• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs_visitor.cpp
25  *
26  * This file supports generating the FS LIR from the GLSL IR.  The LIR
27  * makes it easier to do backend-specific optimizations than doing so
28  * in the GLSL IR or in the native code.
29  */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32 
33 using namespace brw;
34 
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
emit_mcs_fetch(const fs_reg & coordinate,unsigned components,const fs_reg & texture,const fs_reg & texture_handle)37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38                            const fs_reg &texture,
39                            const fs_reg &texture_handle)
40 {
41    const fs_reg dest = vgrf(glsl_type::uvec4_type);
42 
43    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
44    srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
45    srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
46    srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(0);
47    srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = texture_handle;
48    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
49    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
50 
51    fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
52                             ARRAY_SIZE(srcs));
53 
54    /* We only care about one or two regs of response, but the sampler always
55     * writes 4/8.
56     */
57    inst->size_written = 4 * dest.component_size(inst->exec_size);
58 
59    return dest;
60 }
61 
62 /**
63  * Apply workarounds for Gfx6 gather with UINT/SINT
64  */
65 void
emit_gfx6_gather_wa(uint8_t wa,fs_reg dst)66 fs_visitor::emit_gfx6_gather_wa(uint8_t wa, fs_reg dst)
67 {
68    if (!wa)
69       return;
70 
71    int width = (wa & WA_8BIT) ? 8 : 16;
72 
73    for (int i = 0; i < 4; i++) {
74       fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
75       /* Convert from UNORM to UINT */
76       bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
77       bld.MOV(dst, dst_f);
78 
79       if (wa & WA_SIGN) {
80          /* Reinterpret the UINT value as a signed INT value by
81           * shifting the sign bit into place, then shifting back
82           * preserving sign.
83           */
84          bld.SHL(dst, dst, brw_imm_d(32 - width));
85          bld.ASR(dst, dst, brw_imm_d(32 - width));
86       }
87 
88       dst = offset(dst, bld, 1);
89    }
90 }
91 
92 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
93 void
emit_dummy_fs()94 fs_visitor::emit_dummy_fs()
95 {
96    int reg_width = dispatch_width / 8;
97 
98    /* Everyone's favorite color. */
99    const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
100    for (int i = 0; i < 4; i++) {
101       bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
102               brw_imm_f(color[i]));
103    }
104 
105    fs_inst *write;
106    write = bld.emit(FS_OPCODE_FB_WRITE);
107    write->eot = true;
108    write->last_rt = true;
109    if (devinfo->ver >= 6) {
110       write->base_mrf = 2;
111       write->mlen = 4 * reg_width;
112    } else {
113       write->header_size = 2;
114       write->base_mrf = 0;
115       write->mlen = 2 + 4 * reg_width;
116    }
117 
118    /* Tell the SF we don't have any inputs.  Gfx4-5 require at least one
119     * varying to avoid GPU hangs, so set that.
120     */
121    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
122    wm_prog_data->num_varying_inputs = devinfo->ver < 6 ? 1 : 0;
123    memset(wm_prog_data->urb_setup, -1,
124           sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
125    brw_compute_urb_setup_index(wm_prog_data);
126 
127    /* We don't have any uniforms. */
128    stage_prog_data->nr_params = 0;
129    stage_prog_data->nr_pull_params = 0;
130    stage_prog_data->curb_read_length = 0;
131    stage_prog_data->dispatch_grf_start_reg = 2;
132    wm_prog_data->dispatch_grf_start_reg_16 = 2;
133    wm_prog_data->dispatch_grf_start_reg_32 = 2;
134    grf_used = 1; /* Gfx4-5 don't allow zero GRF blocks */
135 
136    calculate_cfg();
137 }
138 
139 /* The register location here is relative to the start of the URB
140  * data.  It will get adjusted to be a real location before
141  * generate_code() time.
142  */
143 fs_reg
interp_reg(int location,int channel)144 fs_visitor::interp_reg(int location, int channel)
145 {
146    assert(stage == MESA_SHADER_FRAGMENT);
147    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
148    int regnr = prog_data->urb_setup[location] * 4 + channel;
149    assert(prog_data->urb_setup[location] != -1);
150 
151    return fs_reg(ATTR, regnr, BRW_REGISTER_TYPE_F);
152 }
153 
154 /** Emits the interpolation for the varying inputs. */
155 void
emit_interpolation_setup_gfx4()156 fs_visitor::emit_interpolation_setup_gfx4()
157 {
158    struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
159 
160    fs_builder abld = bld.annotate("compute pixel centers");
161    this->pixel_x = vgrf(glsl_type::uint_type);
162    this->pixel_y = vgrf(glsl_type::uint_type);
163    this->pixel_x.type = BRW_REGISTER_TYPE_UW;
164    this->pixel_y.type = BRW_REGISTER_TYPE_UW;
165    abld.ADD(this->pixel_x,
166             fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
167             fs_reg(brw_imm_v(0x10101010)));
168    abld.ADD(this->pixel_y,
169             fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
170             fs_reg(brw_imm_v(0x11001100)));
171 
172    abld = bld.annotate("compute pixel deltas from v0");
173 
174    this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
175       vgrf(glsl_type::vec2_type);
176    const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
177    const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
178    const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
179 
180    if (devinfo->has_pln) {
181       for (unsigned i = 0; i < dispatch_width / 8; i++) {
182          abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 0), i),
183                              quarter(this->pixel_x, i), xstart);
184          abld.quarter(i).ADD(quarter(offset(delta_xy, abld, 1), i),
185                              quarter(this->pixel_y, i), ystart);
186       }
187    } else {
188       abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
189       abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
190    }
191 
192    this->pixel_z = fetch_payload_reg(bld, payload.source_depth_reg);
193 
194    /* The SF program automatically handles doing the perspective correction or
195     * not based on wm_prog_data::interp_mode[] so we can use the same pixel
196     * offsets for both perspective and non-perspective.
