1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/glspirv.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
src_reg(gl_register_file file,int index,const glsl_type * type)71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
src_reg()83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
dst_reg(gl_register_file file,int writemask)104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
dst_reg()112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
src_reg(dst_reg reg)131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
dst_reg(src_reg reg)140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
variable_storage(ir_variable * var,gl_register_file file,int index)167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_demote *);
256 virtual void visit(ir_texture *);
257 virtual void visit(ir_if *);
258 virtual void visit(ir_emit_vertex *);
259 virtual void visit(ir_end_primitive *);
260 virtual void visit(ir_barrier *);
261 /*@}*/
262
263 src_reg result;
264
265 /** List of variable_storage */
266 exec_list variables;
267
268 /** List of function_entry */
269 exec_list function_signatures;
270 int next_signature_id;
271
272 /** List of ir_to_mesa_instruction */
273 exec_list instructions;
274
275 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
276
277 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
278 dst_reg dst, src_reg src0);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0, src_reg src1);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst,
285 src_reg src0, src_reg src1, src_reg src2);
286
287 /**
288 * Emit the correct dot-product instruction for the type of arguments
289 */
290 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
291 dst_reg dst,
292 src_reg src0,
293 src_reg src1,
294 unsigned elements);
295
296 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
297 dst_reg dst, src_reg src0);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0, src_reg src1);
301
302 bool try_emit_mad(ir_expression *ir,
303 int mul_operand);
304 bool try_emit_mad_for_and_not(ir_expression *ir,
305 int mul_operand);
306
307 void emit_swz(ir_expression *ir);
308
309 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
310 dst_reg dst,
311 const src_reg &src0, const src_reg &src1);
312
emit_sne(ir_expression * ir,dst_reg dst,const src_reg & src0,const src_reg & src1)313 inline void emit_sne(ir_expression *ir, dst_reg dst,
314 const src_reg &src0, const src_reg &src1)
315 {
316 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
317 }
318
emit_seq(ir_expression * ir,dst_reg dst,const src_reg & src0,const src_reg & src1)319 inline void emit_seq(ir_expression *ir, dst_reg dst,
320 const src_reg &src0, const src_reg &src1)
321 {
322 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
323 }
324
325 bool process_move_condition(ir_rvalue *ir);
326
327 void copy_propagate(void);
328
329 void *mem_ctx;
330 };
331
332 } /* anonymous namespace */
333
334 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
335
336 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
337
338 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
339
340 static int
swizzle_for_size(int size)341 swizzle_for_size(int size)
342 {
343 static const int size_swizzles[4] = {
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
347 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
348 };
349
350 assert((size >= 1) && (size <= 4));
351 return size_swizzles[size - 1];
352 }
353
354 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0,src_reg src1,src_reg src2)355 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
356 dst_reg dst,
357 src_reg src0, src_reg src1, src_reg src2)
358 {
359 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
360 int num_reladdr = 0;
361
362 /* If we have to do relative addressing, we want to load the ARL
363 * reg directly for one of the regs, and preload the other reladdr
364 * sources into temps.
365 */
366 num_reladdr += dst.reladdr != NULL;
367 num_reladdr += src0.reladdr != NULL;
368 num_reladdr += src1.reladdr != NULL;
369 num_reladdr += src2.reladdr != NULL;
370
371 reladdr_to_temp(ir, &src2, &num_reladdr);
372 reladdr_to_temp(ir, &src1, &num_reladdr);
373 reladdr_to_temp(ir, &src0, &num_reladdr);
374
375 if (dst.reladdr) {
376 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
377 num_reladdr--;
378 }
379 assert(num_reladdr == 0);
380
381 inst->op = op;
382 inst->dst = dst;
383 inst->src[0] = src0;
384 inst->src[1] = src1;
385 inst->src[2] = src2;
386 inst->ir = ir;
387
388 this->instructions.push_tail(inst);
389
390 return inst;
391 }
392
393
394 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0,src_reg src1)395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0, src_reg src1)
397 {
398 return emit(ir, op, dst, src0, src1, undef_src);
399 }
400
401 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0)402 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
403 dst_reg dst, src_reg src0)
404 {
405 assert(dst.writemask != 0);
406 return emit(ir, op, dst, src0, undef_src, undef_src);
407 }
408
409 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op)410 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
411 {
412 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
413 }
414
415 ir_to_mesa_instruction *
emit_dp(ir_instruction * ir,dst_reg dst,src_reg src0,src_reg src1,unsigned elements)416 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
417 dst_reg dst, src_reg src0, src_reg src1,
418 unsigned elements)
419 {
420 static const enum prog_opcode dot_opcodes[] = {
421 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
422 };
423
424 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
425 }
426
427 /**
428 * Emits Mesa scalar opcodes to produce unique answers across channels.
429 *
430 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
431 * channel determines the result across all channels. So to do a vec4
432 * of this operation, we want to emit a scalar per source channel used
433 * to produce dest channels.
434 */
435 void
emit_scalar(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg orig_src0,src_reg orig_src1)436 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
437 dst_reg dst,
438 src_reg orig_src0, src_reg orig_src1)
439 {
440 int i, j;
441 int done_mask = ~dst.writemask;
442
443 /* Mesa RCP is a scalar operation splatting results to all channels,
444 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
445 * dst channels.
446 */
447 for (i = 0; i < 4; i++) {
448 GLuint this_mask = (1 << i);
449 ir_to_mesa_instruction *inst;
450 src_reg src0 = orig_src0;
451 src_reg src1 = orig_src1;
452
453 if (done_mask & this_mask)
454 continue;
455
456 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
457 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
458 for (j = i + 1; j < 4; j++) {
459 /* If there is another enabled component in the destination that is
460 * derived from the same inputs, generate its value on this pass as
461 * well.
462 */
463 if (!(done_mask & (1 << j)) &&
464 GET_SWZ(src0.swizzle, j) == src0_swiz &&
465 GET_SWZ(src1.swizzle, j) == src1_swiz) {
466 this_mask |= (1 << j);
467 }
468 }
469 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
470 src0_swiz, src0_swiz);
471 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
472 src1_swiz, src1_swiz);
473
474 inst = emit(ir, op, dst, src0, src1);
475 inst->dst.writemask = this_mask;
476 done_mask |= this_mask;
477 }
478 }
479
480 void
emit_scalar(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0)481 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
482 dst_reg dst, src_reg src0)
483 {
484 src_reg undef = undef_src;
485
486 undef.swizzle = SWIZZLE_XXXX;
487
488 emit_scalar(ir, op, dst, src0, undef);
489 }
490
491 src_reg
src_reg_for_float(float val)492 ir_to_mesa_visitor::src_reg_for_float(float val)
493 {
494 src_reg src(PROGRAM_CONSTANT, -1, NULL);
495
496 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
497 (const gl_constant_value *)&val, 1, &src.swizzle);
498
499 return src;
500 }
501
502 static int
type_size(const struct glsl_type * type)503 type_size(const struct glsl_type *type)
504 {
505 return type->count_vec4_slots(false, false);
506 }
507
508 /**
509 * In the initial pass of codegen, we assign temporary numbers to
510 * intermediate results. (not SSA -- variable assignments will reuse
511 * storage). Actual register allocation for the Mesa VM occurs in a
512 * pass over the Mesa IR later.
513 */
514 src_reg
get_temp(const glsl_type * type)515 ir_to_mesa_visitor::get_temp(const glsl_type *type)
516 {
517 src_reg src;
518
519 src.file = PROGRAM_TEMPORARY;
520 src.index = next_temp;
521 src.reladdr = NULL;
522 next_temp += type_size(type);
523
524 if (type->is_array() || type->is_struct()) {
525 src.swizzle = SWIZZLE_NOOP;
526 } else {
527 src.swizzle = swizzle_for_size(type->vector_elements);
528 }
529 src.negate = 0;
530
531 return src;
532 }
533
534 variable_storage *
find_variable_storage(const ir_variable * var)535 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
536 {
537 foreach_in_list(variable_storage, entry, &this->variables) {
538 if (entry->var == var)
539 return entry;
540 }
541
542 return NULL;
543 }
544
545 void
visit(ir_variable * ir)546 ir_to_mesa_visitor::visit(ir_variable *ir)
547 {
548 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
549 unsigned int i;
550 const ir_state_slot *const slots = ir->get_state_slots();
551 assert(slots != NULL);
552
553 /* Check if this statevar's setup in the STATE file exactly
554 * matches how we'll want to reference it as a
555 * struct/array/whatever. If not, then we need to move it into
556 * temporary storage and hope that it'll get copy-propagated
557 * out.
558 */
559 for (i = 0; i < ir->get_num_state_slots(); i++) {
560 if (slots[i].swizzle != SWIZZLE_XYZW) {
561 break;
562 }
563 }
564
565 variable_storage *storage;
566 dst_reg dst;
567 if (i == ir->get_num_state_slots()) {
568 /* We'll set the index later. */
569 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
570 this->variables.push_tail(storage);
571
572 dst = undef_dst;
573 } else {
574 /* The variable_storage constructor allocates slots based on the size
575 * of the type. However, this had better match the number of state
576 * elements that we're going to copy into the new temporary.
577 */
578 assert((int) ir->get_num_state_slots() == type_size(ir->type));
579
580 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
581 this->next_temp);
582 this->variables.push_tail(storage);
583 this->next_temp += type_size(ir->type);
584
585 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
586 }
587
588
589 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
590 int index = _mesa_add_state_reference(this->prog->Parameters,
591 slots[i].tokens);
592
593 if (storage->file == PROGRAM_STATE_VAR) {
594 if (storage->index == -1) {
595 storage->index = index;
596 } else {
597 assert(index == storage->index + (int)i);
598 }
599 } else {
600 src_reg src(PROGRAM_STATE_VAR, index, NULL);
601 src.swizzle = slots[i].swizzle;
602 emit(ir, OPCODE_MOV, dst, src);
603 /* even a float takes up a whole vec4 reg in a struct/array. */
604 dst.index++;
605 }
606 }
607
608 if (storage->file == PROGRAM_TEMPORARY &&
609 dst.index != storage->index + (int) ir->get_num_state_slots()) {
610 linker_error(this->shader_program,
611 "failed to load builtin uniform `%s' "
612 "(%d/%d regs loaded)\n",
613 ir->name, dst.index - storage->index,
614 type_size(ir->type));
615 }
616 }
617 }
618
619 void
visit(ir_loop * ir)620 ir_to_mesa_visitor::visit(ir_loop *ir)
621 {
622 emit(NULL, OPCODE_BGNLOOP);
623
624 visit_exec_list(&ir->body_instructions, this);
625
626 emit(NULL, OPCODE_ENDLOOP);
627 }
628
629 void
visit(ir_loop_jump * ir)630 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
631 {
632 switch (ir->mode) {
633 case ir_loop_jump::jump_break:
634 emit(NULL, OPCODE_BRK);
635 break;
636 case ir_loop_jump::jump_continue:
637 emit(NULL, OPCODE_CONT);
638 break;
639 }
640 }
641
642
643 void
visit(ir_function_signature * ir)644 ir_to_mesa_visitor::visit(ir_function_signature *ir)
645 {
646 assert(0);
647 (void)ir;
648 }
649
650 void
visit(ir_function * ir)651 ir_to_mesa_visitor::visit(ir_function *ir)
652 {
653 /* Ignore function bodies other than main() -- we shouldn't see calls to
654 * them since they should all be inlined before we get to ir_to_mesa.
