• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2019-2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "backend/session/ascend_inference_session.h"
18 #include "ir/tensor.h"
19 #include "ir/anf.h"
20 #include "ir/param_info.h"
21 #include "runtime/device/kernel_runtime.h"
22 #include "backend/session/anf_runtime_algorithm.h"
23 #include "utils/ms_utils.h"
24 #include "common/trans.h"
25 #include "utils/config_manager.h"
26 
27 namespace mindspore {
28 namespace session {
LoadInputData(const std::shared_ptr<KernelGraph> & kernel_graph,const std::vector<tensor::TensorPtr> & inputs_const) const29 void AscendInferenceSession::LoadInputData(const std::shared_ptr<KernelGraph> &kernel_graph,
30                                            const std::vector<tensor::TensorPtr> &inputs_const) const {
31   MS_EXCEPTION_IF_NULL(kernel_graph);
32   std::vector<tensor::TensorPtr> inputs(inputs_const);
33   auto input_nodes = kernel_graph->inputs();
34 
35   size_t no_weight_input = 0;
36   for (size_t i = 0; i < input_nodes.size(); ++i) {
37     tensor::TensorPtr tensor = nullptr;
38     if (!input_nodes[i]->isa<Parameter>() || !AnfAlgo::OutputAddrExist(input_nodes[i], 0)) {
39       MS_LOG(INFO) << "Kernel graph inputs have anfnode which is not Parameter or without output addr.";
40       continue;
41     }
42     auto pk_node = input_nodes[i]->cast<ParameterPtr>();
43     MS_EXCEPTION_IF_NULL(pk_node);
44     auto device_address = AnfAlgo::GetMutableOutputAddr(pk_node, 0);
45     MS_EXCEPTION_IF_NULL(device_address);
46     if (!AnfAlgo::IsParameterWeight(pk_node)) {
47       tensor = inputs[no_weight_input++];
48       if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
49                                             LongToSize(tensor->data().nbytes()), tensor->data_type(), tensor->data_c(),
50                                             tensor->device_info().host_format_)) {
51         MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
52       }
53     }
54   }
55 }
56 
CompileGraphImpl(NotNull<FuncGraphPtr> func_graph)57 GraphId AscendInferenceSession::CompileGraphImpl(NotNull<FuncGraphPtr> func_graph) {
58   auto graph_id = AscendSession::CompileGraphImpl(func_graph);
59   auto kernel_graph = GetGraph(graph_id);
60   MS_EXCEPTION_IF_NULL(kernel_graph);
61   // load weight data to device
62   auto input_nodes = kernel_graph->inputs();
63   for (size_t i = 0; i < input_nodes.size(); ++i) {
64     if (!input_nodes[i]->isa<Parameter>() || !AnfAlgo::OutputAddrExist(input_nodes[i], 0)) {
65       MS_LOG(INFO) << "Kernel graph inputs have anfnode which is not Parameter or without output addr.";
66       continue;
67     }
68     auto pk_node = input_nodes[i]->cast<ParameterPtr>();
69     MS_EXCEPTION_IF_NULL(pk_node);
70     auto device_address = AnfAlgo::GetMutableOutputAddr(pk_node, 0);
71     MS_EXCEPTION_IF_NULL(device_address);
72     if (AnfAlgo::IsParameterWeight(pk_node)) {
73       const auto &param_value = pk_node->default_param();
74       MS_EXCEPTION_IF_NULL(param_value);
75       auto tensor = std::dynamic_pointer_cast<tensor::Tensor>(param_value);
76       MS_EXCEPTION_IF_NULL(tensor);
77       if (!device_address->SyncHostToDevice(trans::GetRuntimePaddingShape(pk_node, 0),
78                                             LongToSize(tensor->data().nbytes()), tensor->data_type(), tensor->data_c(),
79                                             tensor->device_info().host_format_)) {
80         MS_LOG(EXCEPTION) << "SyncHostToDevice failed.";
81       }
82     }
83   }
84   return graph_id;
85 }
86 
CheckModelInputs(uint32_t graph_id,const std::vector<tensor::TensorPtr> & inputs,std::string * error_msg) const87 bool AscendInferenceSession::CheckModelInputs(uint32_t graph_id, const std::vector<tensor::TensorPtr> &inputs,
88                                               std::string *error_msg) const {
89   MS_LOG(INFO) << "Start check client inputs, graph id : " << graph_id;
90   auto kernel_graph = GetGraph(graph_id);
91   MS_EXCEPTION_IF_NULL(kernel_graph);
92   auto kernel_graph_inputs = kernel_graph->inputs();
93   size_t no_weight_input = 0;
94   vector<ParameterPtr> paras;
95   // find parameters of graph inputs
96   for (size_t i = 0; i < kernel_graph_inputs.size(); ++i) {
97     if (!kernel_graph_inputs[i]->isa<Parameter>()) {
98       MS_LOG(ERROR) << "Kernel graph inputs have anfnode which is not Parameter.";
99       continue;
100     }
101     auto parameter = kernel_graph_inputs[i]->cast<ParameterPtr>();
102     if (!AnfAlgo::IsParameterWeight(parameter)) {
103       paras.push_back(parameter);
104     }
105   }
106 
107   // check inputs
108   for (size_t i = 0; i < paras.size(); ++i) {
109     // compare input number
110     if (paras.size() != inputs.size()) {
111       MS_LOG(ERROR) << "Input number is inconsistent. The actual input number [" << inputs.size()
112                     << "] but the graph input number is [" << paras.size() << "]";
113       MS_LOG(ERROR) << "InputsInfo --" << InputsInfo(paras, inputs);
114       if (error_msg != nullptr) {
