)
271 {
272    return equal(mode, new(ralloc_parent(mode)) ir_constant(unsigned(q)));
273 }
274 
275 static ir_variable *
calc_blend_result(ir_factory f,ir_variable * mode,ir_variable * fb,ir_rvalue * blend_src,GLbitfield blend_qualifiers)276 calc_blend_result(ir_factory f,
277                   ir_variable *mode,
278                   ir_variable *fb,
279                   ir_rvalue *blend_src,
280                   GLbitfield blend_qualifiers)
281 {
282    void *mem_ctx = f.mem_ctx;
283    ir_variable *result = f.make_temp(glsl_type::vec4_type, "__blend_result");
284 
285    /* Save blend_src to a temporary so we can reference it multiple times. */
286    ir_variable *src = f.make_temp(glsl_type::vec4_type, "__blend_src");
287    f.emit(assign(src, blend_src));
288 
289    /* If we're not doing advanced blending, just write the original value. */
290    ir_if *if_blending = new(mem_ctx) ir_if(is_mode(mode, BLEND_NONE));
291    f.emit(if_blending);
292    if_blending->then_instructions.push_tail(assign(result, src));
293 
294    f.instructions = &if_blending->else_instructions;
295 
296    /* (Rs', Gs', Bs') =
297     *   (0, 0, 0),              if As == 0
298     *   (Rs/As, Gs/As, Bs/As),  otherwise
299     */
300    ir_variable *src_rgb = f.make_temp(glsl_type::vec3_type, "__blend_src_rgb");
301    ir_variable *src_alpha = f.make_temp(glsl_type::float_type, "__blend_src_a");
302 
303    /* (Rd', Gd', Bd') =
304     *   (0, 0, 0),              if Ad == 0
305     *   (Rd/Ad, Gd/Ad, Bd/Ad),  otherwise
306     */
307    ir_variable *dst_rgb = f.make_temp(glsl_type::vec3_type, "__blend_dst_rgb");
308    ir_variable *dst_alpha = f.make_temp(glsl_type::float_type, "__blend_dst_a");
309 
310    f.emit(assign(dst_alpha, swizzle_w(fb)));
311    f.emit(if_tree(equal(dst_alpha, imm1(0)),
312                      assign(dst_rgb, imm3(0)),
313                      assign(dst_rgb, csel(equal(swizzle_xyz(fb),
314                                                 swizzle(fb, SWIZZLE_WWWW, 3)),
315                                           imm3(1),
316                                           div(swizzle_xyz(fb), dst_alpha)))));
317 
318    f.emit(assign(src_alpha, swizzle_w(src)));
319    f.emit(if_tree(equal(src_alpha, imm1(0)),
320                      assign(src_rgb, imm3(0)),
321                      assign(src_rgb, csel(equal(swizzle_xyz(src),
322                                                 swizzle(src, SWIZZLE_WWWW, 3)),
323                                           imm3(1),
324                                           div(swizzle_xyz(src), src_alpha)))));
325 
326    ir_variable *factor = f.make_temp(glsl_type::vec3_type, "__blend_factor");
327 
328    ir_factory casefactory = f;
329 
330    unsigned choices = blend_qualifiers;
331    while (choices) {
332       enum gl_advanced_blend_mode choice = (enum gl_advanced_blend_mode)u_bit_scan(&choices);
333 
334       ir_if *iff = new(mem_ctx) ir_if(is_mode(mode, choice));
335       casefactory.emit(iff);
336       casefactory.instructions = &iff->then_instructions;
337 
338       ir_rvalue *val = NULL;
339 
340       switch (choice) {
341       case BLEND_MULTIPLY:
342          val = blend_multiply(src_rgb, dst_rgb);
343          break;
344       case BLEND_SCREEN:
345          val = blend_screen(src_rgb, dst_rgb);
346          break;
347       case BLEND_OVERLAY:
348          val = blend_overlay(src_rgb, dst_rgb);
349          break;
350       case BLEND_DARKEN:
351          val = blend_darken(src_rgb, dst_rgb);
352          break;
353       case BLEND_LIGHTEN:
354          val = blend_lighten(src_rgb, dst_rgb);
355          break;
356       case BLEND_COLORDODGE:
357          val = blend_colordodge(src_rgb, dst_rgb);
358          break;
359       case BLEND_COLORBURN:
360          val = blend_colorburn(src_rgb, dst_rgb);
361          break;
362       case BLEND_HARDLIGHT:
363          val = blend_hardlight(src_rgb, dst_rgb);