655 */
656 if (strcmp(ir->name, "main") == 0) {
657 const ir_function_signature *sig;
658 exec_list empty;
659
660 sig = ir->matching_signature(NULL, &empty, false);
661
662 assert(sig);
663
664 foreach_in_list(ir_instruction, ir, &sig->body) {
665 ir->accept(this);
666 }
667 }
668 }
669
670 bool
try_emit_mad(ir_expression * ir,int mul_operand)671 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
672 {
673 int nonmul_operand = 1 - mul_operand;
674 src_reg a, b, c;
675
676 ir_expression *expr = ir->operands[mul_operand]->as_expression();
677 if (!expr || expr->operation != ir_binop_mul)
678 return false;
679
680 expr->operands[0]->accept(this);
681 a = this->result;
682 expr->operands[1]->accept(this);
683 b = this->result;
684 ir->operands[nonmul_operand]->accept(this);
685 c = this->result;
686
687 this->result = get_temp(ir->type);
688 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
689
690 return true;
691 }
692
693 /**
694 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
695 *
696 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
697 * implemented using multiplication, and logical-or is implemented using
698 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
699 * As result, the logical expression (a & !b) can be rewritten as:
700 *
701 * - a * !b
702 * - a * (1 - b)
703 * - (a * 1) - (a * b)
704 * - a + -(a * b)
705 * - a + (a * -b)
706 *
707 * This final expression can be implemented as a single MAD(a, -b, a)
708 * instruction.
709 */
710 bool
try_emit_mad_for_and_not(ir_expression * ir,int try_operand)711 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
712 {
713 const int other_operand = 1 - try_operand;
714 src_reg a, b;
715
716 ir_expression *expr = ir->operands[try_operand]->as_expression();
717 if (!expr || expr->operation != ir_unop_logic_not)
718 return false;
719
720 ir->operands[other_operand]->accept(this);
721 a = this->result;
722 expr->operands[0]->accept(this);
723 b = this->result;
724
725 b.negate = ~b.negate;
726
727 this->result = get_temp(ir->type);
728 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
729
730 return true;
731 }
732
733 void
reladdr_to_temp(ir_instruction * ir,src_reg * reg,int * num_reladdr)734 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
735 src_reg *reg, int *num_reladdr)
736 {
737 if (!reg->reladdr)
738 return;
739
740 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
741
742 if (*num_reladdr != 1) {
743 src_reg temp = get_temp(glsl_type::vec4_type);
744
745 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
746 *reg = temp;
747 }
748
749 (*num_reladdr)--;
750 }
751
752 void
emit_swz(ir_expression * ir)753 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
754 {
755 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
756 * This means that each of the operands is either an immediate value of -1,
757 * 0, or 1, or is a component from one source register (possibly with
758 * negation).
759 */
760 uint8_t components[4] = { 0 };
761 bool negate[4] = { false };
762 ir_variable *var = NULL;
763
764 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
765 ir_rvalue *op = ir->operands[i];
766
767 assert(op->type->is_scalar());
768
769 while (op != NULL) {
770 switch (op->ir_type) {
771 case ir_type_constant: {
772
773 assert(op->type->is_scalar());
774
775 const ir_constant *const c = op->as_constant();
776 if (c->is_one()) {
777 components[i] = SWIZZLE_ONE;
778 } else if (c->is_zero()) {
779 components[i] = SWIZZLE_ZERO;
780 } else if (c->is_negative_one()) {
781 components[i] = SWIZZLE_ONE;
782 negate[i] = true;
783 } else {
784 assert(!"SWZ constant must be 0.0 or 1.0.");
785 }
786
787 op = NULL;
788 break;
789 }
790
791 case ir_type_dereference_variable: {
792 ir_dereference_variable *const deref =
793 (ir_dereference_variable *) op;
794
795 assert((var == NULL) || (deref->var == var));
796 components[i] = SWIZZLE_X;
797 var = deref->var;
798 op = NULL;
799 break;
800 }
801
802 case ir_type_expression: {
803 ir_expression *const expr = (ir_expression *) op;
804
805 assert(expr->operation == ir_unop_neg);
806 negate[i] = true;
807
808 op = expr->operands[0];
809 break;
810 }
811
812 case ir_type_swizzle: {
813 ir_swizzle *const swiz = (ir_swizzle *) op;
814
815 components[i] = swiz->mask.x;
816 op = swiz->val;
817 break;
818 }
819
820 default:
821 assert(!"Should not get here.");
822 return;
823 }
824 }
825 }
826
827 assert(var != NULL);
828
829 ir_dereference_variable *const deref =
830 new(mem_ctx) ir_dereference_variable(var);
831
832 this->result.file = PROGRAM_UNDEFINED;
833 deref->accept(this);
834 if (this->result.file == PROGRAM_UNDEFINED) {
835 printf("Failed to get tree for expression operand:\n");
836 deref->print();
837 printf("\n");
838 exit(1);
839 }
840
841 src_reg src;
842
843 src = this->result;
844 src.swizzle = MAKE_SWIZZLE4(components[0],
845 components[1],
846 components[2],
847 components[3]);
848 src.negate = ((unsigned(negate[0]) << 0)
849 | (unsigned(negate[1]) << 1)
850 | (unsigned(negate[2]) << 2)
851 | (unsigned(negate[3]) << 3));
852
853 /* Storage for our result. Ideally for an assignment we'd be using the
854 * actual storage for the result here, instead.
855 */
856 const src_reg result_src = get_temp(ir->type);
857 dst_reg result_dst = dst_reg(result_src);
858
859 /* Limit writes to the channels that will be used by result_src later.
860 * This does limit this temp's use as a temporary for multi-instruction
861 * sequences.
862 */
863 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
864
865 emit(ir, OPCODE_SWZ, result_dst, src);
866 this->result = result_src;
867 }
868
869 void
emit_equality_comparison(ir_expression * ir,enum prog_opcode op,dst_reg dst,const src_reg & src0,const src_reg & src1)870 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
871 enum prog_opcode op,
872 dst_reg dst,
873 const src_reg &src0,
874 const src_reg &src1)
875 {
876 src_reg difference;
877 src_reg abs_difference = get_temp(glsl_type::vec4_type);
878 const src_reg zero = src_reg_for_float(0.0);
879
880 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
881 * consumes the generated IR is pretty dumb, take special care when one
882 * of the operands is zero.
883 *
884 * Similarly, x != y is equivalent to -abs(x-y) < 0.
885 */
886 if (src0.file == zero.file &&
887 src0.index == zero.index &&
888 src0.swizzle == zero.swizzle) {
889 difference = src1;
890 } else if (src1.file == zero.file &&
891 src1.index == zero.index &&
892 src1.swizzle == zero.swizzle) {
893 difference = src0;
894 } else {
895 difference = get_temp(glsl_type::vec4_type);
896
897 src_reg tmp_src = src0;
898 tmp_src.negate = ~tmp_src.negate;
899
900 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
901 }
902
903 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
904
905 abs_difference.negate = ~abs_difference.negate;
906 emit(ir, op, dst, abs_difference, zero);
907 }
908
909 void
visit(ir_expression * ir)910 ir_to_mesa_visitor::visit(ir_expression *ir)
911 {
912 unsigned int operand;
913 src_reg op[ARRAY_SIZE(ir->operands)];
914 src_reg result_src;
915 dst_reg result_dst;
916
917 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
918 */
919 if (ir->operation == ir_binop_add) {
920 if (try_emit_mad(ir, 1))
921 return;
922 if (try_emit_mad(ir, 0))
923 return;
924 }
925
926 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
927 */
928 if (ir->operation == ir_binop_logic_and) {
929 if (try_emit_mad_for_and_not(ir, 1))
930 return;
931 if (try_emit_mad_for_and_not(ir, 0))
932 return;
933 }
934
935 if (ir->operation == ir_quadop_vector) {
936 this->emit_swz(ir);
937 return;
938 }
939
940 for (operand = 0; operand < ir->num_operands; operand++) {
941 this->result.file = PROGRAM_UNDEFINED;
942 ir->operands[operand]->accept(this);
943 if (this->result.file == PROGRAM_UNDEFINED) {
944 printf("Failed to get tree for expression operand:\n");
945 ir->operands[operand]->print();
946 printf("\n");
947 exit(1);
948 }
949 op[operand] = this->result;
950
951 /* Matrix expression operands should have been broken down to vector
952 * operations already.
953 */
954 assert(!ir->operands[operand]->type->is_matrix());
955 }
956
957 int vector_elements = ir->operands[0]->type->vector_elements;
958 if (ir->operands[1]) {
959 vector_elements = MAX2(vector_elements,
960 ir->operands[1]->type->vector_elements);
961 }
962
963 this->result.file = PROGRAM_UNDEFINED;
964
965 /* Storage for our result. Ideally for an assignment we'd be using
966 * the actual storage for the result here, instead.
967 */
968 result_src = get_temp(ir->type);
969 /* convenience for the emit functions below. */
970 result_dst = dst_reg(result_src);
971 /* Limit writes to the channels that will be used by result_src later.
972 * This does limit this temp's use as a temporary for multi-instruction
973 * sequences.
974 */
975 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
976
977 switch (ir->operation) {
978 case ir_unop_logic_not:
979 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
980 * older GPUs implement SEQ using multiple instructions (i915 uses two
981 * SGE instructions and a MUL instruction). Since our logic values are
982 * 0.0 and 1.0, 1-x also implements !x.
983 */
984 op[0].negate = ~op[0].negate;
985 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
986 break;
987 case ir_unop_neg:
988 op[0].negate = ~op[0].negate;
989 result_src = op[0];
990 break;
991 case ir_unop_abs:
992 emit(ir, OPCODE_ABS, result_dst, op[0]);
993 break;
994 case ir_unop_sign:
995 emit(ir, OPCODE_SSG, result_dst, op[0]);
996 break;
997 case ir_unop_rcp:
998 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
999 break;
1000
1001 case ir_unop_exp2:
1002 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1003 break;
1004 case ir_unop_exp:
1005 assert(!"not reached: should be handled by exp_to_exp2");
1006 break;
1007 case ir_unop_log:
1008 assert(!"not reached: should be handled by log_to_log2");
1009 break;
1010 case ir_unop_log2:
1011 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1012 break;
1013 case ir_unop_sin:
1014 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1015 break;
1016 case ir_unop_cos:
1017 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1018 break;
1019
1020 case ir_unop_dFdx:
1021 emit(ir, OPCODE_DDX, result_dst, op[0]);
1022 break;
1023 case ir_unop_dFdy:
1024 emit(ir, OPCODE_DDY, result_dst, op[0]);
1025 break;
1026
1027 case ir_unop_saturate: {
1028 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1029 result_dst, op[0]);
1030 inst->saturate = true;
1031 break;
1032 }
1033
1034 case ir_binop_add:
1035 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1036 break;
1037 case ir_binop_sub:
1038 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1039 break;
1040
1041 case ir_binop_mul:
1042 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1043 break;
1044 case ir_binop_div:
1045 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1046 break;
1047 case ir_binop_mod:
1048 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1049 assert(ir->type->is_integer_32());
1050 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1051 break;
1052
1053 case ir_binop_less:
1054 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1055 break;
1056 case ir_binop_gequal:
1057 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1058 break;
1059 case ir_binop_equal:
1060 emit_seq(ir, result_dst, op[0], op[1]);
1061 break;
1062 case ir_binop_nequal:
1063 emit_sne(ir, result_dst, op[0], op[1]);
1064 break;
1065 case ir_binop_all_equal:
1066 /* "==" operator producing a scalar boolean. */
1067 if (ir->operands[0]->type->is_vector() ||
1068 ir->operands[1]->type->is_vector()) {
1069 src_reg temp = get_temp(glsl_type::vec4_type);
1070 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1071
1072 /* After the dot-product, the value will be an integer on the
1073 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1074 */
1075 emit_dp(ir, result_dst, temp, temp, vector_elements);
1076
1077 /* Negating the result of the dot-product gives values on the range
1078 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1079 * achieved using SGE.
