• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Jason Ekstrand (jason@jlekstrand.net)
25  *
26  */
27 
28 #include <inttypes.h>
29 #include "nir_search.h"
30 #include "nir_builder.h"
31 #include "nir_worklist.h"
32 #include "util/half_float.h"
33 
34 /* This should be the same as nir_search_max_comm_ops in nir_algebraic.py. */
35 #define NIR_SEARCH_MAX_COMM_OPS 8
36 
37 struct match_state {
38    bool inexact_match;
39    bool has_exact_alu;
40    uint8_t comm_op_direction;
41    unsigned variables_seen;
42 
43    /* Used for running the automaton on newly-constructed instructions. */
44    struct util_dynarray *states;
45    const struct per_op_table *pass_op_table;
46 
47    nir_alu_src variables[NIR_SEARCH_MAX_VARIABLES];
48    struct hash_table *range_ht;
49 };
50 
51 static bool
52 match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
53                  unsigned num_components, const uint8_t *swizzle,
54                  struct match_state *state);
55 static bool
56 nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states,
57                         const struct per_op_table *pass_op_table);
58 
59 static const uint8_t identity_swizzle[NIR_MAX_VEC_COMPONENTS] =
60 {
61     0,  1,  2,  3,
62     4,  5,  6,  7,
63     8,  9, 10, 11,
64    12, 13, 14, 15,
65 };
66 
67 /**
68  * Check if a source produces a value of the given type.
69  *
70  * Used for satisfying 'a@type' constraints.
71  */
72 static bool
src_is_type(nir_src src,nir_alu_type type)73 src_is_type(nir_src src, nir_alu_type type)
74 {
75    assert(type != nir_type_invalid);
76 
77    if (!src.is_ssa)
78       return false;
79 
80    if (src.ssa->parent_instr->type == nir_instr_type_alu) {
81       nir_alu_instr *src_alu = nir_instr_as_alu(src.ssa->parent_instr);
82       nir_alu_type output_type = nir_op_infos[src_alu->op].output_type;
83 
84       if (type == nir_type_bool) {
85          switch (src_alu->op) {
86          case nir_op_iand:
87          case nir_op_ior:
88          case nir_op_ixor:
89             return src_is_type(src_alu->src[0].src, nir_type_bool) &&
90                    src_is_type(src_alu->src[1].src, nir_type_bool);
91          case nir_op_inot:
92             return src_is_type(src_alu->src[0].src, nir_type_bool);
93          default:
94             break;
95          }
96       }
97 
98       return nir_alu_type_get_base_type(output_type) == type;
99    } else if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) {
100       nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr);
101 
102       if (type == nir_type_bool) {
103          return intr->intrinsic == nir_intrinsic_load_front_face ||
104                 intr->intrinsic == nir_intrinsic_load_helper_invocation;
105       }
106    }
107 
108    /* don't know */
109    return false;
110 }
111 
112 static bool
nir_op_matches_search_op(nir_op nop,uint16_t sop)113 nir_op_matches_search_op(nir_op nop, uint16_t sop)
114 {
115    if (sop <= nir_last_opcode)
116       return nop == sop;
117 
118 #define MATCH_FCONV_CASE(op) \
119    case nir_search_op_##op: \
120       return nop == nir_op_##op##16 || \
121              nop == nir_op_##op##32 || \
122              nop == nir_op_##op##64;
123 
124 #define MATCH_ICONV_CASE(op) \
125    case nir_search_op_##op: \
126       return nop == nir_op_##op##8 || \
127              nop == nir_op_##op##16 || \
128              nop == nir_op_##op##32 || \
129              nop == nir_op_##op##64;
130 
131 #define MATCH_BCONV_CASE(op) \
132    case nir_search_op_##op: \
133       return nop == nir_op_##op##1 || \
134              nop == nir_op_##op##32;
135 
136    switch (sop) {
137    MATCH_FCONV_CASE(i2f)
138    MATCH_FCONV_CASE(u2f)
139    MATCH_FCONV_CASE(f2f)
140    MATCH_ICONV_CASE(f2u)
141    MATCH_ICONV_CASE(f2i)
142    MATCH_ICONV_CASE(u2u)
143    MATCH_ICONV_CASE(i2i)
