1# Copyright 2019 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.ops import operations as P 23 24context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 25 26class NetGatherD(nn.Cell): 27 def __init__(self, dim=1): 28 super(NetGatherD, self).__init__() 29 self.gatherd = P.GatherD() 30 self.dim = int(dim) 31 32 def construct(self, x, index): 33 return self.gatherd(x, self.dim, index) 34 35 36@pytest.mark.level0 37@pytest.mark.platform_x86_cpu 38@pytest.mark.env_onecard 39def test_gatherd_fp32(): 40 prop = 100 if np.random.random() > 0.5 else -100 41 x = np.random.randn(5, 5, 5).astype(np.float32) * prop 42 index = np.random.randint(0, 5, (5, 3, 5)).astype(np.int32) 43 dim = 1 44 45 gatherd = NetGatherD(dim) 46 output = gatherd(Tensor(x), Tensor(index)) 47 48 expect = np.zeros(index.shape).astype(np.float32) 49 for i in range(index.shape[0]): 50 for j in range(index.shape[1]): 51 for k in range(index.shape[2]): 52 expect[i, j, k] = x[i, index[i, j, k], k] 53 error = np.ones(shape=expect.shape) * 1.0e-6 54 assert np.all(np.abs(output.asnumpy() - expect) < error) 55 56 57@pytest.mark.level0 58@pytest.mark.platform_x86_cpu 59@pytest.mark.env_onecard 60def test_gatherd_fp16(): 61 prop = 100 if np.random.random() > 0.5 else -100 62 x = np.random.randn(5, 5, 5).astype(np.float16) * prop 63 index = np.random.randint(0, 5, (3, 5, 5)).astype(np.int64) 64 dim = 0 65 66 gatherd = NetGatherD(dim) 67 output = gatherd(Tensor(x), Tensor(index)) 68 69 expect = np.zeros(index.shape).astype(np.float16) 70 for i in range(index.shape[0]): 71 for j in range(index.shape[1]): 72 for k in range(index.shape[2]): 73 expect[i, j, k] = x[index[i, j, k], j, k] 74 error = np.ones(shape=expect.shape) * 1.0e-6 75 assert np.all(np.abs(output.asnumpy() - expect) < error) 76 77 78 79@pytest.mark.level0 80@pytest.mark.platform_x86_cpu 81@pytest.mark.env_onecard 82def test_gatherd_int32(): 83 prop = 100 if np.random.random() > 0.5 else -100 84 x = np.random.randn(5, 5, 5).astype(np.int32) * prop 85 index = np.random.randint(0, 5, (5, 5, 8)).astype(np.int32) 86 dim = -1 87 88 gatherd = NetGatherD(dim) 89 output = gatherd(Tensor(x), Tensor(index)) 90 91 expect = np.zeros(index.shape).astype(np.int32) 92 for i in range(index.shape[0]): 93 for j in range(index.shape[1]): 94 for k in range(index.shape[2]): 95 expect[i, j, k] = x[i, j, index[i, j, k]] 96 assert np.all(output.asnumpy() == expect) 97 98 99@pytest.mark.level0 100@pytest.mark.platform_x86_cpu 101@pytest.mark.env_onecard 102def test_gatherd_bool(): 103 prop = 100 if np.random.random() > 0.5 else -100 104 x = np.random.randn(5, 5, 5).astype(np.int32) * prop 105 x = (x >= 0).astype(np.bool) 106 index = np.random.randint(0, 5, (5, 5, 8)).astype(np.int32) 107 dim = -1 108 109 gatherd = NetGatherD(dim) 110 output = gatherd(Tensor(x), Tensor(index)) 111 112 expect = np.zeros(index.shape).astype(np.bool) 113 for i in range(index.shape[0]): 114 for j in range(index.shape[1]): 115 for k in range(index.shape[2]): 116 expect[i, j, k] = x[i, j, index[i, j, k]] 117 assert np.all(output.asnumpy() == expect) 118