1080 */
1081 src_reg sge_src = result_src;
1082 sge_src.negate = ~sge_src.negate;
1083 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1084 } else {
1085 emit_seq(ir, result_dst, op[0], op[1]);
1086 }
1087 break;
1088 case ir_binop_any_nequal:
1089 /* "!=" operator producing a scalar boolean. */
1090 if (ir->operands[0]->type->is_vector() ||
1091 ir->operands[1]->type->is_vector()) {
1092 src_reg temp = get_temp(glsl_type::vec4_type);
1093 if (ir->operands[0]->type->is_boolean() &&
1094 ir->operands[1]->as_constant() &&
1095 ir->operands[1]->as_constant()->is_zero()) {
1096 temp = op[0];
1097 } else {
1098 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1099 }
1100
1101 /* After the dot-product, the value will be an integer on the
1102 * range [0,4]. Zero stays zero, and positive values become 1.0.
1103 */
1104 ir_to_mesa_instruction *const dp =
1105 emit_dp(ir, result_dst, temp, temp, vector_elements);
1106 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1107 /* The clamping to [0,1] can be done for free in the fragment
1108 * shader with a saturate.
1109 */
1110 dp->saturate = true;
1111 } else {
1112 /* Negating the result of the dot-product gives values on the range
1113 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1114 * achieved using SLT.
1115 */
1116 src_reg slt_src = result_src;
1117 slt_src.negate = ~slt_src.negate;
1118 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1119 }
1120 } else {
1121 emit_sne(ir, result_dst, op[0], op[1]);
1122 }
1123 break;
1124
1125 case ir_binop_logic_xor:
1126 emit_sne(ir, result_dst, op[0], op[1]);
1127 break;
1128
1129 case ir_binop_logic_or: {
1130 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1131 /* After the addition, the value will be an integer on the
1132 * range [0,2]. Zero stays zero, and positive values become 1.0.
1133 */
1134 ir_to_mesa_instruction *add =
1135 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1136 add->saturate = true;
1137 } else {
1138 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1139 * value is 1.0, the result of the logcal-or should be 1.0. If both
1140 * values are 0.0, the result should be 0.0. This is exactly what
1141 * MAX does.
1142 */
1143 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1144 }
1145 break;
1146 }
1147
1148 case ir_binop_logic_and:
1149 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1150 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1151 break;
1152
1153 case ir_binop_dot:
1154 assert(ir->operands[0]->type->is_vector());
1155 assert(ir->operands[0]->type == ir->operands[1]->type);
1156 emit_dp(ir, result_dst, op[0], op[1],
1157 ir->operands[0]->type->vector_elements);
1158 break;
1159
1160 case ir_unop_sqrt:
1161 /* sqrt(x) = x * rsq(x). */
1162 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1163 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1164 /* For incoming channels <= 0, set the result to 0. */
1165 op[0].negate = ~op[0].negate;
1166 emit(ir, OPCODE_CMP, result_dst,
1167 op[0], result_src, src_reg_for_float(0.0));
1168 break;
1169 case ir_unop_rsq:
1170 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1171 break;
1172 case ir_unop_i2f:
1173 case ir_unop_u2f:
1174 case ir_unop_b2f:
1175 case ir_unop_b2i:
1176 case ir_unop_i2u:
1177 case ir_unop_u2i:
1178 /* Mesa IR lacks types, ints are stored as truncated floats. */
1179 result_src = op[0];
1180 break;
1181 case ir_unop_f2i:
1182 case ir_unop_f2u:
1183 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1184 break;
1185 case ir_unop_f2b:
1186 case ir_unop_i2b:
1187 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1188 break;
1189 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1190 case ir_unop_bitcast_f2u:
1191 case ir_unop_bitcast_i2f:
1192 case ir_unop_bitcast_u2f:
1193 break;
1194 case ir_unop_trunc:
1195 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1196 break;
1197 case ir_unop_ceil:
1198 op[0].negate = ~op[0].negate;
1199 emit(ir, OPCODE_FLR, result_dst, op[0]);
1200 result_src.negate = ~result_src.negate;
1201 break;
1202 case ir_unop_floor:
1203 emit(ir, OPCODE_FLR, result_dst, op[0]);
1204 break;
1205 case ir_unop_fract:
1206 emit(ir, OPCODE_FRC, result_dst, op[0]);
1207 break;
1208 case ir_unop_pack_snorm_2x16:
1209 case ir_unop_pack_snorm_4x8:
1210 case ir_unop_pack_unorm_2x16:
1211 case ir_unop_pack_unorm_4x8:
1212 case ir_unop_pack_half_2x16:
1213 case ir_unop_pack_double_2x32:
1214 case ir_unop_unpack_snorm_2x16:
1215 case ir_unop_unpack_snorm_4x8:
1216 case ir_unop_unpack_unorm_2x16:
1217 case ir_unop_unpack_unorm_4x8:
1218 case ir_unop_unpack_half_2x16:
1219 case ir_unop_unpack_double_2x32:
1220 case ir_unop_bitfield_reverse:
1221 case ir_unop_bit_count:
1222 case ir_unop_find_msb:
1223 case ir_unop_find_lsb:
1224 case ir_unop_d2f:
1225 case ir_unop_f2d:
1226 case ir_unop_d2i:
1227 case ir_unop_i2d:
1228 case ir_unop_d2u:
1229 case ir_unop_u2d:
1230 case ir_unop_d2b:
1231 case ir_unop_frexp_sig:
1232 case ir_unop_frexp_exp:
1233 assert(!"not supported");
1234 break;
1235 case ir_binop_min:
1236 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1237 break;
1238 case ir_binop_max:
1239 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1240 break;
1241 case ir_binop_pow:
1242 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1243 break;
1244
1245 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1246 * hardware backends have no way to avoid Mesa IR generation
1247 * even if they don't use it, we need to emit "something" and
1248 * continue.
1249 */
1250 case ir_binop_lshift:
1251 case ir_binop_rshift:
1252 case ir_binop_bit_and:
1253 case ir_binop_bit_xor:
1254 case ir_binop_bit_or:
1255 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1256 break;
1257
1258 case ir_unop_bit_not:
1259 case ir_unop_round_even:
1260 emit(ir, OPCODE_MOV, result_dst, op[0]);
1261 break;
1262
1263 case ir_binop_ubo_load:
1264 assert(!"not supported");
1265 break;
1266
1267 case ir_triop_lrp:
1268 /* ir_triop_lrp operands are (x, y, a) while
1269 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1270 */
1271 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1272 break;
1273
1274 case ir_triop_csel:
1275 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1276 * selects src1 if src0 is < 0, src2 otherwise.
1277 */
1278 op[0].negate = ~op[0].negate;
1279 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1280 break;
1281
1282 case ir_binop_vector_extract:
1283 case ir_triop_fma:
1284 case ir_triop_bitfield_extract:
1285 case ir_triop_vector_insert:
1286 case ir_quadop_bitfield_insert:
1287 case ir_binop_ldexp:
1288 case ir_binop_carry:
1289 case ir_binop_borrow:
1290 case ir_binop_abs_sub:
1291 case ir_binop_add_sat:
1292 case ir_binop_sub_sat:
1293 case ir_binop_avg:
1294 case ir_binop_avg_round:
1295 case ir_binop_mul_32x16:
1296 case ir_binop_imul_high:
1297 case ir_unop_interpolate_at_centroid:
1298 case ir_binop_interpolate_at_offset:
1299 case ir_binop_interpolate_at_sample:
1300 case ir_unop_dFdx_coarse:
1301 case ir_unop_dFdx_fine:
1302 case ir_unop_dFdy_coarse:
1303 case ir_unop_dFdy_fine:
1304 case ir_unop_subroutine_to_int:
1305 case ir_unop_get_buffer_size:
1306 case ir_unop_bitcast_u642d:
1307 case ir_unop_bitcast_i642d:
1308 case ir_unop_bitcast_d2u64:
1309 case ir_unop_bitcast_d2i64:
1310 case ir_unop_i642i:
1311 case ir_unop_u642i:
1312 case ir_unop_i642u:
1313 case ir_unop_u642u:
1314 case ir_unop_i642b:
1315 case ir_unop_i642f:
1316 case ir_unop_u642f:
1317 case ir_unop_i642d:
1318 case ir_unop_u642d:
1319 case ir_unop_i2i64:
1320 case ir_unop_u2i64:
1321 case ir_unop_b2i64:
1322 case ir_unop_f2i64:
1323 case ir_unop_d2i64:
1324 case ir_unop_i2u64:
1325 case ir_unop_u2u64:
1326 case ir_unop_f2u64:
1327 case ir_unop_d2u64:
1328 case ir_unop_u642i64:
1329 case ir_unop_i642u64:
1330 case ir_unop_pack_int_2x32:
1331 case ir_unop_unpack_int_2x32:
1332 case ir_unop_pack_uint_2x32:
1333 case ir_unop_unpack_uint_2x32:
1334 case ir_unop_pack_sampler_2x32:
1335 case ir_unop_unpack_sampler_2x32:
1336 case ir_unop_pack_image_2x32:
1337 case ir_unop_unpack_image_2x32:
1338 case ir_unop_atan:
1339 case ir_binop_atan2:
1340 case ir_unop_clz:
1341 case ir_unop_f162f:
1342 case ir_unop_f2f16:
1343 case ir_unop_f2fmp:
1344 case ir_unop_f162b:
1345 case ir_unop_b2f16:
1346 case ir_unop_i2i:
1347 case ir_unop_i2imp:
1348 case ir_unop_u2u:
1349 case ir_unop_u2ump:
1350 assert(!"not supported");
1351 break;
1352
1353 case ir_unop_ssbo_unsized_array_length:
1354 case ir_unop_implicitly_sized_array_length:
1355 case ir_quadop_vector:
1356 /* This operation should have already been handled.
1357 */
1358 assert(!"Should not get here.");
1359 break;
1360 }
1361
1362 this->result = result_src;
1363 }
1364
1365
1366 void
visit(ir_swizzle * ir)1367 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1368 {
1369 src_reg src;
1370 int i;
1371 int swizzle[4] = {0};
1372
1373 /* Note that this is only swizzles in expressions, not those on the left
1374 * hand side of an assignment, which do write masking. See ir_assignment
1375 * for that.
1376 */
1377
1378 ir->val->accept(this);
1379 src = this->result;
1380 assert(src.file != PROGRAM_UNDEFINED);
1381 assert(ir->type->vector_elements > 0);
1382
1383 for (i = 0; i < 4; i++) {
1384 if (i < ir->type->vector_elements) {
1385 switch (i) {
1386 case 0:
1387 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1388 break;
1389 case 1:
1390 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1391 break;
1392 case 2:
1393 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1394 break;
1395 case 3:
1396 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1397 break;
1398 }
1399 } else {
1400 /* If the type is smaller than a vec4, replicate the last
1401 * channel out.