144    MATCH_FCONV_CASE(b2f)
145    MATCH_ICONV_CASE(b2i)
146    MATCH_BCONV_CASE(i2b)
147    MATCH_BCONV_CASE(f2b)
148    default:
149       unreachable("Invalid nir_search_op");
150    }
151 
152 #undef MATCH_FCONV_CASE
153 #undef MATCH_ICONV_CASE
154 #undef MATCH_BCONV_CASE
155 }
156 
157 uint16_t
nir_search_op_for_nir_op(nir_op nop)158 nir_search_op_for_nir_op(nir_op nop)
159 {
160 #define MATCH_FCONV_CASE(op) \
161    case nir_op_##op##16: \
162    case nir_op_##op##32: \
163    case nir_op_##op##64: \
164       return nir_search_op_##op;
165 
166 #define MATCH_ICONV_CASE(op) \
167    case nir_op_##op##8: \
168    case nir_op_##op##16: \
169    case nir_op_##op##32: \
170    case nir_op_##op##64: \
171       return nir_search_op_##op;
172 
173 #define MATCH_BCONV_CASE(op) \
174    case nir_op_##op##1: \
175    case nir_op_##op##32: \
176       return nir_search_op_##op;
177 
178 
179    switch (nop) {
180    MATCH_FCONV_CASE(i2f)
181    MATCH_FCONV_CASE(u2f)
182    MATCH_FCONV_CASE(f2f)
183    MATCH_ICONV_CASE(f2u)
184    MATCH_ICONV_CASE(f2i)
185    MATCH_ICONV_CASE(u2u)
186    MATCH_ICONV_CASE(i2i)
187    MATCH_FCONV_CASE(b2f)
188    MATCH_ICONV_CASE(b2i)
189    MATCH_BCONV_CASE(i2b)
190    MATCH_BCONV_CASE(f2b)
191    default:
192       return nop;
193    }
194 
195 #undef MATCH_FCONV_CASE
196 #undef MATCH_ICONV_CASE
197 #undef MATCH_BCONV_CASE
198 }
199 
200 static nir_op
nir_op_for_search_op(uint16_t sop,unsigned bit_size)201 nir_op_for_search_op(uint16_t sop, unsigned bit_size)
202 {
203    if (sop <= nir_last_opcode)
204       return sop;
205 
206 #define RET_FCONV_CASE(op) \
207    case nir_search_op_##op: \
208       switch (bit_size) { \
209       case 16: return nir_op_##op##16; \
210       case 32: return nir_op_##op##32; \
211       case 64: return nir_op_##op##64; \
212       default: unreachable("Invalid bit size"); \
213       }
214 
215 #define RET_ICONV_CASE(op) \
216    case nir_search_op_##op: \
217       switch (bit_size) { \
218       case 8:  return nir_op_##op##8; \
219       case 16: return nir_op_##op##16; \
220       case 32: return nir_op_##op##32; \
221       case 64: return nir_op_##op##64; \
222       default: unreachable("Invalid bit size"); \
223       }
224 
225 #define RET_BCONV_CASE(op) \
226    case nir_search_op_##op: \
227       switch (bit_size) { \
228       case 1: return nir_op_##op##1; \
229       case 32: return nir_op_##op##32; \
230       default: unreachable("Invalid bit size"); \
231       }
232 
233    switch (sop) {
234    RET_FCONV_CASE(i2f)
235    RET_FCONV_CASE(u2f)
236    RET_FCONV_CASE(f2f)
237    RET_ICONV_CASE(f2u)
238    RET_ICONV_CASE(f2i)
239    RET_ICONV_CASE(u2u)
240    RET_ICONV_CASE(i2i)
241    RET_FCONV_CASE(b2f)
242    RET_ICONV_CASE(b2i)
243    RET_BCONV_CASE(i2b)
244    RET_BCONV_CASE(f2b)
245    default:
246       unreachable("Invalid nir_search_op");
247    }
248 
249 #undef RET_FCONV_CASE
250 #undef RET_ICONV_CASE
251 #undef RET_BCONV_CASE
252 }
253 
254 static bool
match_value(const nir_search_value * value,nir_alu_instr * instr,unsigned src,unsigned num_components,const uint8_t * swizzle,struct match_state * state)255 match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src,
256             unsigned num_components, const uint8_t *swizzle,
257             struct match_state *state)
258 {
259    uint8_t new_swizzle[NIR_MAX_VEC_COMPONENTS];
260 
261    /* Searching only works on SSA values because, if it's not SSA, we can't
262     * know if the value changed between one instance of that value in the
263     * expression and another.  Also, the replace operation will place reads of
264     * that value right before the last instruction in the expression we're
265     * replacing so those reads will happen after the original reads and may
266     * not be valid if they're register reads.
