• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/concat.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestConcat : public UT::Common {
28  public:
TestConcat()29   TestConcat() {}
SetUp()30   void SetUp() {}
TearDown()31   void TearDown() {}
32 };
33 
TEST_F(TestConcat,test_ops_concat1)34 TEST_F(TestConcat, test_ops_concat1) {
35   auto concat = std::make_shared<Concat>();
36   concat->Init(1);
37   auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 2, 7, 7});
38   auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 3, 7, 7});
39   auto tensor_x3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 4, 7, 7});
40   MS_EXCEPTION_IF_NULL(tensor_x1);
41   MS_EXCEPTION_IF_NULL(tensor_x2);
42   MS_EXCEPTION_IF_NULL(tensor_x3);
43   auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2, tensor_x3});
44   auto abstract = concat->Infer({input_tuple->ToAbstract()});
45   MS_EXCEPTION_IF_NULL(abstract);
46   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
47   auto shape_ptr = abstract->BuildShape();
48   MS_EXCEPTION_IF_NULL(shape_ptr);
49   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
50   auto shape = shape_ptr->cast<abstract::ShapePtr>();
51   MS_EXCEPTION_IF_NULL(shape);
52   auto shape_vec = shape->shape();
53   auto type = abstract->BuildType();
54   MS_EXCEPTION_IF_NULL(type);
55   EXPECT_EQ(type->isa<TensorType>(), true);
56   auto tensor_type = type->cast<TensorTypePtr>();
57   MS_EXCEPTION_IF_NULL(tensor_type);
58   auto data_type = tensor_type->element();
59   MS_EXCEPTION_IF_NULL(data_type);
60   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
61   EXPECT_EQ(shape_vec.size(), 4);
62   EXPECT_EQ(shape_vec[0], 3);
63   EXPECT_EQ(shape_vec[1], 9);
64   EXPECT_EQ(shape_vec[2], 7);
65   EXPECT_EQ(shape_vec[3], 7);
66 }
67 
TEST_F(TestConcat,test_ops_concat2)68 TEST_F(TestConcat, test_ops_concat2) {
69   auto concat = std::make_shared<Concat>();
70   concat->Init(2);
71   auto tensor_x1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{3, 4, 5});
72   auto tensor_x2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{3, 4, 2});
73   auto tensor_x3 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{3, 4, 3});
74   MS_EXCEPTION_IF_NULL(tensor_x1);
75   MS_EXCEPTION_IF_NULL(tensor_x2);
76   MS_EXCEPTION_IF_NULL(tensor_x3);
77   auto input_tuple = std::make_shared<ValueTuple>(std::vector<ValuePtr>{tensor_x1, tensor_x2, tensor_x3});
78   auto abstract = concat->Infer({input_tuple->ToAbstract()});
79   MS_EXCEPTION_IF_NULL(abstract);
80   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
81   auto shape_ptr = abstract->BuildShape();
82   MS_EXCEPTION_IF_NULL(shape_ptr);
83   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
84   auto shape = shape_ptr->cast<abstract::ShapePtr>();
85   MS_EXCEPTION_IF_NULL(shape);
86   auto shape_vec = shape->shape();
87   auto type = abstract->BuildType();
88   MS_EXCEPTION_IF_NULL(type);
89   EXPECT_EQ(type->isa<TensorType>(), true);
90   auto tensor_type = type->cast<TensorTypePtr>();
91   MS_EXCEPTION_IF_NULL(tensor_type);
92   auto data_type = tensor_type->element();
93   MS_EXCEPTION_IF_NULL(data_type);
94   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
95   EXPECT_EQ(shape_vec.size(), 3);
96   EXPECT_EQ(shape_vec[0], 3);
97   EXPECT_EQ(shape_vec[1], 4);
98   EXPECT_EQ(shape_vec[2], 10);
99 }
100 }  // namespace ops
101 }  // namespace mindspore
102