1402 */
1403 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1404 }
1405 }
1406
1407 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1408
1409 this->result = src;
1410 }
1411
1412 void
visit(ir_dereference_variable * ir)1413 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1414 {
1415 variable_storage *entry = find_variable_storage(ir->var);
1416 ir_variable *var = ir->var;
1417
1418 if (!entry) {
1419 switch (var->data.mode) {
1420 case ir_var_uniform:
1421 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1422 var->data.param_index);
1423 this->variables.push_tail(entry);
1424 break;
1425 case ir_var_shader_in:
1426 /* The linker assigns locations for varyings and attributes,
1427 * including deprecated builtins (like gl_Color),
1428 * user-assigned generic attributes (glBindVertexLocation),
1429 * and user-defined varyings.
1430 */
1431 assert(var->data.location != -1);
1432 entry = new(mem_ctx) variable_storage(var,
1433 PROGRAM_INPUT,
1434 var->data.location);
1435 break;
1436 case ir_var_shader_out:
1437 assert(var->data.location != -1);
1438 entry = new(mem_ctx) variable_storage(var,
1439 PROGRAM_OUTPUT,
1440 var->data.location);
1441 break;
1442 case ir_var_system_value:
1443 entry = new(mem_ctx) variable_storage(var,
1444 PROGRAM_SYSTEM_VALUE,
1445 var->data.location);
1446 break;
1447 case ir_var_auto:
1448 case ir_var_temporary:
1449 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1450 this->next_temp);
1451 this->variables.push_tail(entry);
1452
1453 next_temp += type_size(var->type);
1454 break;
1455 }
1456
1457 if (!entry) {
1458 printf("Failed to make storage for %s\n", var->name);
1459 exit(1);
1460 }
1461 }
1462
1463 this->result = src_reg(entry->file, entry->index, var->type);
1464 }
1465
1466 void
visit(ir_dereference_array * ir)1467 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1468 {
1469 ir_constant *index;
1470 src_reg src;
1471 int element_size = type_size(ir->type);
1472
1473 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1474
1475 ir->array->accept(this);
1476 src = this->result;
1477
1478 if (index) {
1479 src.index += index->value.i[0] * element_size;
1480 } else {
1481 /* Variable index array dereference. It eats the "vec4" of the
1482 * base of the array and an index that offsets the Mesa register
1483 * index.
1484 */
1485 ir->array_index->accept(this);
1486
1487 src_reg index_reg;
1488
1489 if (element_size == 1) {
1490 index_reg = this->result;
1491 } else {
1492 index_reg = get_temp(glsl_type::float_type);
1493
1494 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1495 this->result, src_reg_for_float(element_size));
1496 }
1497
1498 /* If there was already a relative address register involved, add the
1499 * new and the old together to get the new offset.
1500 */
1501 if (src.reladdr != NULL) {
1502 src_reg accum_reg = get_temp(glsl_type::float_type);
1503
1504 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1505 index_reg, *src.reladdr);
1506
1507 index_reg = accum_reg;
1508 }
1509
1510 src.reladdr = ralloc(mem_ctx, src_reg);
1511 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1512 }
1513
1514 /* If the type is smaller than a vec4, replicate the last channel out. */
1515 if (ir->type->is_scalar() || ir->type->is_vector())
1516 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1517 else
1518 src.swizzle = SWIZZLE_NOOP;
1519
1520 this->result = src;
1521 }
1522
1523 void
visit(ir_dereference_record * ir)1524 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1525 {
1526 unsigned int i;
1527 const glsl_type *struct_type = ir->record->type;
1528 int offset = 0;
1529
1530 ir->record->accept(this);
1531
1532 assert(ir->field_idx >= 0);
1533 for (i = 0; i < struct_type->length; i++) {
1534 if (i == (unsigned) ir->field_idx)
1535 break;
1536 offset += type_size(struct_type->fields.structure[i].type);
1537 }
1538
1539 /* If the type is smaller than a vec4, replicate the last channel out. */
1540 if (ir->type->is_scalar() || ir->type->is_vector())
1541 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1542 else
1543 this->result.swizzle = SWIZZLE_NOOP;
1544
1545 this->result.index += offset;
1546 }
1547
1548 /**
1549 * We want to be careful in assignment setup to hit the actual storage
1550 * instead of potentially using a temporary like we might with the
1551 * ir_dereference handler.
1552 */
1553 static dst_reg
get_assignment_lhs(ir_dereference * ir,ir_to_mesa_visitor * v)1554 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1555 {
1556 /* The LHS must be a dereference. If the LHS is a variable indexed array
1557 * access of a vector, it must be separated into a series conditional moves
1558 * before reaching this point (see ir_vec_index_to_cond_assign).
1559 */
1560 assert(ir->as_dereference());
1561 ir_dereference_array *deref_array = ir->as_dereference_array();
1562 if (deref_array) {
1563 assert(!deref_array->array->type->is_vector());
1564 }
1565
1566 /* Use the rvalue deref handler for the most part. We'll ignore
1567 * swizzles in it and write swizzles using writemask, though.
1568 */
1569 ir->accept(v);
1570 return dst_reg(v->result);
1571 }
1572
1573 /* Calculate the sampler index and also calculate the base uniform location
1574 * for struct members.
1575 */
1576 static void
calc_sampler_offsets(struct gl_shader_program * prog,ir_dereference * deref,unsigned * offset,unsigned * array_elements,unsigned * location)1577 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1578 unsigned *offset, unsigned *array_elements,
1579 unsigned *location)
1580 {
1581 if (deref->ir_type == ir_type_dereference_variable)
1582 return;
1583
1584 switch (deref->ir_type) {
1585 case ir_type_dereference_array: {
1586 ir_dereference_array *deref_arr = deref->as_dereference_array();
1587
1588 void *mem_ctx = ralloc_parent(deref_arr);
1589 ir_constant *array_index =
1590 deref_arr->array_index->constant_expression_value(mem_ctx);
1591
1592 if (!array_index) {
1593 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1594 * while GLSL 1.30 requires that the array indices be
1595 * constant integer expressions. We don't expect any driver
1596 * to actually work with a really variable array index, so
1597 * all that would work would be an unrolled loop counter that ends
1598 * up being constant above.
1599 */
1600 ralloc_strcat(&prog->data->InfoLog,
1601 "warning: Variable sampler array index unsupported.\n"
1602 "This feature of the language was removed in GLSL 1.20 "
1603 "and is unlikely to be supported for 1.10 in Mesa.\n");
1604 } else {
1605 *offset += array_index->value.u[0] * *array_elements;
1606 }
1607
1608 *array_elements *= deref_arr->array->type->length;
1609
1610 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1611 offset, array_elements, location);
1612 break;
1613 }
1614
1615 case ir_type_dereference_record: {
1616 ir_dereference_record *deref_record = deref->as_dereference_record();
1617 unsigned field_index = deref_record->field_idx;
1618 *location +=
1619 deref_record->record->type->struct_location_offset(field_index);
1620 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1621 offset, array_elements, location);
1622 break;
1623 }
1624
1625 default:
1626 unreachable("Invalid deref type");
1627 break;
1628 }
1629 }
1630
1631 static int
get_sampler_uniform_value(class ir_dereference * sampler,struct gl_shader_program * shader_program,const struct gl_program * prog)1632 get_sampler_uniform_value(class ir_dereference *sampler,
1633 struct gl_shader_program *shader_program,
1634 const struct gl_program *prog)
1635 {
1636 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1637 ir_variable *var = sampler->variable_referenced();
1638 unsigned location = var->data.location;
1639 unsigned array_elements = 1;
1640 unsigned offset = 0;
1641
1642 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1643 &location);
1644
1645 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1646 return shader_program->data->UniformStorage[location].opaque[shader].index +
1647 offset;
1648 }
1649
1650 /**
1651 * Process the condition of a conditional assignment
1652 *
1653 * Examines the condition of a conditional assignment to generate the optimal
1654 * first operand of a \c CMP instruction. If the condition is a relational
1655 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1656 * used as the source for the \c CMP instruction. Otherwise the comparison
1657 * is processed to a boolean result, and the boolean result is used as the
1658 * operand to the CMP instruction.
1659 */
1660 bool
process_move_condition(ir_rvalue * ir)1661 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1662 {
1663 ir_rvalue *src_ir = ir;
1664 bool negate = true;
1665 bool switch_order = false;
1666
1667 ir_expression *const expr = ir->as_expression();
1668 if ((expr != NULL) && (expr->num_operands == 2)) {
1669 bool zero_on_left = false;
1670
1671 if (expr->operands[0]->is_zero()) {
1672 src_ir = expr->operands[1];
1673 zero_on_left = true;
1674 } else if (expr->operands[1]->is_zero()) {
1675 src_ir = expr->operands[0];
1676 zero_on_left = false;
1677 }
1678
1679 /* a is - 0 + - 0 +
1680 * (a < 0) T F F ( a < 0) T F F
1681 * (0 < a) F F T (-a < 0) F F T
1682 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1683 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1684 *
1685 * Note that exchanging the order of 0 and 'a' in the comparison simply
1686 * means that the value of 'a' should be negated.
1687 */
1688 if (src_ir != ir) {
1689 switch (expr->operation) {
1690 case ir_binop_less:
1691 switch_order = false;
1692 negate = zero_on_left;
1693 break;
1694
1695 case ir_binop_gequal:
1696 switch_order = true;
1697 negate = zero_on_left;
1698 break;
1699
1700 default:
1701 /* This isn't the right kind of comparison afterall, so make sure
1702 * the whole condition is visited.
1703 */
1704 src_ir = ir;
1705 break;
1706 }
1707 }
1708 }
1709
1710 src_ir->accept(this);
1711
1712 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1713 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1714 * choose which value OPCODE_CMP produces without an extra instruction
1715 * computing the condition.
1716 */
1717 if (negate)
1718 this->result.negate = ~this->result.negate;
1719
1720 return switch_order;
1721 }
1722
1723 void
visit(ir_assignment * ir)1724 ir_to_mesa_visitor::visit(ir_assignment *ir)
1725 {
1726 dst_reg l;
1727 src_reg r;
1728 int i;
1729
1730 ir->rhs->accept(this);
1731 r = this->result;
1732
1733 l = get_assignment_lhs(ir->lhs, this);
1734
1735 /* FINISHME: This should really set to the correct maximal writemask for each
1736 * FINISHME: component written (in the loops below). This case can only
1737 * FINISHME: occur for matrices, arrays, and structures.
1738 */
1739 if (ir->write_mask == 0) {
1740 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1741 l.writemask = WRITEMASK_XYZW;
1742 } else if (ir->lhs->type->is_scalar()) {
1743 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1744 * FINISHME: W component of fragment shader output zero, work correctly.
1745 */
1746 l.writemask = WRITEMASK_XYZW;
1747 } else {
1748 int swizzles[4];
1749 int first_enabled_chan = 0;
1750 int rhs_chan = 0;
1751
1752 assert(ir->lhs->type->is_vector());
1753 l.writemask = ir->write_mask;
1754
1755 for (int i = 0; i < 4; i++) {
1756 if (l.writemask & (1 << i)) {
1757 first_enabled_chan = GET_SWZ(r.swizzle, i);
1758 break;
1759 }
1760 }
1761
1762 /* Swizzle a small RHS vector into the channels being written.
1763 *
1764 * glsl ir treats write_mask as dictating how many channels are
1765 * present on the RHS while Mesa IR treats write_mask as just
1766 * showing which channels of the vec4 RHS get written.