267     */
268    assert(instr->src[src].src.is_ssa);
269 
270    /* If the source is an explicitly sized source, then we need to reset
271     * both the number of components and the swizzle.
272     */
273    if (nir_op_infos[instr->op].input_sizes[src] != 0) {
274       num_components = nir_op_infos[instr->op].input_sizes[src];
275       swizzle = identity_swizzle;
276    }
277 
278    for (unsigned i = 0; i < num_components; ++i)
279       new_swizzle[i] = instr->src[src].swizzle[swizzle[i]];
280 
281    /* If the value has a specific bit size and it doesn't match, bail */
282    if (value->bit_size > 0 &&
283        nir_src_bit_size(instr->src[src].src) != value->bit_size)
284       return false;
285 
286    switch (value->type) {
287    case nir_search_value_expression:
288       if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu)
289          return false;
290 
291       return match_expression(nir_search_value_as_expression(value),
292                               nir_instr_as_alu(instr->src[src].src.ssa->parent_instr),
293                               num_components, new_swizzle, state);
294 
295    case nir_search_value_variable: {
296       nir_search_variable *var = nir_search_value_as_variable(value);
297       assert(var->variable < NIR_SEARCH_MAX_VARIABLES);
298 
299       if (state->variables_seen & (1 << var->variable)) {
300          if (state->variables[var->variable].src.ssa != instr->src[src].src.ssa)
301             return false;
302 
303          assert(!instr->src[src].abs && !instr->src[src].negate);
304 
305          for (unsigned i = 0; i < num_components; ++i) {
306             if (state->variables[var->variable].swizzle[i] != new_swizzle[i])
307                return false;
308          }
309 
310          return true;
311       } else {
312          if (var->is_constant &&
313              instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const)
314             return false;
315 
316          if (var->cond && !var->cond(state->range_ht, instr,
317                                      src, num_components, new_swizzle))
318             return false;
319 
320          if (var->type != nir_type_invalid &&
321              !src_is_type(instr->src[src].src, var->type))
322             return false;
323 
324          state->variables_seen |= (1 << var->variable);
325          state->variables[var->variable].src = instr->src[src].src;
326          state->variables[var->variable].abs = false;
327          state->variables[var->variable].negate = false;
328 
329          for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; ++i) {
330             if (i < num_components)
331                state->variables[var->variable].swizzle[i] = new_swizzle[i];
332             else
333                state->variables[var->variable].swizzle[i] = 0;
334          }
335 
336          return true;
337       }
338    }
339 
340    case nir_search_value_constant: {
341       nir_search_constant *const_val = nir_search_value_as_constant(value);
342 
343       if (!nir_src_is_const(instr->src[src].src))
344          return false;
345 
346       switch (const_val->type) {
347       case nir_type_float: {
348          nir_load_const_instr *const load =
349             nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr);
350 
351          /* There are 8-bit and 1-bit integer types, but there are no 8-bit or
352           * 1-bit float types.  This prevents potential assertion failures in
353           * nir_src_comp_as_float.
354           */
355          if (load->def.bit_size < 16)
356             return false;
357 
358          for (unsigned i = 0; i < num_components; ++i) {
359             double val = nir_src_comp_as_float(instr->src[src].src,
360                                                new_swizzle[i]);
361             if (val != const_val->data.d)
362                return false;
363          }
364          return true;
365       }
366 
367       case nir_type_int:
368       case nir_type_uint:
369       case nir_type_bool: {
370          unsigned bit_size = nir_src_bit_size(instr->src[src].src);
371          uint64_t mask = u_uintN_max(bit_size);
372          for (unsigned i = 0; i < num_components; ++i) {
373             uint64_t val = nir_src_comp_as_uint(instr->src[src].src,
374                                                 new_swizzle[i]);
375             if ((val & mask) != (const_val->data.u & mask))
376                return false;
377          }
378          return true;
379       }
380 
381       default:
382          unreachable("Invalid alu source type");
383       }
384    }
385 
386    default:
387       unreachable("Invalid search value type");
388    }
389 }
390 
391 static bool
match_expression(const nir_search_expression * expr,nir_alu_instr * instr,unsigned num_components,const uint8_t * swizzle,struct match_state * state)392 match_expression(const nir_search_expression *expr, nir_alu_instr *instr,
393                  unsigned num_components, const uint8_t *swizzle,
394                  struct match_state *state)
395 {
396    if (expr->cond && !expr->cond(instr))
397       return false;
398 
399    if (!nir_op_matches_search_op(instr->op, expr->opcode))
400       return false;
401 
402    assert(instr->dest.dest.is_ssa);
403 
404    if (expr->value.bit_size > 0 &&
405        instr->dest.dest.ssa.bit_size != expr->value.bit_size)
406       return false;
407 
408    state->inexact_match = expr->inexact || state->inexact_match;
409    state->has_exact_alu = instr->exact || state->has_exact_alu;
410    if (state->inexact_match && state->has_exact_alu)
411       return false;
412 
413    assert(!instr->dest.saturate);
414    assert(nir_op_infos[instr->op].num_inputs > 0);
415 
416    /* If we have an explicitly sized destination, we can only handle the
417     * identity swizzle.  While dot(vec3(a, b, c).zxy) is a valid
418     * expression, we don't have the information right now to propagate that
419     * swizzle through.  We can only properly propagate swizzles if the
420     * instruction is vectorized.