197     */
198    this->delta_xy[BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL] =
199       this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
200 
201    abld = bld.annotate("compute pos.w and 1/pos.w");
202    /* Compute wpos.w.  It's always in our setup, since it's needed to
203     * interpolate the other attributes.
204     */
205    this->wpos_w = vgrf(glsl_type::float_type);
206    abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
207              component(interp_reg(VARYING_SLOT_POS, 3), 0));
208    /* Compute the pixel 1/W value from wpos.w. */
209    this->pixel_w = vgrf(glsl_type::float_type);
210    abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
211 }
212 
213 static unsigned
brw_rnd_mode_from_nir(unsigned mode,unsigned * mask)214 brw_rnd_mode_from_nir(unsigned mode, unsigned *mask)
215 {
216    unsigned brw_mode = 0;
217    *mask = 0;
218 
219    if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
220         FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
221         FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
222        mode) {
223       brw_mode |= BRW_RND_MODE_RTZ << BRW_CR0_RND_MODE_SHIFT;
224       *mask |= BRW_CR0_RND_MODE_MASK;
225    }
226    if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
227         FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
228         FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
229        mode) {
230       brw_mode |= BRW_RND_MODE_RTNE << BRW_CR0_RND_MODE_SHIFT;
231       *mask |= BRW_CR0_RND_MODE_MASK;
232    }
233    if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) {
234       brw_mode |= BRW_CR0_FP16_DENORM_PRESERVE;
235       *mask |= BRW_CR0_FP16_DENORM_PRESERVE;
236    }
237    if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) {
238       brw_mode |= BRW_CR0_FP32_DENORM_PRESERVE;
239       *mask |= BRW_CR0_FP32_DENORM_PRESERVE;
240    }
241    if (mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64) {
242       brw_mode |= BRW_CR0_FP64_DENORM_PRESERVE;
243       *mask |= BRW_CR0_FP64_DENORM_PRESERVE;
244    }
245    if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16)
246       *mask |= BRW_CR0_FP16_DENORM_PRESERVE;
247    if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32)
248       *mask |= BRW_CR0_FP32_DENORM_PRESERVE;
249    if (mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64)
250       *mask |= BRW_CR0_FP64_DENORM_PRESERVE;
251    if (mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
252       *mask |= BRW_CR0_FP_MODE_MASK;
253 
254    if (*mask != 0)
255       assert((*mask & brw_mode) == brw_mode);
256 
257    return brw_mode;
258 }
259 
260 void
emit_shader_float_controls_execution_mode()261 fs_visitor::emit_shader_float_controls_execution_mode()
262 {
263    unsigned execution_mode = this->nir->info.float_controls_execution_mode;
264    if (execution_mode == FLOAT_CONTROLS_DEFAULT_FLOAT_CONTROL_MODE)
265       return;
266 
267    fs_builder abld = bld.annotate("shader floats control execution mode");
268    unsigned mask, mode = brw_rnd_mode_from_nir(execution_mode, &mask);
269 
270    if (mask == 0)
271       return;
272 
273    abld.emit(SHADER_OPCODE_FLOAT_CONTROL_MODE, bld.null_reg_ud(),
274              brw_imm_d(mode), brw_imm_d(mask));
275 }
276 
277 /** Emits the interpolation for the varying inputs. */
278 void
emit_interpolation_setup_gfx6()279 fs_visitor::emit_interpolation_setup_gfx6()
280 {
281    fs_builder abld = bld.annotate("compute pixel centers");
282 
283    this->pixel_x = vgrf(glsl_type::float_type);
284    this->pixel_y = vgrf(glsl_type::float_type);
285 
286    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
287 
288    fs_reg int_pixel_offset_x, int_pixel_offset_y; /* Used on Gen12HP+ */
289    fs_reg int_pixel_offset_xy; /* Used on Gen8+ */
290    fs_reg half_int_pixel_offset_x, half_int_pixel_offset_y;
291    if (!wm_prog_data->per_coarse_pixel_dispatch) {
292       /* The thread payload only delivers subspan locations (ss0, ss1,
293        * ss2, ...). Since subspans covers 2x2 pixels blocks, we need to
294        * generate 4 pixel coordinates out of each subspan location. We do this
295        * by replicating a subspan coordinate 4 times and adding an offset of 1
296        * in each direction from the initial top left (tl) location to generate
297        * top right (tr = +1 in x), bottom left (bl = +1 in y) and bottom right
298        * (br = +1 in x, +1 in y).
299        *
300        * The locations we build look like this in SIMD8 :
301        *
302        *    ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
303        *
304        * The value 0x11001010 is a vector of 8 half byte vector. It adds
305        * following to generate the 4 pixels coordinates out of the subspan0:
306        *
307        *  0x
308        *    1 : ss0.y + 1 -> ss0.br.y
309        *    1 : ss0.y + 1 -> ss0.bl.y
310        *    0 : ss0.y + 0 -> ss0.tr.y
311        *    0 : ss0.y + 0 -> ss0.tl.y
312        *    1 : ss0.x + 1 -> ss0.br.x
313        *    0 : ss0.x + 0 -> ss0.bl.x
314        *    1 : ss0.x + 1 -> ss0.tr.x
315        *    0 : ss0.x + 0 -> ss0.tl.x
316        *
317        * By doing a SIMD16 add in a SIMD8 shader, we can generate the 8 pixels
318        * coordinates out of 2 subspans coordinates in a single ADD instruction
319        * (twice the operation above).