115         std::stringstream str_stream;
116         str_stream << "Input number is inconsistent. The given input number [" << inputs.size()
117                    << "] but the graph input number is [" << paras.size() << "]\n";
118         str_stream << "InputsInfo --" << InputsInfo(paras, inputs);
119         *error_msg = str_stream.str();
120       }
121       return false;
122     }
123     auto input = inputs[no_weight_input++];
124     if (!CompareInput(input, paras[i])) {
125       MS_LOG(ERROR) << "Please check the input information.";
126       MS_LOG(ERROR) << "InputsInfo --" << InputsInfo(paras, inputs);
127       if (error_msg != nullptr) {
128         std::stringstream str_stream;
129         str_stream << "Please check the input information.\n";
130         str_stream << "InputsInfo --" << InputsInfo(paras, inputs);
131         *error_msg = str_stream.str();
132       }
133       return false;
134     }
135   }
136   return true;
137 }
138 
CompareInput(const tensor::TensorPtr & input,const ParameterPtr & parameter) const139 bool AscendInferenceSession::CompareInput(const tensor::TensorPtr &input, const ParameterPtr &parameter) const {
140   MS_EXCEPTION_IF_NULL(input);
141   MS_EXCEPTION_IF_NULL(parameter);
142   // compare dims
143   auto parameter_shape = AnfAlgo::GetOutputDeviceShape(parameter, 0);
144 
145   // compare shape
146   auto input_shape = input->shape();
147   vector<size_t> trans_input;
148   (void)std::transform(input_shape.begin(), input_shape.end(), std::back_inserter(trans_input),
149                        [](const int64_t dim) { return static_cast<size_t>(dim); });
150   auto is_scalar_shape = [](const vector<size_t> &shape) {
151     return shape.empty() || (shape.size() == 1 && shape[0] == 1);
152   };
153   if ((!is_scalar_shape(trans_input) || !is_scalar_shape(parameter_shape)) && (trans_input != parameter_shape)) {
154     MS_LOG(ERROR) << "Input shape is inconsistent. The actual shape is " << PrintInputShape(trans_input)
155                   << ", but the parameter shape is " << PrintInputShape(parameter_shape)
156                   << ". parameter : " << parameter->DebugString();
157     return false;
158   }
159 
160   // compare data type
161   auto kernel_build_info = AnfAlgo::GetSelectKernelBuildInfo(parameter);
162   if (input->data_type() != kernel_build_info->GetOutputDeviceType(0)) {
163     MS_LOG(ERROR) << "Input data type is inconsistent. The actual data type is " << input->data_type()
164                   << ", but the parameter data type is " << kernel_build_info->GetOutputDeviceType(0)
165                   << ". parameter : " << parameter->DebugString();
166     return false;
167   }
168   return true;
169 }
170 
171 template <typename T>
PrintInputShape(std::vector<T> shape) const172 std::string AscendInferenceSession::PrintInputShape(std::vector<T> shape) const {
173   string res = "[";
174   for (auto dim : shape) {
175     res += " " + std::to_string(dim);
176   }
177   return res + " ]";
178 }
179 
InputsInfo(const std::vector<ParameterPtr> & paras,const std::vector<tensor::TensorPtr> & inputs) const180 std::string AscendInferenceSession::InputsInfo(const std::vector<ParameterPtr> &paras,
181                                                const std::vector<tensor::TensorPtr> &inputs) const {
182   const std::map<TypeId, std::string> dtype_name_map{
183     {TypeId::kNumberTypeBegin, "Unknown"},   {TypeId::kNumberTypeBool, "Bool"},
184     {TypeId::kNumberTypeFloat64, "Float64"}, {TypeId::kNumberTypeInt8, "Int8"},
185     {TypeId::kNumberTypeUInt8, "Uint8"},     {TypeId::kNumberTypeInt16, "Int16"},
186     {TypeId::kNumberTypeUInt16, "Uint16"},   {TypeId::kNumberTypeInt32, "Int32"},
187     {TypeId::kNumberTypeUInt32, "Uint32"},   {TypeId::kNumberTypeInt64, "Int64"},
188     {TypeId::kNumberTypeUInt64, "Uint64"},   {TypeId::kNumberTypeFloat16, "Float16"},
189     {TypeId::kNumberTypeFloat32, "Float32"},
190   };
191   auto data_type_to_string = [&dtype_name_map](TypeId type_id) {
192     auto it = dtype_name_map.find(type_id);
193     if (it == dtype_name_map.end()) {
194       return std::string("Unknown");
195     }
196     return it->second;
197   };
198 
199   std::string graph = "graph inputs:{ ";
200   for (size_t i = 0; i < paras.size(); ++i) {
201     auto &para = paras[i];
202     graph += std::to_string(i) + ": dims " + std::to_string(AnfAlgo::GetOutputDeviceShape(para, 0).size()) +
203              ", shape " + PrintInputShape(AnfAlgo::GetOutputDeviceShape(para, 0)) + ", data type " +
204              data_type_to_string(AnfAlgo::GetSelectKernelBuildInfo(para)->GetOutputDeviceType(0)) + " }";
205   }
206 
207   std::string actual = "given inputs:{ ";
208   for (size_t i = 0; i < inputs.size(); ++i) {
209     actual += std::to_string(i) + ": dims " + std::to_string(inputs[i]->shape().size()) + ", shape " +
210               PrintInputShape(inputs[i]->shape()) + ", data type " + data_type_to_string(inputs[i]->data_type()) + " }";
211   }
212   return graph + "   " + actual;
213 }
214 }  // namespace session
215 }  // namespace mindspore
216