1767 */
1768 for (int i = 0; i < 4; i++) {
1769 if (l.writemask & (1 << i))
1770 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1771 else
1772 swizzles[i] = first_enabled_chan;
1773 }
1774 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1775 swizzles[2], swizzles[3]);
1776 }
1777
1778 assert(l.file != PROGRAM_UNDEFINED);
1779 assert(r.file != PROGRAM_UNDEFINED);
1780
1781 if (ir->condition) {
1782 const bool switch_order = this->process_move_condition(ir->condition);
1783 src_reg condition = this->result;
1784
1785 for (i = 0; i < type_size(ir->lhs->type); i++) {
1786 if (switch_order) {
1787 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1788 } else {
1789 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1790 }
1791
1792 l.index++;
1793 r.index++;
1794 }
1795 } else {
1796 for (i = 0; i < type_size(ir->lhs->type); i++) {
1797 emit(ir, OPCODE_MOV, l, r);
1798 l.index++;
1799 r.index++;
1800 }
1801 }
1802 }
1803
1804
1805 void
visit(ir_constant * ir)1806 ir_to_mesa_visitor::visit(ir_constant *ir)
1807 {
1808 src_reg src;
1809 GLfloat stack_vals[4] = { 0 };
1810 GLfloat *values = stack_vals;
1811 unsigned int i;
1812
1813 /* Unfortunately, 4 floats is all we can get into
1814 * _mesa_add_unnamed_constant. So, make a temp to store an
1815 * aggregate constant and move each constant value into it. If we
1816 * get lucky, copy propagation will eliminate the extra moves.
1817 */
1818
1819 if (ir->type->is_struct()) {
1820 src_reg temp_base = get_temp(ir->type);
1821 dst_reg temp = dst_reg(temp_base);
1822
1823 for (i = 0; i < ir->type->length; i++) {
1824 ir_constant *const field_value = ir->get_record_field(i);
1825 int size = type_size(field_value->type);
1826
1827 assert(size > 0);
1828
1829 field_value->accept(this);
1830 src = this->result;
1831
1832 for (unsigned j = 0; j < (unsigned int)size; j++) {
1833 emit(ir, OPCODE_MOV, temp, src);
1834
1835 src.index++;
1836 temp.index++;
1837 }
1838 }
1839 this->result = temp_base;
1840 return;
1841 }
1842
1843 if (ir->type->is_array()) {
1844 src_reg temp_base = get_temp(ir->type);
1845 dst_reg temp = dst_reg(temp_base);
1846 int size = type_size(ir->type->fields.array);
1847
1848 assert(size > 0);
1849
1850 for (i = 0; i < ir->type->length; i++) {
1851 ir->const_elements[i]->accept(this);
1852 src = this->result;
1853 for (int j = 0; j < size; j++) {
1854 emit(ir, OPCODE_MOV, temp, src);
1855
1856 src.index++;
1857 temp.index++;
1858 }
1859 }
1860 this->result = temp_base;
1861 return;
1862 }
1863
1864 if (ir->type->is_matrix()) {
1865 src_reg mat = get_temp(ir->type);
1866 dst_reg mat_column = dst_reg(mat);
1867
1868 for (i = 0; i < ir->type->matrix_columns; i++) {
1869 assert(ir->type->is_float());
1870 values = &ir->value.f[i * ir->type->vector_elements];
1871
1872 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1873 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1874 (gl_constant_value *) values,
1875 ir->type->vector_elements,
1876 &src.swizzle);
1877 emit(ir, OPCODE_MOV, mat_column, src);
1878
1879 mat_column.index++;
1880 }
1881
1882 this->result = mat;
1883 return;
1884 }
1885
1886 src.file = PROGRAM_CONSTANT;
1887 switch (ir->type->base_type) {
1888 case GLSL_TYPE_FLOAT:
1889 values = &ir->value.f[0];
1890 break;
1891 case GLSL_TYPE_UINT:
1892 for (i = 0; i < ir->type->vector_elements; i++) {
1893 values[i] = ir->value.u[i];
1894 }
1895 break;
1896 case GLSL_TYPE_INT:
1897 for (i = 0; i < ir->type->vector_elements; i++) {
1898 values[i] = ir->value.i[i];
1899 }
1900 break;
1901 case GLSL_TYPE_BOOL:
1902 for (i = 0; i < ir->type->vector_elements; i++) {
1903 values[i] = ir->value.b[i];
1904 }
1905 break;
1906 default:
1907 assert(!"Non-float/uint/int/bool constant");
1908 }
1909
1910 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1911 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1912 (gl_constant_value *) values,
1913 ir->type->vector_elements,
1914 &this->result.swizzle);
1915 }
1916
1917 void
visit(ir_call *)1918 ir_to_mesa_visitor::visit(ir_call *)
1919 {
1920 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1921 }
1922
1923 void
visit(ir_texture * ir)1924 ir_to_mesa_visitor::visit(ir_texture *ir)
1925 {
1926 src_reg result_src, coord, lod_info, projector, dx, dy;
1927 dst_reg result_dst, coord_dst;
1928 ir_to_mesa_instruction *inst = NULL;
1929 prog_opcode opcode = OPCODE_NOP;
1930
1931 if (ir->op == ir_txs)
1932 this->result = src_reg_for_float(0.0);
1933 else
1934 ir->coordinate->accept(this);
1935
1936 /* Put our coords in a temp. We'll need to modify them for shadow,
1937 * projection, or LOD, so the only case we'd use it as-is is if
1938 * we're doing plain old texturing. Mesa IR optimization should
1939 * handle cleaning up our mess in that case.
1940 */
1941 coord = get_temp(glsl_type::vec4_type);
1942 coord_dst = dst_reg(coord);
1943 emit(ir, OPCODE_MOV, coord_dst, this->result);
1944
1945 if (ir->projector) {
1946 ir->projector->accept(this);
1947 projector = this->result;
1948 }
1949
1950 /* Storage for our result. Ideally for an assignment we'd be using
1951 * the actual storage for the result here, instead.
1952 */
1953 result_src = get_temp(glsl_type::vec4_type);
1954 result_dst = dst_reg(result_src);
1955
1956 switch (ir->op) {
1957 case ir_tex:
1958 case ir_txs:
1959 opcode = OPCODE_TEX;
1960 break;
1961 case ir_txb:
1962 opcode = OPCODE_TXB;
1963 ir->lod_info.bias->accept(this);
1964 lod_info = this->result;
1965 break;
1966 case ir_txf:
1967 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1968 case ir_txl:
1969 opcode = OPCODE_TXL;
1970 ir->lod_info.lod->accept(this);
1971 lod_info = this->result;
1972 break;
1973 case ir_txd:
1974 opcode = OPCODE_TXD;
1975 ir->lod_info.grad.dPdx->accept(this);
1976 dx = this->result;
1977 ir->lod_info.grad.dPdy->accept(this);
1978 dy = this->result;
1979 break;
1980 case ir_txf_ms:
1981 assert(!"Unexpected ir_txf_ms opcode");
1982 break;
1983 case ir_lod:
1984 assert(!"Unexpected ir_lod opcode");
1985 break;
1986 case ir_tg4:
1987 assert(!"Unexpected ir_tg4 opcode");
1988 break;
1989 case ir_query_levels:
1990 assert(!"Unexpected ir_query_levels opcode");
1991 break;
1992 case ir_samples_identical:
1993 unreachable("Unexpected ir_samples_identical opcode");
1994 case ir_texture_samples:
1995 unreachable("Unexpected ir_texture_samples opcode");
1996 }
1997
1998 const glsl_type *sampler_type = ir->sampler->type;
1999
2000 if (ir->projector) {
2001 if (opcode == OPCODE_TEX) {
2002 /* Slot the projector in as the last component of the coord. */
2003 coord_dst.writemask = WRITEMASK_W;
2004 emit(ir, OPCODE_MOV, coord_dst, projector);
2005 coord_dst.writemask = WRITEMASK_XYZW;
2006 opcode = OPCODE_TXP;
2007 } else {
2008 src_reg coord_w = coord;
2009 coord_w.swizzle = SWIZZLE_WWWW;
2010
2011 /* For the other TEX opcodes there's no projective version
2012 * since the last slot is taken up by lod info. Do the
2013 * projective divide now.
2014 */
2015 coord_dst.writemask = WRITEMASK_W;
2016 emit(ir, OPCODE_RCP, coord_dst, projector);
2017
2018 /* In the case where we have to project the coordinates "by hand,"
2019 * the shadow comparator value must also be projected.
2020 */
2021 src_reg tmp_src = coord;
2022 if (ir->shadow_comparator) {
2023 /* Slot the shadow value in as the second to last component of the
2024 * coord.
2025 */
2026 ir->shadow_comparator->accept(this);
2027
2028 tmp_src = get_temp(glsl_type::vec4_type);
2029 dst_reg tmp_dst = dst_reg(tmp_src);
2030
2031 /* Projective division not allowed for array samplers. */
2032 assert(!sampler_type->sampler_array);
2033
2034 tmp_dst.writemask = WRITEMASK_Z;
2035 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2036
2037 tmp_dst.writemask = WRITEMASK_XY;
2038 emit(ir, OPCODE_MOV, tmp_dst, coord);
2039 }
2040
2041 coord_dst.writemask = WRITEMASK_XYZ;
2042 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2043
2044 coord_dst.writemask = WRITEMASK_XYZW;
2045 coord.swizzle = SWIZZLE_XYZW;
2046 }
2047 }
2048
2049 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2050 * comparator was put in the correct place (and projected) by the code,
2051 * above, that handles by-hand projection.
2052 */
2053 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2054 /* Slot the shadow value in as the second to last component of the
2055 * coord.
2056 */
2057 ir->shadow_comparator->accept(this);
2058
2059 /* XXX This will need to be updated for cubemap array samplers. */
2060 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2061 sampler_type->sampler_array) {
2062 coord_dst.writemask = WRITEMASK_W;
2063 } else {
2064 coord_dst.writemask = WRITEMASK_Z;
2065 }
2066
2067 emit(ir, OPCODE_MOV, coord_dst, this->result);
2068 coord_dst.writemask = WRITEMASK_XYZW;
2069 }
2070
2071 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2072 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2073 coord_dst.writemask = WRITEMASK_W;
2074 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2075 coord_dst.writemask = WRITEMASK_XYZW;
2076 }
2077
2078 if (opcode == OPCODE_TXD)
2079 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2080 else
2081 inst = emit(ir, opcode, result_dst, coord);
2082
2083 if (ir->shadow_comparator)
2084 inst->tex_shadow = GL_TRUE;
2085
2086 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2087 prog);
2088
2089 switch (sampler_type->sampler_dimensionality) {
2090 case GLSL_SAMPLER_DIM_1D:
2091 inst->tex_target = (sampler_type->sampler_array)
2092 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2093 break;
2094 case GLSL_SAMPLER_DIM_2D:
2095 inst->tex_target = (sampler_type->sampler_array)
2096 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2097 break;
2098 case GLSL_SAMPLER_DIM_3D:
2099 inst->tex_target = TEXTURE_3D_INDEX;
2100 break;
2101 case GLSL_SAMPLER_DIM_CUBE:
2102 inst->tex_target = TEXTURE_CUBE_INDEX;
2103 break;
2104 case GLSL_SAMPLER_DIM_RECT:
2105 inst->tex_target = TEXTURE_RECT_INDEX;
2106 break;
2107 case GLSL_SAMPLER_DIM_BUF:
2108 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2109 break;
2110 case GLSL_SAMPLER_DIM_EXTERNAL:
2111 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2112 break;
2113 default:
2114 assert(!"Should not get here.");
2115 }
2116
2117 this->result = result_src;
2118 }
2119
2120 void
visit(ir_return * ir)2121 ir_to_mesa_visitor::visit(ir_return *ir)
2122 {
2123 /* Non-void functions should have been inlined. We may still emit RETs
2124 * from main() unless the EmitNoMainReturn option is set.