421     */
422    if (nir_op_infos[instr->op].output_size != 0) {
423       for (unsigned i = 0; i < num_components; i++) {
424          if (swizzle[i] != i)
425             return false;
426       }
427    }
428 
429    /* If this is a commutative expression and it's one of the first few, look
430     * up its direction for the current search operation.  We'll use that value
431     * to possibly flip the sources for the match.
432     */
433    unsigned comm_op_flip =
434       (expr->comm_expr_idx >= 0 &&
435        expr->comm_expr_idx < NIR_SEARCH_MAX_COMM_OPS) ?
436       ((state->comm_op_direction >> expr->comm_expr_idx) & 1) : 0;
437 
438    bool matched = true;
439    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
440       /* 2src_commutative instructions that have 3 sources are only commutative
441        * in the first two sources.  Source 2 is always source 2.
442        */
443       if (!match_value(expr->srcs[i], instr,
444                        i < 2 ? i ^ comm_op_flip : i,
445                        num_components, swizzle, state)) {
446          matched = false;
447          break;
448       }
449    }
450 
451    return matched;
452 }
453 
454 static unsigned
replace_bitsize(const nir_search_value * value,unsigned search_bitsize,struct match_state * state)455 replace_bitsize(const nir_search_value *value, unsigned search_bitsize,
456                 struct match_state *state)
457 {
458    if (value->bit_size > 0)
459       return value->bit_size;
460    if (value->bit_size < 0)
461       return nir_src_bit_size(state->variables[-value->bit_size - 1].src);
462    return search_bitsize;
463 }
464 
465 static nir_alu_src
construct_value(nir_builder * build,const nir_search_value * value,unsigned num_components,unsigned search_bitsize,struct match_state * state,nir_instr * instr)466 construct_value(nir_builder *build,
467                 const nir_search_value *value,
468                 unsigned num_components, unsigned search_bitsize,
469                 struct match_state *state,
470                 nir_instr *instr)
471 {
472    switch (value->type) {
473    case nir_search_value_expression: {
474       const nir_search_expression *expr = nir_search_value_as_expression(value);
475       unsigned dst_bit_size = replace_bitsize(value, search_bitsize, state);
476       nir_op op = nir_op_for_search_op(expr->opcode, dst_bit_size);
477 
478       if (nir_op_infos[op].output_size != 0)
479          num_components = nir_op_infos[op].output_size;
480 
481       nir_alu_instr *alu = nir_alu_instr_create(build->shader, op);
482       nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
483                         dst_bit_size, NULL);
484       alu->dest.write_mask = (1 << num_components) - 1;
485       alu->dest.saturate = false;
486 
487       /* We have no way of knowing what values in a given search expression
488        * map to a particular replacement value.  Therefore, if the
489        * expression we are replacing has any exact values, the entire
490        * replacement should be exact.
491        */
492       alu->exact = state->has_exact_alu || expr->exact;
493 
494       for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
495          /* If the source is an explicitly sized source, then we need to reset
496           * the number of components to match.