364          break;
365       case BLEND_SOFTLIGHT:
366          val = blend_softlight(src_rgb, dst_rgb);
367          break;
368       case BLEND_DIFFERENCE:
369          val = blend_difference(src_rgb, dst_rgb);
370          break;
371       case BLEND_EXCLUSION:
372          val = blend_exclusion(src_rgb, dst_rgb);
373          break;
374       case BLEND_HSL_HUE:
375          set_lum_sat(&casefactory, factor, src_rgb, dst_rgb, dst_rgb);
376          break;
377       case BLEND_HSL_SATURATION:
378          set_lum_sat(&casefactory, factor, dst_rgb, src_rgb, dst_rgb);
379          break;
380       case BLEND_HSL_COLOR:
381          set_lum(&casefactory, factor, src_rgb, dst_rgb);
382          break;
383       case BLEND_HSL_LUMINOSITY:
384          set_lum(&casefactory, factor, dst_rgb, src_rgb);
385          break;
386       case BLEND_NONE:
387          unreachable("not real cases");
388       }
389 
390       if (val)
391          casefactory.emit(assign(factor, val));
392 
393       casefactory.instructions = &iff->else_instructions;
394    }
395 
396    /* p0(As,Ad) = As*Ad
397     * p1(As,Ad) = As*(1-Ad)
398     * p2(As,Ad) = Ad*(1-As)
399     */
400    ir_variable *p0 = f.make_temp(glsl_type::float_type, "__blend_p0");
401    ir_variable *p1 = f.make_temp(glsl_type::float_type, "__blend_p1");
402    ir_variable *p2 = f.make_temp(glsl_type::float_type, "__blend_p2");
403 
404    f.emit(assign(p0, mul(src_alpha, dst_alpha)));
405    f.emit(assign(p1, mul(src_alpha, sub(imm1(1), dst_alpha))));
406    f.emit(assign(p2, mul(dst_alpha, sub(imm1(1), src_alpha))));
407 
408    /* R = f(Rs',Rd')*p0(As,Ad) + Y*Rs'*p1(As,Ad) + Z*Rd'*p2(As,Ad)
409     * G = f(Gs',Gd')*p0(As,Ad) + Y*Gs'*p1(As,Ad) + Z*Gd'*p2(As,Ad)
410     * B = f(Bs',Bd')*p0(As,Ad) + Y*Bs'*p1(As,Ad) + Z*Bd'*p2(As,Ad)
411     * A =          X*p0(As,Ad) +     Y*p1(As,Ad) +     Z*p2(As,Ad)
412     *
413     * <X, Y, Z> is always <1, 1, 1>, so we can ignore it.
414     *
415     * In vector form, this is:
416     * RGB = factor * p0 + Cs * p1 + Cd * p2
417     *   A = p0 + p1 + p2
418     */
419    f.emit(assign(result,
420                  add(add(mul(factor, p0), mul(src_rgb, p1)), mul(dst_rgb, p2)),
421                  WRITEMASK_XYZ));
422    f.emit(assign(result, add(add(p0, p1), p2), WRITEMASK_W));
423 
424    return result;
425 }
426 
427 /**
428  * Dereference var, or var[0] if it's an array.
429  */
430 static ir_dereference *
deref_output(ir_variable * var)431 deref_output(ir_variable *var)
432 {
433    void *mem_ctx = ralloc_parent(var);
434 
435    ir_dereference *val = new(mem_ctx) ir_dereference_variable(var);
436    if (val->type->is_array()) {
437       ir_constant *index = new(mem_ctx) ir_constant(0);
438       val = new(mem_ctx) ir_dereference_array(val, index);
439    }
440 
441    return val;
442 }
443 
444 static ir_function_signature *
get_main(gl_linked_shader * sh)445 get_main(gl_linked_shader *sh)
446 {
447    ir_function_signature *sig = NULL;
448    /* We can't use _mesa_get_main_function_signature() because we don't
449     * have a symbol table at this point.  Just go find main() by hand.
450     */
451    foreach_in_list(ir_instruction, ir, sh->ir) {
452       ir_function *f = ir->as_function();
453       if (f && strcmp(f->name, "main") == 0) {
454          exec_list void_parameters;
455          sig = f->matching_signature(NULL, &void_parameters, false);
456          break;
457       }
458    }
459    assert(sig != NULL); /* main() must exist */
460    return sig;
461 }
462 
463 bool
lower_blend_equation_advanced(struct gl_linked_shader * sh,bool coherent)464 lower_blend_equation_advanced(struct gl_linked_shader *sh, bool coherent)
465 {
466    assert(sh->Stage == MESA_SHADER_FRAGMENT);
467 
468    if (sh->Program->info.fs.advanced_blend_modes == 0)
469       return false;
470 
471    /* Lower early returns in main() so there's a single exit point
472     * where we can insert our lowering code.