2125 */
2126 assert(!ir->get_value());
2127 emit(ir, OPCODE_RET);
2128 }
2129
2130 void
visit(ir_discard * ir)2131 ir_to_mesa_visitor::visit(ir_discard *ir)
2132 {
2133 if (!ir->condition)
2134 ir->condition = new(mem_ctx) ir_constant(true);
2135
2136 ir->condition->accept(this);
2137 this->result.negate = ~this->result.negate;
2138 emit(ir, OPCODE_KIL, undef_dst, this->result);
2139 }
2140
2141 void
visit(ir_demote * ir)2142 ir_to_mesa_visitor::visit(ir_demote *ir)
2143 {
2144 assert(!"demote statement unsupported");
2145 }
2146
2147 void
visit(ir_if * ir)2148 ir_to_mesa_visitor::visit(ir_if *ir)
2149 {
2150 ir_to_mesa_instruction *if_inst;
2151
2152 ir->condition->accept(this);
2153 assert(this->result.file != PROGRAM_UNDEFINED);
2154
2155 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2156
2157 this->instructions.push_tail(if_inst);
2158
2159 visit_exec_list(&ir->then_instructions, this);
2160
2161 if (!ir->else_instructions.is_empty()) {
2162 emit(ir->condition, OPCODE_ELSE);
2163 visit_exec_list(&ir->else_instructions, this);
2164 }
2165
2166 emit(ir->condition, OPCODE_ENDIF);
2167 }
2168
2169 void
visit(ir_emit_vertex *)2170 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2171 {
2172 assert(!"Geometry shaders not supported.");
2173 }
2174
2175 void
visit(ir_end_primitive *)2176 ir_to_mesa_visitor::visit(ir_end_primitive *)
2177 {
2178 assert(!"Geometry shaders not supported.");
2179 }
2180
2181 void
visit(ir_barrier *)2182 ir_to_mesa_visitor::visit(ir_barrier *)
2183 {
2184 unreachable("GLSL barrier() not supported.");
2185 }
2186
ir_to_mesa_visitor()2187 ir_to_mesa_visitor::ir_to_mesa_visitor()
2188 {
2189 result.file = PROGRAM_UNDEFINED;
2190 next_temp = 1;
2191 next_signature_id = 1;
2192 current_function = NULL;
2193 mem_ctx = ralloc_context(NULL);
2194 ctx = NULL;
2195 prog = NULL;
2196 shader_program = NULL;
2197 options = NULL;
2198 }
2199
~ir_to_mesa_visitor()2200 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2201 {
2202 ralloc_free(mem_ctx);
2203 }
2204
2205 static struct prog_src_register
mesa_src_reg_from_ir_src_reg(src_reg reg)2206 mesa_src_reg_from_ir_src_reg(src_reg reg)
2207 {
2208 struct prog_src_register mesa_reg;
2209
2210 mesa_reg.File = reg.file;
2211 assert(reg.index < (1 << INST_INDEX_BITS));
2212 mesa_reg.Index = reg.index;
2213 mesa_reg.Swizzle = reg.swizzle;
2214 mesa_reg.RelAddr = reg.reladdr != NULL;
2215 mesa_reg.Negate = reg.negate;
2216
2217 return mesa_reg;
2218 }
2219
2220 static void
set_branchtargets(ir_to_mesa_visitor * v,struct prog_instruction * mesa_instructions,int num_instructions)2221 set_branchtargets(ir_to_mesa_visitor *v,
2222 struct prog_instruction *mesa_instructions,
2223 int num_instructions)
2224 {
2225 int if_count = 0, loop_count = 0;
2226 int *if_stack, *loop_stack;
2227 int if_stack_pos = 0, loop_stack_pos = 0;
2228 int i, j;
2229
2230 for (i = 0; i < num_instructions; i++) {
2231 switch (mesa_instructions[i].Opcode) {
2232 case OPCODE_IF:
2233 if_count++;
2234 break;
2235 case OPCODE_BGNLOOP:
2236 loop_count++;
2237 break;
2238 case OPCODE_BRK:
2239 case OPCODE_CONT:
2240 mesa_instructions[i].BranchTarget = -1;
2241 break;
2242 default:
2243 break;
2244 }
2245 }
2246
2247 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2248 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2249
2250 for (i = 0; i < num_instructions; i++) {
2251 switch (mesa_instructions[i].Opcode) {
2252 case OPCODE_IF:
2253 if_stack[if_stack_pos] = i;
2254 if_stack_pos++;
2255 break;
2256 case OPCODE_ELSE:
2257 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2258 if_stack[if_stack_pos - 1] = i;
2259 break;
2260 case OPCODE_ENDIF:
2261 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2262 if_stack_pos--;
2263 break;
2264 case OPCODE_BGNLOOP:
2265 loop_stack[loop_stack_pos] = i;
2266 loop_stack_pos++;
2267 break;
2268 case OPCODE_ENDLOOP:
2269 loop_stack_pos--;
2270 /* Rewrite any breaks/conts at this nesting level (haven't
2271 * already had a BranchTarget assigned) to point to the end
2272 * of the loop.
2273 */
2274 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2275 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2276 mesa_instructions[j].Opcode == OPCODE_CONT) {
2277 if (mesa_instructions[j].BranchTarget == -1) {
2278 mesa_instructions[j].BranchTarget = i;
2279 }
2280 }
2281 }
2282 /* The loop ends point at each other. */
2283 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2284 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2285 break;
2286 case OPCODE_CAL:
2287 foreach_in_list(function_entry, entry, &v->function_signatures) {
2288 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2289 mesa_instructions[i].BranchTarget = entry->inst;
2290 break;
2291 }
2292 }
2293 break;
2294 default:
2295 break;
2296 }
2297 }
2298 }
2299
2300 static void
print_program(struct prog_instruction * mesa_instructions,ir_instruction ** mesa_instruction_annotation,int num_instructions)2301 print_program(struct prog_instruction *mesa_instructions,
2302 ir_instruction **mesa_instruction_annotation,
2303 int num_instructions)
2304 {
2305 ir_instruction *last_ir = NULL;
2306 int i;
2307 int indent = 0;
2308
2309 for (i = 0; i < num_instructions; i++) {
2310 struct prog_instruction *mesa_inst = mesa_instructions + i;
2311 ir_instruction *ir = mesa_instruction_annotation[i];
2312
2313 fprintf(stdout, "%3d: ", i);
2314
2315 if (last_ir != ir && ir) {
2316 int j;
2317
2318 for (j = 0; j < indent; j++) {
2319 fprintf(stdout, " ");
2320 }
2321 ir->print();
2322 printf("\n");
2323 last_ir = ir;
2324
2325 fprintf(stdout, " "); /* line number spacing. */
2326 }
2327
2328 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2329 PROG_PRINT_DEBUG, NULL);
2330 }
2331 }
2332
2333 namespace {
2334
2335 class add_uniform_to_shader : public program_resource_visitor {
2336 public:
add_uniform_to_shader(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_program_parameter_list * params)2337 add_uniform_to_shader(struct gl_context *ctx,
2338 struct gl_shader_program *shader_program,
2339 struct gl_program_parameter_list *params)
2340 : ctx(ctx), shader_program(shader_program), params(params), idx(-1),
2341 var(NULL)
2342 {
2343 /* empty */
2344 }
2345
process(ir_variable * var)2346 void process(ir_variable *var)
2347 {
2348 this->idx = -1;
2349 this->var = var;
2350 this->program_resource_visitor::process(var,
2351 ctx->Const.UseSTD430AsDefaultPacking);
2352 var->data.param_index = this->idx;
2353 }
2354
2355 private:
2356 virtual void visit_field(const glsl_type *type, const char *name,
2357 bool row_major, const glsl_type *record_type,
2358 const enum glsl_interface_packing packing,
2359 bool last_field);
2360
2361 struct gl_context *ctx;
2362 struct gl_shader_program *shader_program;
2363 struct gl_program_parameter_list *params;
2364 int idx;
2365 ir_variable *var;
2366 };
2367
2368 } /* anonymous namespace */
2369
2370 void
visit_field(const glsl_type * type,const char * name,bool,const glsl_type *,const enum glsl_interface_packing,bool)2371 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2372 bool /* row_major */,
2373 const glsl_type * /* record_type */,
2374 const enum glsl_interface_packing,
2375 bool /* last_field */)
2376 {
2377 /* opaque types don't use storage in the param list unless they are
2378 * bindless samplers or images.
2379 */
2380 if (type->contains_opaque() && !var->data.bindless)
2381 return;
2382
2383 /* Add the uniform to the param list */
2384 assert(_mesa_lookup_parameter_index(params, name) < 0);
2385 int index = _mesa_lookup_parameter_index(params, name);
2386
2387 unsigned num_params = type->arrays_of_arrays_size();
2388 num_params = MAX2(num_params, 1);
2389 num_params *= type->without_array()->matrix_columns;
2390
2391 bool is_dual_slot = type->without_array()->is_dual_slot();
2392 if (is_dual_slot)
2393 num_params *= 2;
2394
2395 _mesa_reserve_parameter_storage(params, num_params, num_params);
2396 index = params->NumParameters;
2397
2398 if (ctx->Const.PackedDriverUniformStorage) {
2399 for (unsigned i = 0; i < num_params; i++) {
2400 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2401 unsigned comps = type->without_array()->vector_elements * dmul;
2402 if (is_dual_slot) {
2403 if (i & 0x1)
2404 comps -= 4;
2405 else
2406 comps = 4;
2407 }
2408
2409 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2410 type->gl_type, NULL, NULL, false);
2411 }
2412 } else {
2413 for (unsigned i = 0; i < num_params; i++) {
2414 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2415 type->gl_type, NULL, NULL, true);
2416 }
2417 }
2418
2419 /* The first part of the uniform that's processed determines the base
2420 * location of the whole uniform (for structures).
2421 */
2422 if (this->idx < 0)
2423 this->idx = index;
2424
2425 /* Each Parameter will hold the index to the backing uniform storage.
2426 * This avoids relying on names to match parameters and uniform
2427 * storages later when associating uniform storage.
2428 */
2429 unsigned location = -1;
2430 ASSERTED const bool found =
2431 shader_program->UniformHash->get(location, params->Parameters[index].Name);
2432 assert(found);
2433
2434 for (unsigned i = 0; i < num_params; i++) {
2435 struct gl_program_parameter *param = ¶ms->Parameters[index + i];
2436 param->UniformStorageIndex = location;
2437 param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex;
2438 }
2439 }
2440
2441 /**
2442 * Generate the program parameters list for the user uniforms in a shader
2443 *
2444 * \param shader_program Linked shader program. This is only used to
2445 * emit possible link errors to the info log.
2446 * \param sh Shader whose uniforms are to be processed.
2447 * \param params Parameter list to be filled in.