497           */
498          if (nir_op_infos[alu->op].input_sizes[i] != 0)
499             num_components = nir_op_infos[alu->op].input_sizes[i];
500 
501          alu->src[i] = construct_value(build, expr->srcs[i],
502                                        num_components, search_bitsize,
503                                        state, instr);
504       }
505 
506       nir_builder_instr_insert(build, &alu->instr);
507 
508       assert(alu->dest.dest.ssa.index ==
509              util_dynarray_num_elements(state->states, uint16_t));
510       util_dynarray_append(state->states, uint16_t, 0);
511       nir_algebraic_automaton(&alu->instr, state->states, state->pass_op_table);
512 
513       nir_alu_src val;
514       val.src = nir_src_for_ssa(&alu->dest.dest.ssa);
515       val.negate = false;
516       val.abs = false,
517       memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle);
518 
519       return val;
520    }
521 
522    case nir_search_value_variable: {
523       const nir_search_variable *var = nir_search_value_as_variable(value);
524       assert(state->variables_seen & (1 << var->variable));
525 
526       nir_alu_src val = { NIR_SRC_INIT };
527       nir_alu_src_copy(&val, &state->variables[var->variable]);
528       assert(!var->is_constant);
529 
530       for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++)
531          val.swizzle[i] = state->variables[var->variable].swizzle[var->swizzle[i]];
532 
533       return val;
534    }
535 
536    case nir_search_value_constant: {
537       const nir_search_constant *c = nir_search_value_as_constant(value);
538       unsigned bit_size = replace_bitsize(value, search_bitsize, state);
539 
540       nir_ssa_def *cval;
541       switch (c->type) {
542       case nir_type_float:
543          cval = nir_imm_floatN_t(build, c->data.d, bit_size);
544          break;
545 
546       case nir_type_int:
547       case nir_type_uint:
548          cval = nir_imm_intN_t(build, c->data.i, bit_size);
549          break;
550 
551       case nir_type_bool:
552          cval = nir_imm_boolN_t(build, c->data.u, bit_size);
553          break;
554 
555       default:
556          unreachable("Invalid alu source type");
557       }
558 
559       assert(cval->index ==
560              util_dynarray_num_elements(state->states, uint16_t));
561       util_dynarray_append(state->states, uint16_t, 0);
562       nir_algebraic_automaton(cval->parent_instr, state->states,
563                               state->pass_op_table);
564 
565       nir_alu_src val;
566       val.src = nir_src_for_ssa(cval);
567       val.negate = false;
568       val.abs = false,
569       memset(val.swizzle, 0, sizeof val.swizzle);
570 
571       return val;
572    }
573 
574    default:
575       unreachable("Invalid search value type");
576    }
577 }
578 
dump_value(const nir_search_value * val)579 UNUSED static void dump_value(const nir_search_value *val)
580 {
581    switch (val->type) {
582    case nir_search_value_constant: {
583       const nir_search_constant *sconst = nir_search_value_as_constant(val);
584       switch (sconst->type) {
585       case nir_type_float:
586          fprintf(stderr, "%f", sconst->data.d);
587          break;
588       case nir_type_int:
589          fprintf(stderr, "%"PRId64, sconst->data.i);
590          break;
591       case nir_type_uint:
592          fprintf(stderr, "0x%"PRIx64, sconst->data.u);
593          break;
594       case nir_type_bool:
595          fprintf(stderr, "%s", sconst->data.u != 0 ? "True" : "False");
596          break;
597       default:
598          unreachable("bad const type");
599       }
600       break;
601    }
602 
603    case nir_search_value_variable: {
604       const nir_search_variable *var = nir_search_value_as_variable(val);
605       if (var->is_constant)
606          fprintf(stderr, "#");
607       fprintf(stderr, "%c", var->variable + 'a');
608       break;
609    }
610 
611    case nir_search_value_expression: {
612       const nir_search_expression *expr = nir_search_value_as_expression(val);
613       fprintf(stderr, "(");
614       if (expr->inexact)
615          fprintf(stderr, "~");
616       switch (expr->opcode) {
617 #define CASE(n) \
618       case nir_search_op_##n: fprintf(stderr, #n); break;
619       CASE(f2b)
620       CASE(b2f)
621       CASE(b2i)
622       CASE(i2b)
623       CASE(i2i)
624       CASE(f2i)
625       CASE(i2f)
626 #undef CASE
627       default:
628          fprintf(stderr, "%s", nir_op_infos[expr->opcode].name);
629       }
630 
631       unsigned num_srcs = 1;
632       if (expr->opcode <= nir_last_opcode)
633          num_srcs = nir_op_infos[expr->opcode].num_inputs;
634 
635       for (unsigned i = 0; i < num_srcs; i++) {
636          fprintf(stderr, " ");
637          dump_value(expr->srcs[i]);
638       }
639 
640       fprintf(stderr, ")");
641       break;
642    }
643    }
644 
645    if (val->bit_size > 0)
646       fprintf(stderr, "@%d", val->bit_size);
647 }
648 
649 static void
add_uses_to_worklist(nir_instr * instr,nir_instr_worklist * worklist,struct util_dynarray * states,const struct per_op_table * pass_op_table)650 add_uses_to_worklist(nir_instr *instr,
651                      nir_instr_worklist *worklist,
652                      struct util_dynarray *states,
653                      const struct per_op_table *pass_op_table)
654 {
655    nir_ssa_def *def = nir_instr_ssa_def(instr);
656 
657    nir_foreach_use_safe(use_src, def) {
658       if (nir_algebraic_automaton(use_src->parent_instr, states, pass_op_table))
659          nir_instr_worklist_push_tail(worklist, use_src->parent_instr);
660    }
661 }
662 
663 static void
nir_algebraic_update_automaton(nir_instr * new_instr,nir_instr_worklist * algebraic_worklist,struct util_dynarray * states,const struct per_op_table * pass_op_table)664 nir_algebraic_update_automaton(nir_instr *new_instr,
665                                nir_instr_worklist *algebraic_worklist,
666                                struct util_dynarray *states,
667                                const struct per_op_table *pass_op_table)
668 {
669 
670    nir_instr_worklist *automaton_worklist = nir_instr_worklist_create();
671 
672    /* Walk through the tree of uses of our new instruction's SSA value,
673     * recursively updating the automaton state until it stabilizes.
