• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20from mindspore import Tensor
21import mindspore.ops.operations._grad_ops as P
22context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
23
24@pytest.mark.level0
25@pytest.mark.platform_x86_gpu_training
26@pytest.mark.env_onecard
27def test_acosgrad_fp32():
28    error = np.ones(4) * 1.0e-7
29    x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float32)
30    dout_np = np.array([1, 1, 1, 1]).astype(np.float32)
31    output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np))
32    expect = np.array([-1, -1.0327955, -1.1547005, -1.0482849])
33    diff = output_ms.asnumpy() - expect
34    assert np.all(diff < error)
35
36@pytest.mark.level0
37@pytest.mark.platform_x86_gpu_training
38@pytest.mark.env_onecard
39def test_acosgrad_fp16():
40    error = np.ones(4) * 1.0e-3
41    x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float16)
42    dout_np = np.array([1, 1, 1, 1]).astype(np.float16)
43    output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np))
44    expect = np.array([-1, -1.033, -1.154, -1.048])
45    diff = output_ms.asnumpy() - expect
46    assert np.all(diff < error)
47