• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/prelu.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestPReLU : public UT::Common {
28  public:
TestPReLU()29   TestPReLU() {}
SetUp()30   void SetUp() {}
TearDown()31   void TearDown() {}
32 };
33 
TEST_F(TestPReLU,test_ops_prelu1)34 TEST_F(TestPReLU, test_ops_prelu1) {
35   auto prelu = std::make_shared<PReLU>();
36   auto tensor_x = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{2, 3, 4});
37   auto tensor_w = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{3});
38   MS_EXCEPTION_IF_NULL(tensor_x);
39   MS_EXCEPTION_IF_NULL(tensor_w);
40   auto abstract = prelu->Infer({tensor_x->ToAbstract(), tensor_w->ToAbstract()});
41   MS_EXCEPTION_IF_NULL(abstract);
42   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
43   auto shape_ptr = abstract->BuildShape();
44   MS_EXCEPTION_IF_NULL(shape_ptr);
45   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
46   auto shape = shape_ptr->cast<abstract::ShapePtr>();
47   MS_EXCEPTION_IF_NULL(shape);
48   auto shape_vec = shape->shape();
49   auto type = abstract->BuildType();
50   MS_EXCEPTION_IF_NULL(type);
51   EXPECT_EQ(type->isa<TensorType>(), true);
52   auto tensor_type = type->cast<TensorTypePtr>();
53   MS_EXCEPTION_IF_NULL(tensor_type);
54   auto data_type = tensor_type->element();
55   MS_EXCEPTION_IF_NULL(data_type);
56   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
57   EXPECT_EQ(shape_vec.size(), 3);
58   EXPECT_EQ(shape_vec[0], 2);
59   EXPECT_EQ(shape_vec[1], 3);
60   EXPECT_EQ(shape_vec[2], 4);
61 }
62 
TEST_F(TestPReLU,test_ops_prelu2)63 TEST_F(TestPReLU, test_ops_prelu2) {
64   auto prelu = std::make_shared<PReLU>();
65   auto tensor_x = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{5, 6, 7, 8});
66   auto tensor_w = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat16, std::vector<int64_t>{1});
67   MS_EXCEPTION_IF_NULL(tensor_x);
68   MS_EXCEPTION_IF_NULL(tensor_w);
69   auto abstract = prelu->Infer({tensor_x->ToAbstract(), tensor_w->ToAbstract()});
70   MS_EXCEPTION_IF_NULL(abstract);
71   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
72   auto shape_ptr = abstract->BuildShape();
73   MS_EXCEPTION_IF_NULL(shape_ptr);
74   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
75   auto shape = shape_ptr->cast<abstract::ShapePtr>();
76   MS_EXCEPTION_IF_NULL(shape);
77   auto shape_vec = shape->shape();
78   auto type = abstract->BuildType();
79   MS_EXCEPTION_IF_NULL(type);
80   EXPECT_EQ(type->isa<TensorType>(), true);
81   auto tensor_type = type->cast<TensorTypePtr>();
82   MS_EXCEPTION_IF_NULL(tensor_type);
83   auto data_type = tensor_type->element();
84   MS_EXCEPTION_IF_NULL(data_type);
85   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
86   EXPECT_EQ(shape_vec.size(), 4);
87   EXPECT_EQ(shape_vec[0], 5);
88   EXPECT_EQ(shape_vec[1], 6);
89   EXPECT_EQ(shape_vec[2], 7);
90   EXPECT_EQ(shape_vec[3], 8);
91 }
92 }  // namespace ops
93 }  // namespace mindspore
94