674     */
675    add_uses_to_worklist(new_instr, automaton_worklist, states, pass_op_table);
676 
677    nir_instr *instr;
678    while ((instr = nir_instr_worklist_pop_head(automaton_worklist))) {
679       nir_instr_worklist_push_tail(algebraic_worklist, instr);
680       add_uses_to_worklist(instr, automaton_worklist, states, pass_op_table);
681    }
682 
683    nir_instr_worklist_destroy(automaton_worklist);
684 }
685 
686 nir_ssa_def *
nir_replace_instr(nir_builder * build,nir_alu_instr * instr,struct hash_table * range_ht,struct util_dynarray * states,const struct per_op_table * pass_op_table,const nir_search_expression * search,const nir_search_value * replace,nir_instr_worklist * algebraic_worklist)687 nir_replace_instr(nir_builder *build, nir_alu_instr *instr,
688                   struct hash_table *range_ht,
689                   struct util_dynarray *states,
690                   const struct per_op_table *pass_op_table,
691                   const nir_search_expression *search,
692                   const nir_search_value *replace,
693                   nir_instr_worklist *algebraic_worklist)
694 {
695    uint8_t swizzle[NIR_MAX_VEC_COMPONENTS] = { 0 };
696 
697    for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i)
698       swizzle[i] = i;
699 
700    assert(instr->dest.dest.is_ssa);
701 
702    struct match_state state;
703    state.inexact_match = false;
704    state.has_exact_alu = false;
705    state.range_ht = range_ht;
706    state.pass_op_table = pass_op_table;
707 
708    STATIC_ASSERT(sizeof(state.comm_op_direction) * 8 >= NIR_SEARCH_MAX_COMM_OPS);
709 
710    unsigned comm_expr_combinations =
711       1 << MIN2(search->comm_exprs, NIR_SEARCH_MAX_COMM_OPS);
712 
713    bool found = false;
714    for (unsigned comb = 0; comb < comm_expr_combinations; comb++) {
715       /* The bitfield of directions is just the current iteration.  Hooray for
716        * binary.
717        */
718       state.comm_op_direction = comb;
719       state.variables_seen = 0;
720 
721       if (match_expression(search, instr,
722                            instr->dest.dest.ssa.num_components,
723                            swizzle, &state)) {
724          found = true;
725          break;
726       }
727    }
728    if (!found)
729       return NULL;
730 
731 #if 0
732    fprintf(stderr, "matched: ");
733    dump_value(&search->value);
734    fprintf(stderr, " -> ");
735    dump_value(replace);
736    fprintf(stderr, " ssa_%d\n", instr->dest.dest.ssa.index);
737 #endif
738 
739    /* If the instruction at the root of the expression tree being replaced is
740     * a unary operation, insert the replacement instructions at the location
741     * of the source of the unary operation.  Otherwise, insert the replacement
742     * instructions at the location of the expression tree root.
743     *
744     * For the unary operation case, this is done to prevent some spurious code
745     * motion that can dramatically extend live ranges.  Imagine an expression
746     * like -(A+B) where the addtion and the negation are separated by flow
747     * control and thousands of instructions.  If this expression is replaced
748     * with -A+-B, inserting the new instructions at the site of the negation
749     * could extend the live range of A and B dramtically.  This could increase
750     * register pressure and cause spilling.