320        */
321       int_pixel_offset_xy = fs_reg(brw_imm_v(0x11001010));
322       half_int_pixel_offset_x = fs_reg(brw_imm_uw(0));
323       half_int_pixel_offset_y = fs_reg(brw_imm_uw(0));
324       /* On Gfx12.5, because of regioning restrictions, the interpolation code
325        * is slightly different and works off X & Y only inputs. The ordering
326        * of the half bytes here is a bit odd, with each subspan replicated
327        * twice and every other element is discarded :
328        *
329        *             ss0.tl ss0.tl ss0.tr ss0.tr ss0.bl ss0.bl ss0.br ss0.br
330        *  X offset:    0      0      1      0      0      0      1      0
331        *  Y offset:    0      0      0      0      1      0      1      0
332        */
333       int_pixel_offset_x = fs_reg(brw_imm_v(0x01000100));
334       int_pixel_offset_y = fs_reg(brw_imm_v(0x01010000));
335    } else {
336       /* In coarse pixel dispatch we have to do the same ADD instruction that
337        * we do in normal per pixel dispatch, except this time we're not adding
338        * 1 in each direction, but instead the coarse pixel size.
339        *
340        * The coarse pixel size is delivered as 2 u8 in r1.0
341        */
342       struct brw_reg r1_0 = retype(brw_vec1_reg(BRW_GENERAL_REGISTER_FILE, 1, 0), BRW_REGISTER_TYPE_UB);
343 
344       const fs_builder dbld =
345          abld.exec_all().group(MIN2(16, dispatch_width) * 2, 0);
346 
347       if (devinfo->verx10 >= 125) {
348          /* To build the array of half bytes we do and AND operation with the
349           * right mask in X.
350           */
351          int_pixel_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
352          dbld.AND(int_pixel_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0f000f00));
353 
354          /* And the right mask in Y. */
355          int_pixel_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
356          dbld.AND(int_pixel_offset_y, byte_offset(r1_0, 1), brw_imm_v(0x0f0f0000));
357       } else {
358          /* To build the array of half bytes we do and AND operation with the
359           * right mask in X.
360           */
361          int_pixel_offset_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
362          dbld.AND(int_pixel_offset_x, byte_offset(r1_0, 0), brw_imm_v(0x0000f0f0));
363 
364          /* And the right mask in Y. */
365          int_pixel_offset_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
366          dbld.AND(int_pixel_offset_y, byte_offset(r1_0, 1), brw_imm_v(0xff000000));
367 
368          /* Finally OR the 2 registers. */
369          int_pixel_offset_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
370          dbld.OR(int_pixel_offset_xy, int_pixel_offset_x, int_pixel_offset_y);
371       }
372 
373       /* Also compute the half pixel size used to center pixels. */
374       half_int_pixel_offset_x = bld.vgrf(BRW_REGISTER_TYPE_UW);
375       half_int_pixel_offset_y = bld.vgrf(BRW_REGISTER_TYPE_UW);
376 
377       bld.SHR(half_int_pixel_offset_x, suboffset(r1_0, 0), brw_imm_ud(1));
378       bld.SHR(half_int_pixel_offset_y, suboffset(r1_0, 1), brw_imm_ud(1));
379    }
380 
381    for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
382       const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
383       struct brw_reg gi_uw = retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UW);
384 
385       if (devinfo->verx10 >= 125) {
386          const fs_builder dbld =
387             abld.exec_all().group(hbld.dispatch_width() * 2, 0);
388          const fs_reg int_pixel_x = dbld.vgrf(BRW_REGISTER_TYPE_UW);
389          const fs_reg int_pixel_y = dbld.vgrf(BRW_REGISTER_TYPE_UW);
390 
391          dbld.ADD(int_pixel_x,
392                   fs_reg(stride(suboffset(gi_uw, 4), 2, 8, 0)),
393                   int_pixel_offset_x);
394          dbld.ADD(int_pixel_y,
395                   fs_reg(stride(suboffset(gi_uw, 5), 2, 8, 0)),
396                   int_pixel_offset_y);
397 
398          if (wm_prog_data->per_coarse_pixel_dispatch) {
399             dbld.ADD(int_pixel_x, int_pixel_x,
400                      horiz_stride(half_int_pixel_offset_x, 0));
401             dbld.ADD(int_pixel_y, int_pixel_y,
402                      horiz_stride(half_int_pixel_offset_y, 0));
403          }
404 
405          hbld.MOV(offset(pixel_x, hbld, i), horiz_stride(int_pixel_x, 2));
406          hbld.MOV(offset(pixel_y, hbld, i), horiz_stride(int_pixel_y, 2));
407 
408       } else if (devinfo->ver >= 8 || dispatch_width == 8) {
409          /* The "Register Region Restrictions" page says for BDW (and newer,
410           * presumably):
411           *
412           *     "When destination spans two registers, the source may be one or
413           *      two registers. The destination elements must be evenly split
414           *      between the two registers."
415           *
416           * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16
417           * to compute our pixel centers.
418           */
419          const fs_builder dbld =
420             abld.exec_all().group(hbld.dispatch_width() * 2, 0);
421          fs_reg int_pixel_xy = dbld.vgrf(BRW_REGISTER_TYPE_UW);
422 
423          dbld.ADD(int_pixel_xy,
424                   fs_reg(stride(suboffset(gi_uw, 4), 1, 4, 0)),
425                   int_pixel_offset_xy);
426 
427          hbld.emit(FS_OPCODE_PIXEL_X, offset(pixel_x, hbld, i), int_pixel_xy,
428                                       horiz_stride(half_int_pixel_offset_x, 0));
429          hbld.emit(FS_OPCODE_PIXEL_Y, offset(pixel_y, hbld, i), int_pixel_xy,
430                                       horiz_stride(half_int_pixel_offset_y, 0));
431       } else {
432          /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
433           *
434           *     "When destination spans two registers, the source MUST span
435           *      two registers."