2448 */
2449 void
_mesa_generate_parameters_list_for_uniforms(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * sh,struct gl_program_parameter_list * params)2450 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2451 struct gl_shader_program
2452 *shader_program,
2453 struct gl_linked_shader *sh,
2454 struct gl_program_parameter_list
2455 *params)
2456 {
2457 add_uniform_to_shader add(ctx, shader_program, params);
2458
2459 foreach_in_list(ir_instruction, node, sh->ir) {
2460 ir_variable *var = node->as_variable();
2461
2462 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2463 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2464 continue;
2465
2466 add.process(var);
2467 }
2468 }
2469
2470 void
_mesa_associate_uniform_storage(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_program * prog)2471 _mesa_associate_uniform_storage(struct gl_context *ctx,
2472 struct gl_shader_program *shader_program,
2473 struct gl_program *prog)
2474 {
2475 struct gl_program_parameter_list *params = prog->Parameters;
2476 gl_shader_stage shader_type = prog->info.stage;
2477
2478 _mesa_disallow_parameter_storage_realloc(params);
2479
2480 /* After adding each uniform to the parameter list, connect the storage for
2481 * the parameter with the tracking structure used by the API for the
2482 * uniform.
2483 */
2484 unsigned last_location = unsigned(~0);
2485 for (unsigned i = 0; i < params->NumParameters; i++) {
2486 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2487 continue;
2488
2489 unsigned location = params->Parameters[i].UniformStorageIndex;
2490
2491 struct gl_uniform_storage *storage =
2492 &shader_program->data->UniformStorage[location];
2493
2494 /* Do not associate any uniform storage to built-in uniforms */
2495 if (storage->builtin)
2496 continue;
2497
2498 if (location != last_location) {
2499 enum gl_uniform_driver_format format = uniform_native;
2500 unsigned columns = 0;
2501
2502 int dmul;
2503 if (ctx->Const.PackedDriverUniformStorage && !prog->info.is_arb_asm) {
2504 dmul = storage->type->vector_elements * sizeof(float);
2505 } else {
2506 dmul = 4 * sizeof(float);
2507 }
2508
2509 switch (storage->type->base_type) {
2510 case GLSL_TYPE_UINT64:
2511 if (storage->type->vector_elements > 2)
2512 dmul *= 2;
2513 FALLTHROUGH;
2514 case GLSL_TYPE_UINT:
2515 case GLSL_TYPE_UINT16:
2516 case GLSL_TYPE_UINT8:
2517 assert(ctx->Const.NativeIntegers);
2518 format = uniform_native;
2519 columns = 1;
2520 break;
2521 case GLSL_TYPE_INT64:
2522 if (storage->type->vector_elements > 2)
2523 dmul *= 2;
2524 FALLTHROUGH;
2525 case GLSL_TYPE_INT:
2526 case GLSL_TYPE_INT16:
2527 case GLSL_TYPE_INT8:
2528 format =
2529 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2530 columns = 1;
2531 break;
2532 case GLSL_TYPE_DOUBLE:
2533 if (storage->type->vector_elements > 2)
2534 dmul *= 2;
2535 FALLTHROUGH;
2536 case GLSL_TYPE_FLOAT:
2537 case GLSL_TYPE_FLOAT16:
2538 format = uniform_native;
2539 columns = storage->type->matrix_columns;
2540 break;
2541 case GLSL_TYPE_BOOL:
2542 format = uniform_native;
2543 columns = 1;
2544 break;
2545 case GLSL_TYPE_SAMPLER:
2546 case GLSL_TYPE_IMAGE:
2547 case GLSL_TYPE_SUBROUTINE:
2548 format = uniform_native;
2549 columns = 1;
2550 break;
2551 case GLSL_TYPE_ATOMIC_UINT:
2552 case GLSL_TYPE_ARRAY:
2553 case GLSL_TYPE_VOID:
2554 case GLSL_TYPE_STRUCT:
2555 case GLSL_TYPE_ERROR:
2556 case GLSL_TYPE_INTERFACE:
2557 case GLSL_TYPE_FUNCTION:
2558 assert(!"Should not get here.");
2559 break;
2560 }
2561
2562 unsigned pvo = params->Parameters[i].ValueOffset;
2563 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2564 format,
2565 ¶ms->ParameterValues[pvo]);
2566
2567 /* When a bindless sampler/image is bound to a texture/image unit, we
2568 * have to overwrite the constant value by the resident handle
2569 * directly in the constant buffer before the next draw. One solution
2570 * is to keep track a pointer to the base of the data.
2571 */
2572 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2573 prog->sh.NumBindlessImages)) {
2574 unsigned array_elements = MAX2(1, storage->array_elements);
2575
2576 for (unsigned j = 0; j < array_elements; ++j) {
2577 unsigned unit = storage->opaque[shader_type].index + j;
2578
2579 if (storage->type->without_array()->is_sampler()) {
2580 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2581 prog->sh.BindlessSamplers[unit].data =
2582 ¶ms->ParameterValues[pvo] + 4 * j;
2583 } else if (storage->type->without_array()->is_image()) {
2584 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2585 prog->sh.BindlessImages[unit].data =
2586 ¶ms->ParameterValues[pvo] + 4 * j;
2587 }
2588 }
2589 }
2590
2591 /* After attaching the driver's storage to the uniform, propagate any
2592 * data from the linker's backing store. This will cause values from
2593 * initializers in the source code to be copied over.
2594 */
2595 unsigned array_elements = MAX2(1, storage->array_elements);
2596 if (ctx->Const.PackedDriverUniformStorage && !prog->info.is_arb_asm &&
2597 (storage->is_bindless || !storage->type->contains_opaque())) {
2598 const int dmul = storage->type->is_64bit() ? 2 : 1;
2599 const unsigned components =
2600 storage->type->vector_elements *
2601 storage->type->matrix_columns;
2602
2603 for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2604 gl_constant_value *uni_storage = (gl_constant_value *)
2605 storage->driver_storage[s].data;
2606 memcpy(uni_storage, storage->storage,
2607 sizeof(storage->storage[0]) * components *
2608 array_elements * dmul);
2609 }
2610 } else {
2611 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2612 array_elements);
2613 }
2614
2615 last_location = location;
2616 }
2617 }
2618 }
2619
2620 void
_mesa_ensure_and_associate_uniform_storage(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_program * prog,unsigned required_space)2621 _mesa_ensure_and_associate_uniform_storage(struct gl_context *ctx,
2622 struct gl_shader_program *shader_program,
2623 struct gl_program *prog, unsigned required_space)
2624 {
2625 /* Avoid reallocation of the program parameter list, because the uniform
2626 * storage is only associated with the original parameter list.
2627 */
2628 _mesa_reserve_parameter_storage(prog->Parameters, required_space,
2629 required_space);
2630
2631 /* This has to be done last. Any operation the can cause
2632 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2633 * program constant) has to happen before creating this linkage.
2634 */
2635 _mesa_associate_uniform_storage(ctx, shader_program, prog);
2636 }
2637
2638 /*
2639 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2640 * channels for copy propagation and updates following instructions to
2641 * use the original versions.
2642 *
2643 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2644 * will occur. As an example, a TXP production before this pass:
2645 *
2646 * 0: MOV TEMP[1], INPUT[4].xyyy;
2647 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2648 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2649 *
2650 * and after:
2651 *
2652 * 0: MOV TEMP[1], INPUT[4].xyyy;
2653 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2654 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2655 *
2656 * which allows for dead code elimination on TEMP[1]'s writes.
2657 */
2658 void
copy_propagate(void)2659 ir_to_mesa_visitor::copy_propagate(void)
2660 {
2661 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2662 ir_to_mesa_instruction *,
2663 this->next_temp * 4);
2664 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2665 int level = 0;
2666
2667 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2668 assert(inst->dst.file != PROGRAM_TEMPORARY
2669 || inst->dst.index < this->next_temp);
2670
2671 /* First, do any copy propagation possible into the src regs. */
2672 for (int r = 0; r < 3; r++) {
2673 ir_to_mesa_instruction *first = NULL;
2674 bool good = true;
2675 int acp_base = inst->src[r].index * 4;
2676
2677 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2678 inst->src[r].reladdr)
2679 continue;
2680
2681 /* See if we can find entries in the ACP consisting of MOVs
2682 * from the same src register for all the swizzled channels
2683 * of this src register reference.
2684 */
2685 for (int i = 0; i < 4; i++) {
2686 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2687 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2688
2689 if (!copy_chan) {
2690 good = false;
2691 break;
2692 }
2693
2694 assert(acp_level[acp_base + src_chan] <= level);
2695
2696 if (!first) {
2697 first = copy_chan;
2698 } else {
2699 if (first->src[0].file != copy_chan->src[0].file ||
2700 first->src[0].index != copy_chan->src[0].index) {
2701 good = false;
2702 break;
2703 }
2704 }
2705 }
2706
2707 if (good) {
2708 /* We've now validated that we can copy-propagate to
2709 * replace this src register reference. Do it.
2710 */
2711 inst->src[r].file = first->src[0].file;
2712 inst->src[r].index = first->src[0].index;
2713
2714 int swizzle = 0;
2715 for (int i = 0; i < 4; i++) {
2716 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2717 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2718 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2719 (3 * i));
2720 }
2721 inst->src[r].swizzle = swizzle;
2722 }
2723 }
2724
2725 switch (inst->op) {
2726 case OPCODE_BGNLOOP:
2727 case OPCODE_ENDLOOP:
2728 /* End of a basic block, clear the ACP entirely. */
2729 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2730 break;
2731
2732 case OPCODE_IF:
2733 ++level;
2734 break;
2735
2736 case OPCODE_ENDIF:
2737 case OPCODE_ELSE:
2738 /* Clear all channels written inside the block from the ACP, but
2739 * leaving those that were not touched.
2740 */
2741 for (int r = 0; r < this->next_temp; r++) {
2742 for (int c = 0; c < 4; c++) {
2743 if (!acp[4 * r + c])
2744 continue;
2745
2746 if (acp_level[4 * r + c] >= level)
2747 acp[4 * r + c] = NULL;
2748 }
2749 }
2750 if (inst->op == OPCODE_ENDIF)
2751 --level;
2752 break;
2753
2754 default:
2755 /* Continuing the block, clear any written channels from
2756 * the ACP.
2757 */
2758 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2759 /* Any temporary might be written, so no copy propagation
2760 * across this instruction.
2761 */
2762 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2763 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2764 inst->dst.reladdr) {
2765 /* Any output might be written, so no copy propagation
2766 * from outputs across this instruction.
