1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15import os 16import numpy as np 17import pytest 18 19import mindspore.context as context 20from mindspore import Tensor, nn 21from mindspore.common import dtype as mstype 22from mindspore.train.serialization import export, load 23 24 25class CaseNet(nn.Cell): 26 def __init__(self): 27 super(CaseNet, self).__init__() 28 self.conv = nn.Conv2d(1, 1, 3) 29 self.relu = nn.ReLU() 30 self.relu1 = nn.ReLU() 31 self.softmax = nn.Softmax() 32 self.layers1 = (self.relu, self.softmax) 33 self.layers2 = (self.conv, self.relu1) 34 35 def construct(self, x, index1, index2): 36 x = self.layers1[index1](x) 37 x = self.layers2[index2](x) 38 return x 39 40 41@pytest.mark.level0 42@pytest.mark.platform_x86_ascend_training 43@pytest.mark.platform_arm_ascend_training 44@pytest.mark.env_onecard 45def test_mindir_switch_layer(): 46 context.set_context(mode=context.GRAPH_MODE) 47 net = CaseNet() 48 data = Tensor(np.ones((1, 1, 224, 224)), mstype.float32) 49 idx = Tensor(0, mstype.int32) 50 idx2 = Tensor(-1, mstype.int32) 51 52 file_name = "switch_layer_net" 53 mindir_name = file_name + ".mindir" 54 export(net, data, idx, idx2, file_name=file_name, file_format='MINDIR') 55 assert os.path.exists(mindir_name) 56 57 graph = load(mindir_name) 58 loaded_net = nn.GraphCell(graph) 59 outputs_after_load = loaded_net(data, idx, idx2) 60 relu = nn.ReLU() 61 true_value = relu(data) 62 ret = np.allclose(outputs_after_load.asnumpy(), true_value.asnumpy()) 63 assert ret 64 65 66@pytest.mark.skip(reason="depend on export") 67@pytest.mark.level0 68@pytest.mark.platform_x86_ascend_training 69@pytest.mark.platform_arm_ascend_training 70@pytest.mark.env_onecard 71def test_mindir_export(): 72 context.set_context(mode=context.GRAPH_MODE) 73 net = CaseNet() 74 data = Tensor(np.ones((1, 1, 224, 224)), mstype.float32) 75 idx = Tensor(0, mstype.int32) 76 idx2 = Tensor(-1, mstype.int32) 77 78 file_name = "switch_layer_net" 79 mindir_name = file_name + ".mindir" 80 export(net, data, idx, idx2, file_name=file_name, file_format='MINDIR') 81 assert os.path.exists(mindir_name) 82 83 84@pytest.mark.skip(reason="depend on export") 85@pytest.mark.level0 86@pytest.mark.platform_x86_ascend_training 87@pytest.mark.platform_arm_ascend_training 88@pytest.mark.env_onecard 89def test_mindir_load(): 90 context.set_context(mode=context.GRAPH_MODE) 91 data = Tensor(np.ones((1, 1, 224, 224)), mstype.float32) 92 idx = Tensor(0, mstype.int32) 93 idx2 = Tensor(-1, mstype.int32) 94 95 file_name = "switch_layer_net" 96 mindir_name = file_name + ".mindir" 97 graph = load(mindir_name) 98 loaded_net = nn.GraphCell(graph) 99 outputs_after_load = loaded_net(data, idx, idx2) 100 relu = nn.ReLU() 101 true_value = relu(data) 102 ret = np.allclose(outputs_after_load.asnumpy(), true_value.asnumpy()) 103 assert ret 104