• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import operations as P
23from mindspore.ops.composite import GradOperation
24from mindspore.ops.operations import _inner_ops as inner
25
26class Grad(nn.Cell):
27    def __init__(self, network):
28        super(Grad, self).__init__()
29        self.grad = GradOperation(get_all=True, sens_param=True)
30        self.network = network
31
32    def construct(self, input_x, dout):
33        return self.grad(self.network)(input_x, dout)
34
35
36class Net(nn.Cell):
37    def __init__(self):
38        super(Net, self).__init__()
39        self.HSigmoid = P.HSigmoid()
40
41    def construct(self, x):
42        return self.HSigmoid(x)
43
44
45class DynamicNet(nn.Cell):
46    def __init__(self):
47        super(DynamicNet, self).__init__()
48        self.HSigmoid = P.HSigmoid()
49        self.d = inner.GpuConvertToDynamicShape()
50
51    def construct(self, x):
52        x = self.d(x)
53        return self.HSigmoid(x)
54
55
56def generate_testcases(nptype):
57    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
58    x = np.array([-1, -2, 0, 4, 5]).astype(nptype)
59    net = Net()
60    output = net(Tensor(x))
61    expect = np.array([0.33333334, 0.16666667, 0.5, 1, 1]).astype(nptype)
62    np.testing.assert_almost_equal(output.asnumpy(), expect)
63
64    sens = np.array([-1.45, 0.63, 0.34, 6.43, 34.6]).astype(nptype)
65    backward_net = Grad(Net())
66    output = backward_net(Tensor(x), Tensor(sens))
67    expect = np.array([-0.2416667, 0.1049999, 5.66666685e-02, 0, 0]).astype(nptype)
68    np.testing.assert_almost_equal(output[0].asnumpy(), expect)
69
70    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
71    x = np.array([-1, -2, 0, 4, 5]).astype(nptype)
72    net = Net()
73    output = net(Tensor(x))
74    expect = np.array([0.33333334, 0.16666667, 0.5, 1, 1]).astype(nptype)
75    np.testing.assert_almost_equal(output.asnumpy(), expect)
76
77    sens = np.array([-1.45, 0.63, 0.34, 6.43, 34.6]).astype(nptype)
78    backward_net = Grad(Net())
79    output = backward_net(Tensor(x), Tensor(sens))
80    expect = np.array([-0.2416667, 0.1049999, 5.66666685e-02, 0, 0]).astype(nptype)
81    np.testing.assert_almost_equal(output[0].asnumpy(), expect)
82
83
84def generate_dynamic_testcase(nptype):
85    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
86    x = np.array([-1, -2, 0, 2, 1]).astype(nptype)
87    net = DynamicNet()
88    output = net(Tensor(x))
89    expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype)
90    np.testing.assert_almost_equal(output.asnumpy(), expect)
91
92
93@pytest.mark.level0
94@pytest.mark.platform_x86_gpu_training
95@pytest.mark.env_onecard
96def test_hsigmoid_dynamic_float32():
97    generate_dynamic_testcase(np.float32)
98
99
100@pytest.mark.level0
101@pytest.mark.platform_x86_gpu_training
102@pytest.mark.env_onecard
103def test_hsigmoid_float32():
104    generate_testcases(np.float32)
105
106
107@pytest.mark.level0
108@pytest.mark.platform_x86_gpu_training
109@pytest.mark.env_onecard
110def test_hsigmoid_float16():
111    generate_testcases(np.float16)
112