1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15""" Test L1Regularizer """ 16import numpy as np 17import pytest 18import mindspore.nn as nn 19import mindspore.context as context 20from mindspore import Tensor, ms_function 21 22context.set_context(mode=context.GRAPH_MODE) 23 24 25class Net_l1_regularizer(nn.Cell): 26 def __init__(self, scale): 27 super(Net_l1_regularizer, self).__init__() 28 self.l1_regularizer = nn.L1Regularizer(scale) 29 30 @ms_function 31 def construct(self, weights): 32 return self.l1_regularizer(weights) 33 34 35@pytest.mark.level0 36@pytest.mark.platform_x86_cpu 37@pytest.mark.env_onecard 38def test_l1_regularizer01(): 39 scale = 0.5 40 weights = Tensor(np.array([[1.0, -2.0], [-3.0, 4.0]]).astype(np.float32)) 41 l1_regularizer = Net_l1_regularizer(scale) 42 output = l1_regularizer(weights) 43 print("After l1_regularizer01 is: ", output.asnumpy()) 44 print("output.shape: ", output.shape) 45 print("output.dtype: ", output.dtype) 46 expect = 5.0 47 assert np.all(output.asnumpy() == expect) 48 49 50@pytest.mark.level0 51@pytest.mark.platform_x86_cpu 52@pytest.mark.env_onecard 53def test_l1_regularizer08(): 54 scale = 0.5 55 net = nn.L1Regularizer(scale) 56 weights = Tensor(np.array([[1.0, -2.0], [-3.0, 4.0]]).astype(np.float32)) 57 output = net(weights) 58 expect = 5.0 59 print("output : ", output.asnumpy()) 60 assert np.all(output.asnumpy() == expect) 61 62 63@pytest.mark.level0 64@pytest.mark.platform_x86_cpu 65@pytest.mark.env_onecard 66def test_l1_regularizer_input_int(): 67 scale = 0.5 68 net = nn.L1Regularizer(scale) 69 weights = 2 70 try: 71 output = net(weights) 72 print("output : ", output.asnumpy()) 73 except TypeError: 74 assert True 75 76 77@pytest.mark.level0 78@pytest.mark.platform_x86_cpu 79@pytest.mark.env_onecard 80def test_l1_regularizer_input_tuple(): 81 scale = 0.5 82 net = nn.L1Regularizer(scale) 83 weights = (1, 2, 3, 4) 84 try: 85 output = net(weights) 86 print("output : ", output.asnumpy()) 87 except TypeError: 88 assert True 89