436           *
437           * Since the GRF source of the ADD will only read a single register,
438           * we must do two separate ADDs in SIMD16.
439           */
440          const fs_reg int_pixel_x = hbld.vgrf(BRW_REGISTER_TYPE_UW);
441          const fs_reg int_pixel_y = hbld.vgrf(BRW_REGISTER_TYPE_UW);
442 
443          hbld.ADD(int_pixel_x,
444                   fs_reg(stride(suboffset(gi_uw, 4), 2, 4, 0)),
445                   fs_reg(brw_imm_v(0x10101010)));
446          hbld.ADD(int_pixel_y,
447                   fs_reg(stride(suboffset(gi_uw, 5), 2, 4, 0)),
448                   fs_reg(brw_imm_v(0x11001100)));
449 
450          /* As of gfx6, we can no longer mix float and int sources.  We have
451           * to turn the integer pixel centers into floats for their actual
452           * use.
453           */
454          hbld.MOV(offset(pixel_x, hbld, i), int_pixel_x);
455          hbld.MOV(offset(pixel_y, hbld, i), int_pixel_y);
456       }
457    }
458 
459    abld = bld.annotate("compute pos.z");
460    if (wm_prog_data->uses_depth_w_coefficients) {
461       assert(!wm_prog_data->uses_src_depth);
462       /* In coarse pixel mode, the HW doesn't interpolate Z coordinate
463        * properly. In the same way we have to add the coarse pixel size to
464        * pixels locations, here we recompute the Z value with 2 coefficients
465        * in X & Y axis.
466        */
467       fs_reg coef_payload = fetch_payload_reg(abld, payload.depth_w_coef_reg, BRW_REGISTER_TYPE_F);
468       const fs_reg x_start = brw_vec1_grf(coef_payload.nr, 2);
469       const fs_reg y_start = brw_vec1_grf(coef_payload.nr, 6);
470       const fs_reg z_cx    = brw_vec1_grf(coef_payload.nr, 1);
471       const fs_reg z_cy    = brw_vec1_grf(coef_payload.nr, 0);
472       const fs_reg z_c0    = brw_vec1_grf(coef_payload.nr, 3);
473 
474       const fs_reg float_pixel_x = abld.vgrf(BRW_REGISTER_TYPE_F);
475       const fs_reg float_pixel_y = abld.vgrf(BRW_REGISTER_TYPE_F);
476 
477       abld.ADD(float_pixel_x, this->pixel_x, negate(x_start));
478       abld.ADD(float_pixel_y, this->pixel_y, negate(y_start));
479 
480       /* r1.0 - 0:7 ActualCoarsePixelShadingSize.X */
481       const fs_reg u8_cps_width = fs_reg(retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UB));
482       /* r1.0 - 15:8 ActualCoarsePixelShadingSize.Y */
483       const fs_reg u8_cps_height = byte_offset(u8_cps_width, 1);
484       const fs_reg u32_cps_width = abld.vgrf(BRW_REGISTER_TYPE_UD);
485       const fs_reg u32_cps_height = abld.vgrf(BRW_REGISTER_TYPE_UD);
486       abld.MOV(u32_cps_width, u8_cps_width);
487       abld.MOV(u32_cps_height, u8_cps_height);
488 
489       const fs_reg f_cps_width = abld.vgrf(BRW_REGISTER_TYPE_F);
490       const fs_reg f_cps_height = abld.vgrf(BRW_REGISTER_TYPE_F);
491       abld.MOV(f_cps_width, u32_cps_width);
492       abld.MOV(f_cps_height, u32_cps_height);
493 
494       /* Center in the middle of the coarse pixel. */
495       abld.MAD(float_pixel_x, float_pixel_x, brw_imm_f(0.5f), f_cps_width);
496       abld.MAD(float_pixel_y, float_pixel_y, brw_imm_f(0.5f), f_cps_height);
497 
498       this->pixel_z = abld.vgrf(BRW_REGISTER_TYPE_F);
499       abld.MAD(this->pixel_z, z_c0, z_cx, float_pixel_x);
500       abld.MAD(this->pixel_z, this->pixel_z, z_cy, float_pixel_y);
501    }
502 
503    if (wm_prog_data->uses_src_depth) {
504       assert(!wm_prog_data->uses_depth_w_coefficients);
505       this->pixel_z = fetch_payload_reg(bld, payload.source_depth_reg);
506    }
507 
508    if (wm_prog_data->uses_src_w) {
509       abld = bld.annotate("compute pos.w");
510       this->pixel_w = fetch_payload_reg(abld, payload.source_w_reg);
511       this->wpos_w = vgrf(glsl_type::float_type);
512       abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
513    }
514 
515    for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
516       this->delta_xy[i] = fetch_barycentric_reg(
517          bld, payload.barycentric_coord_reg[i]);
518    }
519 
520    uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
521       (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
522        1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
523 
524    if (devinfo->needs_unlit_centroid_workaround && centroid_modes) {
525       /* Get the pixel/sample mask into f0 so that we know which
526        * pixels are lit.  Then, for each channel that is unlit,
527        * replace the centroid data with non-centroid data.
