• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore.common.api import ms_function
21from mindspore.ops import operations as P
22from mindspore.ops.composite import GradOperation
23
24context.set_context(device_target="Ascend")
25
26
27class Grad(nn.Cell):
28    def __init__(self, network):
29        super(Grad, self).__init__()
30        self.grad = GradOperation(get_all=True, sens_param=True)
31        self.network = network
32
33    @ms_function
34    def construct(self, input_, output_grad):
35        return self.grad(self.network)(input_, output_grad)
36
37
38class Net(nn.Cell):
39    def __init__(self):
40        super(Net, self).__init__()
41        self.relu = P.ReLU(strategy=None)
42
43    def construct(self, x):
44        return self.relu(x)
45
46
47def test_net():
48    x = np.random.randn(2, 3, 3, 4).astype(np.float32)
49    sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
50    net = Grad(Net())
51    output = net(Tensor(x), Tensor(sens))
52    print(len(output))
53    print(output[0].asnumpy())
54