751     *
752     * It may well be that moving instructions around is a good thing, but
753     * keeping algebraic optimizations and code motion optimizations separate
754     * seems safest.
755     */
756    nir_alu_instr *const src_instr = nir_src_as_alu_instr(instr->src[0].src);
757    if (src_instr != NULL &&
758        (instr->op == nir_op_fneg || instr->op == nir_op_fabs ||
759         instr->op == nir_op_ineg || instr->op == nir_op_iabs ||
760         instr->op == nir_op_inot)) {
761       /* Insert new instructions *after*.  Otherwise a hypothetical
762        * replacement fneg(X) -> fabs(X) would insert the fabs() instruction
763        * before X!  This can also occur for things like fneg(X.wzyx) -> X.wzyx
764        * in vector mode.  A move instruction to handle the swizzle will get
765        * inserted before X.
766        *
767        * This manifested in a single OpenGL ES 2.0 CTS vertex shader test on
768        * older Intel GPU that use vector-mode vertex processing.
769        */
770       build->cursor = nir_after_instr(&src_instr->instr);
771    } else {
772       build->cursor = nir_before_instr(&instr->instr);
773    }
774 
775    state.states = states;
776 
777    nir_alu_src val = construct_value(build, replace,
778                                      instr->dest.dest.ssa.num_components,
779                                      instr->dest.dest.ssa.bit_size,
780                                      &state, &instr->instr);
781 
782    /* Note that NIR builder will elide the MOV if it's a no-op, which may
783     * allow more work to be done in a single pass through algebraic.
784     */
785    nir_ssa_def *ssa_val =
786       nir_mov_alu(build, val, instr->dest.dest.ssa.num_components);
787    if (ssa_val->index == util_dynarray_num_elements(states, uint16_t)) {
788       util_dynarray_append(states, uint16_t, 0);
789       nir_algebraic_automaton(ssa_val->parent_instr, states, pass_op_table);
790    }
791 
792    /* Rewrite the uses of the old SSA value to the new one, and recurse
793     * through the uses updating the automaton's state.
794     */
795    nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, ssa_val);
796    nir_algebraic_update_automaton(ssa_val->parent_instr, algebraic_worklist,
797                                   states, pass_op_table);
798 
799    /* Nothing uses the instr any more, so drop it out of the program.  Note
800     * that the instr may be in the worklist still, so we can't free it
801     * directly.
802     */
803    nir_instr_remove(&instr->instr);
804 
805    return ssa_val;
806 }
807 
808 static bool
nir_algebraic_automaton(nir_instr * instr,struct util_dynarray * states,const struct per_op_table * pass_op_table)809 nir_algebraic_automaton(nir_instr *instr, struct util_dynarray *states,
810                         const struct per_op_table *pass_op_table)
811 {
812    switch (instr->type) {
813    case nir_instr_type_alu: {
814       nir_alu_instr *alu = nir_instr_as_alu(instr);
815       nir_op op = alu->op;
816       uint16_t search_op = nir_search_op_for_nir_op(op);
817       const struct per_op_table *tbl = &pass_op_table[search_op];
818       if (tbl->num_filtered_states == 0)
819          return false;
820 
821       /* Calculate the index into the transition table. Note the index
822        * calculated must match the iteration order of Python's
823        * itertools.product(), which was used to emit the transition
824        * table.