528        */
529       for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
530          bld.exec_all().group(1, 0)
531             .MOV(retype(brw_flag_reg(0, i), BRW_REGISTER_TYPE_UW),
532                  retype(brw_vec1_grf(1 + i, 7), BRW_REGISTER_TYPE_UW));
533       }
534 
535       for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
536          if (!(centroid_modes & (1 << i)))
537             continue;
538 
539          const fs_reg centroid_delta_xy = delta_xy[i];
540          const fs_reg &pixel_delta_xy = delta_xy[i - 1];
541 
542          delta_xy[i] = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
543 
544          for (unsigned c = 0; c < 2; c++) {
545             for (unsigned q = 0; q < dispatch_width / 8; q++) {
546                set_predicate(BRW_PREDICATE_NORMAL,
547                   bld.quarter(q).SEL(
548                      quarter(offset(delta_xy[i], bld, c), q),
549                      quarter(offset(centroid_delta_xy, bld, c), q),
550                      quarter(offset(pixel_delta_xy, bld, c), q)));
551             }
552          }
553       }
554    }
555 }
556 
557 static enum brw_conditional_mod
cond_for_alpha_func(GLenum func)558 cond_for_alpha_func(GLenum func)
559 {
560    switch(func) {
561       case GL_GREATER:
562          return BRW_CONDITIONAL_G;
563       case GL_GEQUAL:
564          return BRW_CONDITIONAL_GE;
565       case GL_LESS:
566          return BRW_CONDITIONAL_L;
567       case GL_LEQUAL:
568          return BRW_CONDITIONAL_LE;
569       case GL_EQUAL:
570          return BRW_CONDITIONAL_EQ;
571       case GL_NOTEQUAL:
572          return BRW_CONDITIONAL_NEQ;
573       default:
574          unreachable("Not reached");
575    }
576 }
577 
578 /**
579  * Alpha test support for when we compile it into the shader instead
580  * of using the normal fixed-function alpha test.
581  */
582 void
emit_alpha_test()583 fs_visitor::emit_alpha_test()
584 {
585    assert(stage == MESA_SHADER_FRAGMENT);
586    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
587    const fs_builder abld = bld.annotate("Alpha test");
588 
589    fs_inst *cmp;
590    if (key->alpha_test_func == GL_ALWAYS)
591       return;
592 
593    if (key->alpha_test_func == GL_NEVER) {
594       /* f0.1 = 0 */
595       fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
596                                       BRW_REGISTER_TYPE_UW));
597       cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
598                      BRW_CONDITIONAL_NEQ);
599    } else {
600       /* RT0 alpha */
601       fs_reg color = offset(outputs[0], bld, 3);
602 
603       /* f0.1 &= func(color, ref) */
604       cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
605                      cond_for_alpha_func(key->alpha_test_func));
606    }
607    cmp->predicate = BRW_PREDICATE_NORMAL;
608    cmp->flag_subreg = 1;
609 }
610 
611 fs_inst *
emit_single_fb_write(const fs_builder & bld,fs_reg color0,fs_reg color1,fs_reg src0_alpha,unsigned components)612 fs_visitor::emit_single_fb_write(const fs_builder &bld,
613                                  fs_reg color0, fs_reg color1,
614                                  fs_reg src0_alpha, unsigned components)
615 {
616    assert(stage == MESA_SHADER_FRAGMENT);
617    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
618 
619    /* Hand over gl_FragDepth or the payload depth. */
620    const fs_reg dst_depth = fetch_payload_reg(bld, payload.dest_depth_reg);
621    fs_reg src_depth, src_stencil;
622 
623    if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
624       src_depth = frag_depth;
625    } else if (source_depth_to_render_target) {
626       /* If we got here, we're in one of those strange Gen4-5 cases where
627        * we're forced to pass the source depth, unmodified, to the FB write.
628        * In this case, we don't want to use pixel_z because we may not have
629        * set up interpolation.  It's also perfectly safe because it only
630        * happens on old hardware (no coarse interpolation) and this is
631        * explicitly the pass-through case.
632        */
633       assert(devinfo->ver <= 5);
634       src_depth = fetch_payload_reg(bld, payload.source_depth_reg);
635    }
636 
637    if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
638       src_stencil = frag_stencil;
639 
640    const fs_reg sources[] = {
641       color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
642       (prog_data->uses_omask ? sample_mask : fs_reg()),
643       brw_imm_ud(components)
644    };
645    assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
646    fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
647                              sources, ARRAY_SIZE(sources));
648 
649    if (prog_data->uses_kill) {
650       write->predicate = BRW_PREDICATE_NORMAL;
651       write->flag_subreg = sample_mask_flag_subreg(this);
652    }
653 
654    return write;
655 }
656 
657 void
emit_fb_writes()658 fs_visitor::emit_fb_writes()
659 {
660    assert(stage == MESA_SHADER_FRAGMENT);
661    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
662    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
663 
664    fs_inst *inst = NULL;
665 
666    if (source_depth_to_render_target && devinfo->ver == 6) {
667       /* For outputting oDepth on gfx6, SIMD8 writes have to be used.  This
668        * would require SIMD8 moves of each half to message regs, e.g. by using
669        * the SIMD lowering pass.  Unfortunately this is more difficult than it
670        * sounds because the SIMD8 single-source message lacks channel selects
671        * for the second and third subspans.
672        */
673       limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
674    }
675 
676    if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
677       /* From the 'Render Target Write message' section of the docs:
678        * "Output Stencil is not supported with SIMD16 Render Target Write
679        * Messages."
680        */
681       limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
682                            "in SIMD16+ mode.\n");
683    }
684 
685    /* ANV doesn't know about sample mask output during the wm key creation
686     * so we compute if we need replicate alpha and emit alpha to coverage
687     * workaround here.
