1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18import mindspore.context as context 19from mindspore import Tensor 20from mindspore.nn import Cell 21import mindspore.ops.operations as P 22 23class Net(Cell): 24 def __init__(self): 25 super(Net, self).__init__() 26 self.matmul = P.MatMul(transpose_a=True, transpose_b=True) 27 28 def construct(self, x, y): 29 return self.matmul(x, y) 30 31class Net1(Cell): 32 def __init__(self): 33 super(Net1, self).__init__() 34 self.matmul = P.MatMul(transpose_a=True, transpose_b=True) 35 self.add = P.BiasAdd() 36 37 def construct(self, x, y, bias): 38 res = self.matmul(x, y) 39 return self.add(res, bias) 40 41def get_output(i0, i1, enable_graph_kernel=False): 42 context.set_context(enable_graph_kernel=enable_graph_kernel) 43 net = Net() 44 output = net(i0, i1) 45 return output 46 47def get_output1(i0, i1, i2, enable_graph_kernel=False): 48 context.set_context(enable_graph_kernel=enable_graph_kernel) 49 net = Net1() 50 output = net(i0, i1, i2) 51 return output 52 53def test_basic(): 54 i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16)) 55 i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16)) 56 expect = get_output(i0, i1, False) 57 output = get_output(i0, i1, True) 58 expect_np = expect.asnumpy().copy() 59 output_np = output.asnumpy().copy() 60 assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7) 61 62def test_basic1(): 63 i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16)) 64 i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16)) 65 i2 = Tensor(np.random.normal(100, 0.01, [128,]).astype(np.float16)) 66 expect = get_output1(i0, i1, i2, False) 67 output = get_output1(i0, i1, i2, True) 68 expect_np = expect.asnumpy().copy() 69 output_np = output.asnumpy().copy() 70 assert np.allclose(expect_np, output_np, 6.e-4, 6.e-4) 71 72@pytest.mark.level0 73@pytest.mark.platform_arm_ascend_training 74@pytest.mark.platform_x86_ascend_training 75@pytest.mark.env_onecard 76def test_basic_ascend(): 77 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") 78 test_basic() 79 80@pytest.mark.level0 81@pytest.mark.platform_arm_ascend_training 82@pytest.mark.platform_x86_ascend_training 83@pytest.mark.env_onecard 84def test_basic_ascend1(): 85 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") 86 test_basic1() 87 88@pytest.mark.level0 89@pytest.mark.platform_x86_gpu_training 90@pytest.mark.env_onecard 91def test_basic_gpu(): 92 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 93 test_basic() 94