• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import operations as P
23
24
25class Net(nn.Cell):
26    def __init__(self):
27        super(Net, self).__init__()
28        self.status = P.FloatStatus()
29
30    def construct(self, x):
31        return self.status(x)
32
33
34class Netnan(nn.Cell):
35    def __init__(self):
36        super(Netnan, self).__init__()
37        self.isnan = P.IsNan()
38
39    def construct(self, x):
40        return self.isnan(x)
41
42
43class Netinf(nn.Cell):
44    def __init__(self):
45        super(Netinf, self).__init__()
46        self.isinf = P.IsInf()
47
48    def construct(self, x):
49        return self.isinf(x)
50
51
52class Netfinite(nn.Cell):
53    def __init__(self):
54        super(Netfinite, self).__init__()
55        self.isfinite = P.IsFinite()
56
57    def construct(self, x):
58        return self.isfinite(x)
59
60
61context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
62x1 = np.array([[1.2, 2, np.nan, 88]]).astype(np.float32)
63x2 = np.array([[np.inf, 1, 88.0, 0]]).astype(np.float32)
64x3 = np.array([[1, 2], [3, 4], [5.0, 88.0]]).astype(np.float32)
65
66
67@pytest.mark.level0
68@pytest.mark.platform_x86_gpu_training
69@pytest.mark.env_onecard
70def test_status():
71    ms_status = Net()
72    output1 = ms_status(Tensor(x1))
73    expect1 = 1
74    assert output1.asnumpy()[0] == expect1
75
76    output2 = ms_status(Tensor(x2))
77    expect2 = 1
78    assert output2.asnumpy()[0] == expect2
79
80    output3 = ms_status(Tensor(x3))
81    expect3 = 0
82    assert output3.asnumpy()[0] == expect3
83
84
85@pytest.mark.level0
86@pytest.mark.platform_x86_gpu_training
87@pytest.mark.env_onecard
88def test_nan():
89    ms_isnan = Netnan()
90    output1 = ms_isnan(Tensor(x1))
91    expect1 = [[False, False, True, False]]
92    assert (output1.asnumpy() == expect1).all()
93
94    output2 = ms_isnan(Tensor(x2))
95    expect2 = [[False, False, False, False]]
96    assert (output2.asnumpy() == expect2).all()
97
98    output3 = ms_isnan(Tensor(x3))
99    expect3 = [[False, False], [False, False], [False, False]]
100    assert (output3.asnumpy() == expect3).all()
101
102
103@pytest.mark.level0
104@pytest.mark.platform_x86_gpu_training
105@pytest.mark.env_onecard
106def test_inf():
107    ms_isinf = Netinf()
108    output1 = ms_isinf(Tensor(x1))
109    expect1 = [[False, False, False, False]]
110    assert (output1.asnumpy() == expect1).all()
111
112    output2 = ms_isinf(Tensor(x2))
113    expect2 = [[True, False, False, False]]
114    assert (output2.asnumpy() == expect2).all()
115
116    output3 = ms_isinf(Tensor(x3))
117    expect3 = [[False, False], [False, False], [False, False]]
118    assert (output3.asnumpy() == expect3).all()
119
120
121@pytest.mark.level0
122@pytest.mark.platform_x86_gpu_training
123@pytest.mark.env_onecard
124def test_finite():
125    ms_isfinite = Netfinite()
126    output1 = ms_isfinite(Tensor(x1))
127    expect1 = [[True, True, False, True]]
128    assert (output1.asnumpy() == expect1).all()
129
130    output2 = ms_isfinite(Tensor(x2))
131    expect2 = [[False, True, True, True]]
132    assert (output2.asnumpy() == expect2).all()
133
134    output3 = ms_isfinite(Tensor(x3))
135    expect3 = [[True, True], [True, True], [True, True]]
136    assert (output3.asnumpy() == expect3).all()
137