473     */
474    do_lower_jumps(sh->ir, false, false, true, false, false);
475 
476    void *mem_ctx = ralloc_parent(sh->ir);
477 
478    ir_variable *fb = new(mem_ctx) ir_variable(glsl_type::vec4_type,
479                                               "__blend_fb_fetch",
480                                               ir_var_shader_out);
481    fb->data.location = FRAG_RESULT_DATA0;
482    fb->data.read_only = 1;
483    fb->data.fb_fetch_output = 1;
484    fb->data.memory_coherent = coherent;
485    fb->data.how_declared = ir_var_hidden;
486 
487    ir_variable *mode = new(mem_ctx) ir_variable(glsl_type::uint_type,
488                                                 "gl_AdvancedBlendModeMESA",
489                                                 ir_var_uniform);
490    mode->data.how_declared = ir_var_hidden;
491    mode->allocate_state_slots(1);
492    ir_state_slot *slot0 = &mode->get_state_slots()[0];
493    slot0->swizzle = SWIZZLE_XXXX;
494    slot0->tokens[0] = STATE_ADVANCED_BLENDING_MODE;
495    for (int i = 1; i < STATE_LENGTH; i++)
496       slot0->tokens[i] = 0;
497 
498    sh->ir->push_head(fb);
499    sh->ir->push_head(mode);
500 
501    /* Gather any output variables referring to render target 0.
502     *
503     * ARB_enhanced_layouts irritatingly allows the shader to specify
504     * multiple output variables for the same render target, each of
505     * which writes a subset of the components, starting at location_frac.
506     * The variables can't overlap, thankfully.
507     */
508    ir_variable *outputs[4] = { NULL, NULL, NULL, NULL };
509    foreach_in_list(ir_instruction, ir, sh->ir) {
510       ir_variable *var = ir->as_variable();
511       if (!var || var->data.mode != ir_var_shader_out)
512          continue;
513 
514       if (var->data.location == FRAG_RESULT_DATA0 ||
515           var->data.location == FRAG_RESULT_COLOR) {
516          const int components = var->type->without_array()->vector_elements;
517 
518          for (int i = 0; i < components; i++) {
519             outputs[var->data.location_frac + i] = var;
520          }
521       }
522    }
523 
524    /* Combine values written to outputs into a single RGBA blend source.
525     * We assign <0, 0, 0, 1> to any components with no corresponding output.
526     */
527    ir_rvalue *blend_source;
528    if (outputs[0] && outputs[0]->type->without_array()->vector_elements == 4) {
529       blend_source = deref_output(outputs[0]);
530    } else {
531       ir_rvalue *blend_comps[4];
532       for (int i = 0; i < 4; i++) {
533          ir_variable *var = outputs[i];
534          if (var) {
535             blend_comps[i] = swizzle(deref_output(outputs[i]),
536                                      i - outputs[i]->data.location_frac, 1);
537          } else {
538             blend_comps[i] = new(mem_ctx) ir_constant(i < 3 ? 0.0f : 1.0f);
539          }
540       }
541 
542       blend_source =
543          new(mem_ctx) ir_expression(ir_quadop_vector, glsl_type::vec4_type,
544                                     blend_comps[0], blend_comps[1],
545                                     blend_comps[2], blend_comps[3]);
546    }
547 
548    ir_function_signature *main = get_main(sh);
549    ir_factory f(&main->body, mem_ctx);
550 
551    ir_variable *result_dest =
552       calc_blend_result(f, mode, fb, blend_source,
553                         sh->Program->info.fs.advanced_blend_modes);
554 
555    /* Copy the result back to the original values.  It would be simpler
556     * to demote the program's output variables, and create a new vec4
557     * output for our result, but this pass runs before we create the
558     * ARB_program_interface_query resource list.  So we have to leave
559     * the original outputs in place and use them.
560     */
561    for (int i = 0; i < 4; i++) {
562       if (!outputs[i])
563          continue;
564 
565       f.emit(assign(deref_output(outputs[i]), swizzle(result_dest, i, 1),
566                     1 << i));
567    }
568 
569    validate_ir_tree(sh->ir);
570    return true;
571 }
572