688     */
689    const bool replicate_alpha = key->alpha_test_replicate_alpha ||
690       (key->nr_color_regions > 1 && key->alpha_to_coverage &&
691        (sample_mask.file == BAD_FILE || devinfo->ver == 6));
692 
693    for (int target = 0; target < key->nr_color_regions; target++) {
694       /* Skip over outputs that weren't written. */
695       if (this->outputs[target].file == BAD_FILE)
696          continue;
697 
698       const fs_builder abld = bld.annotate(
699          ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
700 
701       fs_reg src0_alpha;
702       if (devinfo->ver >= 6 && replicate_alpha && target != 0)
703          src0_alpha = offset(outputs[0], bld, 3);
704 
705       inst = emit_single_fb_write(abld, this->outputs[target],
706                                   this->dual_src_output, src0_alpha, 4);
707       inst->target = target;
708    }
709 
710    prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE &&
711                                 this->outputs[0].file != BAD_FILE);
712    assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
713 
714    if (inst == NULL) {
715       /* Even if there's no color buffers enabled, we still need to send
716        * alpha out the pipeline to our null renderbuffer to support
717        * alpha-testing, alpha-to-coverage, and so on.
718        */
719       /* FINISHME: Factor out this frequently recurring pattern into a
720        * helper function.
721        */
722       const fs_reg srcs[] = { reg_undef, reg_undef,
723                               reg_undef, offset(this->outputs[0], bld, 3) };
724       const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
725       bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
726 
727       inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
728       inst->target = 0;
729    }
730 
731    inst->last_rt = true;
732    inst->eot = true;
733 
734    if (devinfo->ver >= 11 && devinfo->ver <= 12 &&
735        prog_data->dual_src_blend) {
736       /* The dual-source RT write messages fail to release the thread
737        * dependency on ICL and TGL with SIMD32 dispatch, leading to hangs.
738        *
739        * XXX - Emit an extra single-source NULL RT-write marked LastRT in
740        *       order to release the thread dependency without disabling
741        *       SIMD32.
742        *
743        * The dual-source RT write messages may lead to hangs with SIMD16
744        * dispatch on ICL due some unknown reasons, see
745        * https://gitlab.freedesktop.org/mesa/mesa/-/issues/2183
746        */
747       limit_dispatch_width(8, "Dual source blending unsupported "
748                            "in SIMD16 and SIMD32 modes.\n");
749    }
750 }
751 
752 void
emit_urb_writes(const fs_reg & gs_vertex_count)753 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
754 {
755    int slot, urb_offset, length;
756    int starting_urb_offset = 0;
757    const struct brw_vue_prog_data *vue_prog_data =
758       brw_vue_prog_data(this->prog_data);
759    const struct brw_vs_prog_key *vs_key =
760       (const struct brw_vs_prog_key *) this->key;
761    const GLbitfield64 psiz_mask =
762       VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
763    const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
764    bool flush;
765    fs_reg sources[8];
766    fs_reg urb_handle;
767 
768    if (stage == MESA_SHADER_TESS_EVAL)
769       urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
770    else
771       urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
772 
773    opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
774    int header_size = 1;
775    fs_reg per_slot_offsets;
776 
777    if (stage == MESA_SHADER_GEOMETRY) {
778       const struct brw_gs_prog_data *gs_prog_data =
779          brw_gs_prog_data(this->prog_data);
780 
781       /* We need to increment the Global Offset to skip over the control data
782        * header and the extra "Vertex Count" field (1 HWord) at the beginning
783        * of the VUE.  We're counting in OWords, so the units are doubled.
784        */
785       starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
786       if (gs_prog_data->static_vertex_count == -1)
787          starting_urb_offset += 2;
788 
789       /* We also need to use per-slot offsets.  The per-slot offset is the
790        * Vertex Count.  SIMD8 mode processes 8 different primitives at a
791        * time; each may output a different number of vertices.
792        */
793       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
794       header_size++;
795 
796       /* The URB offset is in 128-bit units, so we need to multiply by 2 */
797       const int output_vertex_size_owords =
798          gs_prog_data->output_vertex_size_hwords * 2;
799 
800       if (gs_vertex_count.file == IMM) {
801          per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
802                                        gs_vertex_count.ud);
803       } else {
804          per_slot_offsets = vgrf(glsl_type::uint_type);
805          bld.MUL(per_slot_offsets, gs_vertex_count,
806                  brw_imm_ud(output_vertex_size_owords));
807       }
808    }
809 
810    length = 0;
811    urb_offset = starting_urb_offset;
812    flush = false;
813 
814    /* SSO shaders can have VUE slots allocated which are never actually
815     * written to, so ignore them when looking for the last (written) slot.
816     */
817    int last_slot = vue_map->num_slots - 1;
818    while (last_slot > 0 &&
819           (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
820            outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
821       last_slot--;
822    }
823 
824    bool urb_written = false;
825    for (slot = 0; slot < vue_map->num_slots; slot++) {
826       int varying = vue_map->slot_to_varying[slot];
827       switch (varying) {
828       case VARYING_SLOT_PSIZ: {
829          /* The point size varying slot is the vue header and is always in the
830           * vue map.  But often none of the special varyings that live there
831           * are written and in that case we can skip writing to the vue
832           * header, provided the corresponding state properly clamps the
833           * values further down the pipeline. */
834          if ((vue_map->slots_valid & psiz_mask) == 0) {
835             assert(length == 0);
836             urb_offset++;
837             break;
838          }
839 
840          fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
841          bld.MOV(zero, brw_imm_ud(0u));
842 
843          sources[length++] = zero;
844          if (vue_map->slots_valid & VARYING_BIT_LAYER)
845             sources[length++] = this->outputs[VARYING_SLOT_LAYER];
846          else
847             sources[length++] = zero;
848 
849          if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
850             sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
851          else
852             sources[length++] = zero;
853 
854          if (vue_map->slots_valid & VARYING_BIT_PSIZ)
855             sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
856          else
857             sources[length++] = zero;
858          break;
859       }
860       case BRW_VARYING_SLOT_NDC:
861       case VARYING_SLOT_EDGE:
862          unreachable("unexpected scalar vs output");
863          break;
864 
865       default:
866          /* gl_Position is always in the vue map, but isn't always written by
867           * the shader.  Other varyings (clip distances) get added to the vue
868           * map but don't always get written.  In those cases, the
869           * corresponding this->output[] slot will be invalid we and can skip
870           * the urb write for the varying.  If we've already queued up a vue
871           * slot for writing we flush a mlen 5 urb write, otherwise we just
872           * advance the urb_offset.
