• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/unsqueeze.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestUnsqueeze : public UT::Common {
28  public:
TestUnsqueeze()29   TestUnsqueeze() {}
SetUp()30   void SetUp() {}
TearDown()31   void TearDown() {}
32 };
33 
34 /*TEST_F(TestUnsqueeze, test_unsqueeze_1) {
35   auto unsqueeze = std::make_shared<Unsqueeze>();
36   std::vector<int64_t> axis = {};
37   unsqueeze->Init(axis);
38   auto tensor_x = std::make_shared<tensor::Tensor>(kNumberTypeFloat16, std::vector<int64_t>{1, 3, 2});
39   MS_EXCEPTION_IF_NULL(tensor_x);
40   auto tensor_x_data = reinterpret_cast<int *>(tensor_x->data_c());
41   *tensor_x_data = 1;
42   tensor_x_data++;
43   *tensor_x_data = 2;
44   tensor_x_data++;
45   *tensor_x_data = 3;
46   tensor_x_data++;
47   *tensor_x_data = 4;
48   tensor_x_data++;
49   *tensor_x_data = 5;
50   tensor_x_data++;
51   *tensor_x_data = 6;
52   tensor_x_data++;
53   auto abstract = unsqueeze->Infer({tensor_x->ToAbstract()});
54   MS_EXCEPTION_IF_NULL(abstract);
55   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
56   auto shape_ptr = abstract->BuildShape();
57   MS_EXCEPTION_IF_NULL(shape_ptr);
58   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
59   auto shape = shape_ptr->cast<abstract::ShapePtr>();
60   MS_EXCEPTION_IF_NULL(shape);
61   auto shape_vec = shape->shape();
62   EXPECT_EQ(shape_vec.size(), 2);
63   EXPECT_EQ(shape_vec[0], 3);
64   EXPECT_EQ(shape_vec[1], 2);
65   auto type = abstract->BuildType();
66   MS_EXCEPTION_IF_NULL(type);
67   EXPECT_EQ(type->isa<TensorType>(), true);
68   auto tensor_type = type->cast<TensorTypePtr>();
69   MS_EXCEPTION_IF_NULL(tensor_type);
70   auto data_type = tensor_type->element();
71   MS_EXCEPTION_IF_NULL(data_type);
72   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
73 }
74 */
TEST_F(TestUnsqueeze,test_unsqueeze_1)75 TEST_F(TestUnsqueeze, test_unsqueeze_1) {
76   auto unsqueeze = std::make_shared<Unsqueeze>();
77   std::vector<int64_t> axis = {1, 2};
78   unsqueeze->Init(axis);
79   auto tensor_x = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{1, 3});
80   MS_EXCEPTION_IF_NULL(tensor_x);
81   auto tensor_x_data = reinterpret_cast<int *>(tensor_x->data_c());
82   *tensor_x_data = 1;
83   tensor_x_data++;
84   *tensor_x_data = 2;
85   tensor_x_data++;
86   *tensor_x_data = 3;
87   tensor_x_data++;
88   auto abstract = unsqueeze->Infer({tensor_x->ToAbstract()});
89   MS_EXCEPTION_IF_NULL(abstract);
90   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
91   auto shape_ptr = abstract->BuildShape();
92   MS_EXCEPTION_IF_NULL(shape_ptr);
93   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
94   auto shape = shape_ptr->cast<abstract::ShapePtr>();
95   MS_EXCEPTION_IF_NULL(shape);
96   auto shape_vec = shape->shape();
97   EXPECT_EQ(shape_vec.size(), 4);
98   EXPECT_EQ(shape_vec[0], 1);
99   EXPECT_EQ(shape_vec[1], 1);
100   EXPECT_EQ(shape_vec[2], 1);
101   EXPECT_EQ(shape_vec[3], 3);
102   auto type = abstract->BuildType();
103   MS_EXCEPTION_IF_NULL(type);
104   EXPECT_EQ(type->isa<TensorType>(), true);
105   auto tensor_type = type->cast<TensorTypePtr>();
106   MS_EXCEPTION_IF_NULL(tensor_type);
107   auto data_type = tensor_type->element();
108   MS_EXCEPTION_IF_NULL(data_type);
109   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
110 }
111 }  // namespace ops
112 }  // namespace mindspore
113