825        */
826       unsigned index = 0;
827       for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
828          index *= tbl->num_filtered_states;
829          index += tbl->filter[*util_dynarray_element(states, uint16_t,
830                                                      alu->src[i].src.ssa->index)];
831       }
832 
833       uint16_t *state = util_dynarray_element(states, uint16_t,
834                                               alu->dest.dest.ssa.index);
835       if (*state != tbl->table[index]) {
836          *state = tbl->table[index];
837          return true;
838       }
839       return false;
840    }
841 
842    case nir_instr_type_load_const: {
843       nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
844       uint16_t *state = util_dynarray_element(states, uint16_t,
845                                               load_const->def.index);
846       if (*state != CONST_STATE) {
847          *state = CONST_STATE;
848          return true;
849       }
850       return false;
851    }
852 
853    default:
854       return false;
855    }
856 }
857 
858 static bool
nir_algebraic_instr(nir_builder * build,nir_instr * instr,struct hash_table * range_ht,const bool * condition_flags,const struct transform ** transforms,const uint16_t * transform_counts,struct util_dynarray * states,const struct per_op_table * pass_op_table,nir_instr_worklist * worklist)859 nir_algebraic_instr(nir_builder *build, nir_instr *instr,
860                     struct hash_table *range_ht,
861                     const bool *condition_flags,
862                     const struct transform **transforms,
863                     const uint16_t *transform_counts,
864                     struct util_dynarray *states,
865                     const struct per_op_table *pass_op_table,
866                     nir_instr_worklist *worklist)
867 {
868 
869    if (instr->type != nir_instr_type_alu)
870       return false;
871 
872    nir_alu_instr *alu = nir_instr_as_alu(instr);
873    if (!alu->dest.dest.is_ssa)
874       return false;
875 
876    unsigned bit_size = alu->dest.dest.ssa.bit_size;
877    const unsigned execution_mode =
878       build->shader->info.float_controls_execution_mode;
879    const bool ignore_inexact =
880       nir_is_float_control_signed_zero_inf_nan_preserve(execution_mode, bit_size) ||
881       nir_is_denorm_flush_to_zero(execution_mode, bit_size);
882 
883    int xform_idx = *util_dynarray_element(states, uint16_t,
884                                           alu->dest.dest.ssa.index);
885    for (uint16_t i = 0; i < transform_counts[xform_idx]; i++) {
886       const struct transform *xform = &transforms[xform_idx][i];
887       if (condition_flags[xform->condition_offset] &&
888           !(xform->search->inexact && ignore_inexact) &&
889           nir_replace_instr(build, alu, range_ht, states, pass_op_table,
890                             xform->search, xform->replace, worklist)) {
891          _mesa_hash_table_clear(range_ht, NULL);
892          return true;
893       }
894    }
895 
896    return false;
897 }
898 
899 bool
nir_algebraic_impl(nir_function_impl * impl,const bool * condition_flags,const struct transform ** transforms,const uint16_t * transform_counts,const struct per_op_table * pass_op_table)900 nir_algebraic_impl(nir_function_impl *impl,
901                    const bool *condition_flags,
902                    const struct transform **transforms,
903                    const uint16_t *transform_counts,
904                    const struct per_op_table *pass_op_table)
905 {
906    bool progress = false;
907 
908    nir_builder build;
909    nir_builder_init(&build, impl);
910 
911    /* Note: it's important here that we're allocating a zeroed array, since
912     * state 0 is the default state, which means we don't have to visit
913     * anything other than constants and ALU instructions.
914     */
915    struct util_dynarray states = {0};
916    if (!util_dynarray_resize(&states, uint16_t, impl->ssa_alloc)) {
917       nir_metadata_preserve(impl, nir_metadata_all);
918       return false;
919    }
920    memset(states.data, 0, states.size);
921 
922    struct hash_table *range_ht = _mesa_pointer_hash_table_create(NULL);
923 
924    nir_instr_worklist *worklist = nir_instr_worklist_create();
925 
926    /* Walk top-to-bottom setting up the automaton state. */
927    nir_foreach_block(block, impl) {
928       nir_foreach_instr(instr, block) {
929          nir_algebraic_automaton(instr, &states, pass_op_table);
930       }
931    }
932 
933    /* Put our instrs in the worklist such that we're popping the last instr
934     * first.  This will encourage us to match the biggest source patterns when
935     * possible.
936     */
937    nir_foreach_block_reverse(block, impl) {
938       nir_foreach_instr_reverse(instr, block) {
939          if (instr->type == nir_instr_type_alu)
940             nir_instr_worklist_push_tail(worklist, instr);
941       }
942    }
943 
944    nir_instr *instr;
945    while ((instr = nir_instr_worklist_pop_head(worklist))) {
946       /* The worklist can have an instr pushed to it multiple times if it was
947        * the src of multiple instrs that also got optimized, so make sure that
948        * we don't try to re-optimize an instr we already handled.
949        */
950       if (exec_node_is_tail_sentinel(&instr->node))
951          continue;
952 
953       progress |= nir_algebraic_instr(&build, instr,
954                                       range_ht, condition_flags,
955                                       transforms, transform_counts, &states,
956                                       pass_op_table, worklist);
957    }
958 
959    nir_instr_worklist_destroy(worklist);
960    ralloc_free(range_ht);
961    util_dynarray_fini(&states);
962 
963    if (progress) {
964       nir_metadata_preserve(impl, nir_metadata_block_index |
965                                   nir_metadata_dominance);
966    } else {
967       nir_metadata_preserve(impl, nir_metadata_all);
968    }
969 
970    return progress;
971 }
972