873           */
874          if (varying == BRW_VARYING_SLOT_PAD ||
875              this->outputs[varying].file == BAD_FILE) {
876             if (length > 0)
877                flush = true;
878             else
879                urb_offset++;
880             break;
881          }
882 
883          if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
884              (varying == VARYING_SLOT_COL0 ||
885               varying == VARYING_SLOT_COL1 ||
886               varying == VARYING_SLOT_BFC0 ||
887               varying == VARYING_SLOT_BFC1)) {
888             /* We need to clamp these guys, so do a saturating MOV into a
889              * temp register and use that for the payload.
890              */
891             for (int i = 0; i < 4; i++) {
892                fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
893                fs_reg src = offset(this->outputs[varying], bld, i);
894                set_saturate(true, bld.MOV(reg, src));
895                sources[length++] = reg;
896             }
897          } else {
898             int slot_offset = 0;
899 
900             /* When using Primitive Replication, there may be multiple slots
901              * assigned to POS.
902              */
903             if (varying == VARYING_SLOT_POS)
904                slot_offset = slot - vue_map->varying_to_slot[VARYING_SLOT_POS];
905 
906             for (unsigned i = 0; i < 4; i++) {
907                sources[length++] = offset(this->outputs[varying], bld,
908                                           i + (slot_offset * 4));
909             }
910          }
911          break;
912       }
913 
914       const fs_builder abld = bld.annotate("URB write");
915 
916       /* If we've queued up 8 registers of payload (2 VUE slots), if this is
917        * the last slot or if we need to flush (see BAD_FILE varying case
918        * above), emit a URB write send now to flush out the data.
919        */
920       if (length == 8 || (length > 0 && slot == last_slot))
921          flush = true;
922       if (flush) {
923          fs_reg *payload_sources =
924             ralloc_array(mem_ctx, fs_reg, length + header_size);
925          fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
926                                  BRW_REGISTER_TYPE_F);
927          payload_sources[0] = urb_handle;
928 
929          if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
930             payload_sources[1] = per_slot_offsets;
931 
932          memcpy(&payload_sources[header_size], sources,
933                 length * sizeof sources[0]);
934 
935          abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
936                            header_size);
937 
938          fs_inst *inst = abld.emit(opcode, reg_undef, payload);
939 
940          /* For ICL WA 1805992985 one needs additional write in the end. */
941          if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL)
942             inst->eot = false;
943          else
944             inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
945 
946          inst->mlen = length + header_size;
947          inst->offset = urb_offset;
948          urb_offset = starting_urb_offset + slot + 1;
949          length = 0;
950          flush = false;
951          urb_written = true;
952       }
953    }
954 
955    /* If we don't have any valid slots to write, just do a minimal urb write
956     * send to terminate the shader.  This includes 1 slot of undefined data,
957     * because it's invalid to write 0 data:
958     *
959     * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
960     * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
961     * Write Data Payload:
962     *
963     *    "The write data payload can be between 1 and 8 message phases long."
964     */
965    if (!urb_written) {
966       /* For GS, just turn EmitVertex() into a no-op.  We don't want it to
967        * end the thread, and emit_gs_thread_end() already emits a SEND with
968        * EOT at the end of the program for us.
969        */
970       if (stage == MESA_SHADER_GEOMETRY)
971          return;
972 
973       fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
974       bld.exec_all().MOV(payload, urb_handle);
975 
976       fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
977       inst->eot = true;
978       inst->mlen = 2;
979       inst->offset = 1;
980       return;
981    }
982 
983    /* ICL WA 1805992985:
984     *
985     * ICLLP GPU hangs on one of tessellation vkcts tests with DS not done. The
986     * send cycle, which is a urb write with an eot must be 4 phases long and
987     * all 8 lanes must valid.
988     */
989    if (devinfo->ver == 11 && stage == MESA_SHADER_TESS_EVAL) {
990       fs_reg payload = fs_reg(VGRF, alloc.allocate(6), BRW_REGISTER_TYPE_UD);
991 
992       /* Workaround requires all 8 channels (lanes) to be valid. This is
993        * understood to mean they all need to be alive. First trick is to find
994        * a live channel and copy its urb handle for all the other channels to
995        * make sure all handles are valid.
996        */
997       bld.exec_all().MOV(payload, bld.emit_uniformize(urb_handle));
998 
999       /* Second trick is to use masked URB write where one can tell the HW to
1000        * actually write data only for selected channels even though all are
1001        * active.
1002        * Third trick is to take advantage of the must-be-zero (MBZ) area in
1003        * the very beginning of the URB.
1004        *
1005        * One masks data to be written only for the first channel and uses
1006        * offset zero explicitly to land data to the MBZ area avoiding trashing
1007        * any other part of the URB.
1008        *
1009        * Since the WA says that the write needs to be 4 phases long one uses
1010        * 4 slots data. All are explicitly zeros in order to to keep the MBZ
1011        * area written as zeros.
