• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import operations as P
23
24
25class NetOnesLike(nn.Cell):
26    def __init__(self):
27        super(NetOnesLike, self).__init__()
28        self.ones_like = P.OnesLike()
29
30    def construct(self, x):
31        return self.ones_like(x)
32
33
34@pytest.mark.level0
35@pytest.mark.platform_x86_cpu
36@pytest.mark.env_onecard
37def test_OnesLike():
38    x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
39    x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
40
41    x0 = Tensor(x0_np)
42    x1 = Tensor(x1_np)
43
44    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
45    ones_like = NetOnesLike()
46    output0 = ones_like(x0)
47    expect0 = np.ones_like(x0_np)
48    diff0 = output0.asnumpy() - expect0
49    error0 = np.ones(shape=expect0.shape) * 1.0e-5
50    assert np.all(diff0 < error0)
51    assert output0.shape == expect0.shape
52
53    output1 = ones_like(x1)
54    expect1 = np.ones_like(x1_np)
55    diff1 = output1.asnumpy() - expect1
56    error1 = np.ones(shape=expect1.shape) * 1.0e-5
57    assert np.all(diff1 < error1)
58    assert output1.shape == expect1.shape
59