• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/grad/pooling_grad.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestPoolingGrad : public UT::Common {
28  public:
TestPoolingGrad()29   TestPoolingGrad() {}
SetUp()30   void SetUp() {}
TearDown()31   void TearDown() {}
32 };
33 
TEST_F(TestPoolingGrad,test_ops_pooling_grad1)34 TEST_F(TestPoolingGrad, test_ops_pooling_grad1) {
35   auto pooling_grad = std::make_shared<PoolingGrad>();
36   pooling_grad->Init(MAX_POOLING, std::vector<int64_t>{1, 1}, std::vector<int64_t>{1, 1}, VALID,
37                      std::vector<int64_t>{1, 1, 1, 1}, FLOOR, NCHW, false);
38   EXPECT_EQ(pooling_grad->get_pool_mode(), MAX_POOLING);
39   //  EXPECT_EQ(pooling_grad->get_window(), std::vector<int64_t>{1, 1});
40   EXPECT_EQ(pooling_grad->get_pad_mode(), VALID);
41   //  EXPECT_EQ(pooling_grad->get_stride(), std::vector<int64_t>{1, 1});
42   //  EXPECT_EQ(pooling_grad->get_pad_list(), std::vector<int64_t>{1, 1, 1, 1});
43   EXPECT_EQ(pooling_grad->get_round_mode(), FLOOR);
44   EXPECT_EQ(pooling_grad->get_format(), NCHW);
45   EXPECT_EQ(pooling_grad->get_global(), false);
46   auto input0 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
47   auto input1 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{1});
48   auto input2 = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3, 3});
49   MS_EXCEPTION_IF_NULL(input0);
50   MS_EXCEPTION_IF_NULL(input1);
51   MS_EXCEPTION_IF_NULL(input2);
52   auto abstract = pooling_grad->Infer({input0->ToAbstract(), input1->ToAbstract(), input2->ToAbstract()});
53   MS_EXCEPTION_IF_NULL(abstract);
54   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
55   auto shape_ptr = abstract->BuildShape();
56   MS_EXCEPTION_IF_NULL(shape_ptr);
57   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
58   auto shape = shape_ptr->cast<abstract::ShapePtr>();
59   MS_EXCEPTION_IF_NULL(shape);
60   auto shape_vec = shape->shape();
61   EXPECT_EQ(shape_vec.size(), 2);
62   EXPECT_EQ(shape_vec[0], 3);
63   EXPECT_EQ(shape_vec[1], 3);
64   auto type = abstract->BuildType();
65   MS_EXCEPTION_IF_NULL(type);
66   EXPECT_EQ(type->isa<TensorType>(), true);
67   auto tensor_type = type->cast<TensorTypePtr>();
68   MS_EXCEPTION_IF_NULL(tensor_type);
69   auto data_type = tensor_type->element();
70   MS_EXCEPTION_IF_NULL(data_type);
71   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
72 }
73 }  // namespace ops
74 }  // namespace mindspore
75