1012        */
1013       bld.exec_all().MOV(offset(payload, bld, 1), brw_imm_ud(0x10000u));
1014       bld.exec_all().MOV(offset(payload, bld, 2), brw_imm_ud(0u));
1015       bld.exec_all().MOV(offset(payload, bld, 3), brw_imm_ud(0u));
1016       bld.exec_all().MOV(offset(payload, bld, 4), brw_imm_ud(0u));
1017       bld.exec_all().MOV(offset(payload, bld, 5), brw_imm_ud(0u));
1018 
1019       fs_inst *inst = bld.exec_all().emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
1020                                           reg_undef, payload);
1021       inst->eot = true;
1022       inst->mlen = 6;
1023       inst->offset = 0;
1024    }
1025 }
1026 
1027 void
emit_cs_terminate()1028 fs_visitor::emit_cs_terminate()
1029 {
1030    assert(devinfo->ver >= 7);
1031 
1032    /* We can't directly send from g0, since sends with EOT have to use
1033     * g112-127. So, copy it to a virtual register, The register allocator will
1034     * make sure it uses the appropriate register range.
1035     */
1036    struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
1037    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1038    bld.group(8, 0).exec_all().MOV(payload, g0);
1039 
1040    /* Send a message to the thread spawner to terminate the thread. */
1041    fs_inst *inst = bld.exec_all()
1042                       .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
1043    inst->eot = true;
1044 }
1045 
1046 void
emit_barrier()1047 fs_visitor::emit_barrier()
1048 {
1049    /* We are getting the barrier ID from the compute shader header */
1050    assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
1051 
1052    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
1053 
1054    /* Clear the message payload */
1055    bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
1056 
1057    if (devinfo->verx10 >= 125) {
1058       /* mov r0.2[31:24] into m0.2[31:24] and m0.2[23:16] */
1059       fs_reg m0_10ub = component(retype(payload, BRW_REGISTER_TYPE_UB), 10);
1060       fs_reg r0_11ub =
1061          stride(suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UB), 11),
1062                 0, 1, 0);
1063       bld.exec_all().group(2, 0).MOV(m0_10ub, r0_11ub);
1064    } else {
1065       uint32_t barrier_id_mask;
1066       switch (devinfo->ver) {
1067       case 7:
1068       case 8:
1069          barrier_id_mask = 0x0f000000u; break;
1070       case 9:
1071          barrier_id_mask = 0x8f000000u; break;
1072       case 11:
1073       case 12:
1074          barrier_id_mask = 0x7f000000u; break;
1075       default:
1076          unreachable("barrier is only available on gen >= 7");
1077       }
1078 
1079       /* Copy the barrier id from r0.2 to the message payload reg.2 */
1080       fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
1081       bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
1082                                      brw_imm_ud(barrier_id_mask));
1083    }
1084 
1085    /* Emit a gateway "barrier" message using the payload we set up, followed
1086     * by a wait instruction.
1087     */
1088    bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
1089 }
1090 
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const brw_base_prog_key * key,struct brw_stage_prog_data * prog_data,const nir_shader * shader,unsigned dispatch_width,int shader_time_index,bool debug_enabled)1091 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1092                        void *mem_ctx,
1093                        const brw_base_prog_key *key,
1094                        struct brw_stage_prog_data *prog_data,
1095                        const nir_shader *shader,
1096                        unsigned dispatch_width,
1097                        int shader_time_index,
1098                        bool debug_enabled)
1099    : backend_shader(compiler, log_data, mem_ctx, shader, prog_data,
1100                     debug_enabled),
1101      key(key), gs_compile(NULL), prog_data(prog_data),
1102      live_analysis(this), regpressure_analysis(this),
1103      performance_analysis(this),
1104      dispatch_width(dispatch_width),
1105      shader_time_index(shader_time_index),
1106      bld(fs_builder(this, dispatch_width).at_end())
1107 {
1108    init();
1109 }
1110 
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,struct brw_gs_compile * c,struct brw_gs_prog_data * prog_data,const nir_shader * shader,int shader_time_index,bool debug_enabled)1111 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
1112                        void *mem_ctx,
1113                        struct brw_gs_compile *c,
1114                        struct brw_gs_prog_data *prog_data,
1115                        const nir_shader *shader,
1116                        int shader_time_index,
1117                        bool debug_enabled)
1118    : backend_shader(compiler, log_data, mem_ctx, shader,
1119                     &prog_data->base.base, debug_enabled),
1120      key(&c->key.base), gs_compile(c),
1121      prog_data(&prog_data->base.base),
1122      live_analysis(this), regpressure_analysis(this),
1123      performance_analysis(this),
1124      dispatch_width(8),
1125      shader_time_index(shader_time_index),
1126      bld(fs_builder(this, dispatch_width).at_end())
1127 {
1128    init();
1129 }
1130 
1131 
1132 void
init()1133 fs_visitor::init()
1134 {
1135    if (key)
1136       this->key_tex = &key->tex;
1137    else
1138       this->key_tex = NULL;
1139 
1140    this->max_dispatch_width = 32;
1141    this->prog_data = this->stage_prog_data;
1142 
1143    this->failed = false;
1144    this->fail_msg = NULL;
1145 
1146    this->nir_locals = NULL;
1147    this->nir_ssa_values = NULL;
1148    this->nir_system_values = NULL;
1149 
1150    memset(&this->payload, 0, sizeof(this->payload));
1151    this->source_depth_to_render_target = false;
1152    this->runtime_check_aads_emit = false;
1153    this->first_non_payload_grf = 0;
1154    this->max_grf = devinfo->ver >= 7 ? GFX7_MRF_HACK_START : BRW_MAX_GRF;
1155 
1156    this->uniforms = 0;
1157    this->last_scratch = 0;
1158    this->pull_constant_loc = NULL;
1159    this->push_constant_loc = NULL;
1160 
1161    this->shader_stats.scheduler_mode = NULL;
1162    this->shader_stats.promoted_constants = 0,
1163 
1164    this->grf_used = 0;
1165    this->spilled_any_registers = false;
1166 }
1167 
~fs_visitor()1168 fs_visitor::~fs_visitor()
1169 {
1170 }
1171