2767 */
2768 for (int r = 0; r < this->next_temp; r++) {
2769 for (int c = 0; c < 4; c++) {
2770 if (!acp[4 * r + c])
2771 continue;
2772
2773 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2774 acp[4 * r + c] = NULL;
2775 }
2776 }
2777 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2778 inst->dst.file == PROGRAM_OUTPUT) {
2779 /* Clear where it's used as dst. */
2780 if (inst->dst.file == PROGRAM_TEMPORARY) {
2781 for (int c = 0; c < 4; c++) {
2782 if (inst->dst.writemask & (1 << c)) {
2783 acp[4 * inst->dst.index + c] = NULL;
2784 }
2785 }
2786 }
2787
2788 /* Clear where it's used as src. */
2789 for (int r = 0; r < this->next_temp; r++) {
2790 for (int c = 0; c < 4; c++) {
2791 if (!acp[4 * r + c])
2792 continue;
2793
2794 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2795
2796 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2797 acp[4 * r + c]->src[0].index == inst->dst.index &&
2798 inst->dst.writemask & (1 << src_chan))
2799 {
2800 acp[4 * r + c] = NULL;
2801 }
2802 }
2803 }
2804 }
2805 break;
2806 }
2807
2808 /* If this is a copy, add it to the ACP. */
2809 if (inst->op == OPCODE_MOV &&
2810 inst->dst.file == PROGRAM_TEMPORARY &&
2811 !(inst->dst.file == inst->src[0].file &&
2812 inst->dst.index == inst->src[0].index) &&
2813 !inst->dst.reladdr &&
2814 !inst->saturate &&
2815 !inst->src[0].reladdr &&
2816 !inst->src[0].negate) {
2817 for (int i = 0; i < 4; i++) {
2818 if (inst->dst.writemask & (1 << i)) {
2819 acp[4 * inst->dst.index + i] = inst;
2820 acp_level[4 * inst->dst.index + i] = level;
2821 }
2822 }
2823 }
2824 }
2825
2826 ralloc_free(acp_level);
2827 ralloc_free(acp);
2828 }
2829
2830
2831 /**
2832 * Convert a shader's GLSL IR into a Mesa gl_program.
2833 */
2834 static struct gl_program *
get_mesa_program(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * shader)2835 get_mesa_program(struct gl_context *ctx,
2836 struct gl_shader_program *shader_program,
2837 struct gl_linked_shader *shader)
2838 {
2839 ir_to_mesa_visitor v;
2840 struct prog_instruction *mesa_instructions, *mesa_inst;
2841 ir_instruction **mesa_instruction_annotation;
2842 int i;
2843 struct gl_program *prog;
2844 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2845 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2846 struct gl_shader_compiler_options *options =
2847 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2848
2849 validate_ir_tree(shader->ir);
2850
2851 prog = shader->Program;
2852 prog->Parameters = _mesa_new_parameter_list();
2853 v.ctx = ctx;
2854 v.prog = prog;
2855 v.shader_program = shader_program;
2856 v.options = options;
2857
2858 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2859 prog->Parameters);
2860
2861 /* Emit Mesa IR for main(). */
2862 visit_exec_list(shader->ir, &v);
2863 v.emit(NULL, OPCODE_END);
2864
2865 prog->arb.NumTemporaries = v.next_temp;
2866
2867 unsigned num_instructions = v.instructions.length();
2868
2869 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2870 num_instructions);
2871 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2872 num_instructions);
2873
2874 v.copy_propagate();
2875
2876 /* Convert ir_mesa_instructions into prog_instructions.
2877 */
2878 mesa_inst = mesa_instructions;
2879 i = 0;
2880 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2881 mesa_inst->Opcode = inst->op;
2882 if (inst->saturate)
2883 mesa_inst->Saturate = GL_TRUE;
2884 mesa_inst->DstReg.File = inst->dst.file;
2885 mesa_inst->DstReg.Index = inst->dst.index;
2886 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2887 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2888 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2889 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2890 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2891 mesa_inst->TexSrcUnit = inst->sampler;
2892 mesa_inst->TexSrcTarget = inst->tex_target;
2893 mesa_inst->TexShadow = inst->tex_shadow;
2894 mesa_instruction_annotation[i] = inst->ir;
2895
2896 /* Set IndirectRegisterFiles. */
2897 if (mesa_inst->DstReg.RelAddr)
2898 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2899
2900 /* Update program's bitmask of indirectly accessed register files */
2901 for (unsigned src = 0; src < 3; src++)
2902 if (mesa_inst->SrcReg[src].RelAddr)
2903 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2904
2905 switch (mesa_inst->Opcode) {
2906 case OPCODE_IF:
2907 if (options->MaxIfDepth == 0) {
2908 linker_warning(shader_program,
2909 "Couldn't flatten if-statement. "
2910 "This will likely result in software "
2911 "rasterization.\n");
2912 }
2913 break;
2914 case OPCODE_BGNLOOP:
2915 if (options->EmitNoLoops) {
2916 linker_warning(shader_program,
2917 "Couldn't unroll loop. "
2918 "This will likely result in software "
2919 "rasterization.\n");
2920 }
2921 break;
2922 case OPCODE_CONT:
2923 if (options->EmitNoCont) {
2924 linker_warning(shader_program,
2925 "Couldn't lower continue-statement. "
2926 "This will likely result in software "
2927 "rasterization.\n");
2928 }
2929 break;
2930 case OPCODE_ARL:
2931 prog->arb.NumAddressRegs = 1;
2932 break;
2933 default:
2934 break;
2935 }
2936
2937 mesa_inst++;
2938 i++;
2939
2940 if (!shader_program->data->LinkStatus)
2941 break;
2942 }
2943
2944 if (!shader_program->data->LinkStatus) {
2945 goto fail_exit;
2946 }
2947
2948 set_branchtargets(&v, mesa_instructions, num_instructions);
2949
2950 if (ctx->_Shader->Flags & GLSL_DUMP) {
2951 fprintf(stderr, "\n");
2952 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2953 shader_program->Name);
2954 _mesa_print_ir(stderr, shader->ir, NULL);
2955 fprintf(stderr, "\n");
2956 fprintf(stderr, "\n");
2957 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2958 shader_program->Name);
2959 print_program(mesa_instructions, mesa_instruction_annotation,
2960 num_instructions);
2961 fflush(stderr);
2962 }
2963
2964 prog->arb.Instructions = mesa_instructions;
2965 prog->arb.NumInstructions = num_instructions;
2966
2967 /* Setting this to NULL prevents a possible double free in the fail_exit
2968 * path (far below).
2969 */
2970 mesa_instructions = NULL;
2971
2972 do_set_program_inouts(shader->ir, prog, shader->Stage);
2973
2974 prog->ShadowSamplers = shader->shadow_samplers;
2975 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2976 _mesa_update_shader_textures_used(shader_program, prog);
2977
2978 /* Set the gl_FragDepth layout. */
2979 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2980 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2981 }
2982
2983 _mesa_optimize_program(prog, prog);
2984
2985 /* This has to be done last. Any operation that can cause
2986 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2987 * program constant) has to happen before creating this linkage.
2988 */
2989 _mesa_associate_uniform_storage(ctx, shader_program, prog);
2990 if (!shader_program->data->LinkStatus) {
2991 goto fail_exit;
2992 }
2993
2994 return prog;
2995
2996 fail_exit:
2997 ralloc_free(mesa_instructions);
2998 _mesa_reference_program(ctx, &shader->Program, NULL);
2999 return NULL;
3000 }
3001
3002 extern "C" {
3003
3004 /**
3005 * Link a shader.
3006 * Called via ctx->Driver.LinkShader()
3007 * This actually involves converting GLSL IR into Mesa gl_programs with
3008 * code lowering and other optimizations.
3009 */
3010 GLboolean
_mesa_ir_link_shader(struct gl_context * ctx,struct gl_shader_program * prog)3011 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3012 {
3013 assert(prog->data->LinkStatus);
3014
3015 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3016 if (prog->_LinkedShaders[i] == NULL)
3017 continue;
3018
3019 bool progress;
3020 exec_list *ir = prog->_LinkedShaders[i]->ir;
3021 const struct gl_shader_compiler_options *options =
3022 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3023
3024 do {
3025 progress = false;
3026
3027 /* Lowering */
3028 do_mat_op_to_vec(ir);
3029 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3030 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3031 | MUL64_TO_MUL_AND_MUL_HIGH
3032 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3033
3034 progress = do_common_optimization(ir, true, true,
3035 options, ctx->Const.NativeIntegers)
3036 || progress;
3037
3038 progress = lower_quadop_vector(ir, true) || progress;
3039
3040 if (options->MaxIfDepth == 0)
3041 progress = lower_discard(ir) || progress;
3042
3043 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3044 options->MaxIfDepth) || progress;
3045
3046 /* If there are forms of indirect addressing that the driver
3047 * cannot handle, perform the lowering pass.
3048 */
3049 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3050 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3051 progress =
3052 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3053 options->EmitNoIndirectInput,
3054 options->EmitNoIndirectOutput,
3055 options->EmitNoIndirectTemp,
3056 options->EmitNoIndirectUniform)
3057 || progress;
3058
3059 progress = do_vec_index_to_cond_assign(ir) || progress;
3060 progress = lower_vector_insert(ir, true) || progress;
3061 } while (progress);
3062
3063 validate_ir_tree(ir);
3064 }
3065
3066 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3067 struct gl_program *linked_prog;
3068
3069 if (prog->_LinkedShaders[i] == NULL)
3070 continue;
3071
3072 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3073
3074 if (linked_prog) {
3075 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3076
3077 if (!ctx->Driver.ProgramStringNotify(ctx,
3078 _mesa_shader_stage_to_program(i),
3079 linked_prog)) {
3080 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3081 NULL);
3082 return GL_FALSE;
3083 }
3084 }
3085 }
3086
3087 build_program_resource_list(ctx, prog, false);
3088 return prog->data->LinkStatus;
3089 }
3090
3091 /**
3092 * Link a GLSL shader program. Called via glLinkProgram().
3093 */
3094 void
_mesa_glsl_link_shader(struct gl_context * ctx,struct gl_shader_program * prog)3095 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3096 {
3097 unsigned int i;
3098 bool spirv = false;
3099
3100 _mesa_clear_shader_program_data(ctx, prog);
3101
3102 prog->data = _mesa_create_shader_program_data();
3103
3104 prog->data->LinkStatus = LINKING_SUCCESS;
3105
3106 for (i = 0; i < prog->NumShaders; i++) {
3107 if (!prog->Shaders[i]->CompileStatus) {
3108 linker_error(prog, "linking with uncompiled/unspecialized shader");
3109 }
3110
3111 if (!i) {
3112 spirv = (prog->Shaders[i]->spirv_data != NULL);
3113 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3114 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3115 * reasons LinkProgram can fail:
3116 *
3117 * "All the shader objects attached to <program> do not have the
3118 * same value for the SPIR_V_BINARY_ARB state."
3119 */
3120 linker_error(prog,
3121 "not all attached shaders have the same "
3122 "SPIR_V_BINARY_ARB state");
3123 }
3124 }
3125 prog->data->spirv = spirv;
3126
3127 if (prog->data->LinkStatus) {
3128 if (!spirv)
3129 link_shaders(ctx, prog);
3130 else
3131 _mesa_spirv_link_shaders(ctx, prog);
3132 }
3133
3134 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3135 * Validation happens via the LinkShader call below. If LinkStatus is
3136 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3137 * shader cache.
3138 */
3139 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3140 prog->SamplersValidated = GL_TRUE;
3141 }
3142
3143 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3144 prog->data->LinkStatus = LINKING_FAILURE;
3145 }
3146
3147 if (prog->data->LinkStatus != LINKING_FAILURE)
3148 _mesa_create_program_resource_hash(prog);
3149
3150 /* Return early if we are loading the shader from on-disk cache */
3151 if (prog->data->LinkStatus == LINKING_SKIPPED)
3152 return;
3153
3154 if (ctx->_Shader->Flags & GLSL_DUMP) {
3155 if (!prog->data->LinkStatus) {
3156 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3157 }
3158
3159 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3160 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3161 fprintf(stderr, "%s\n", prog->data->InfoLog);
3162 }
3163 }
3164
3165 #ifdef ENABLE_SHADER_CACHE
3166 if (prog->data->LinkStatus)
3167 shader_cache_write_program_metadata(ctx, prog);
3168 #endif
3169 }
3170
3171 } /* extern "C" */
3172