• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15"""test accuracy"""
16import math
17import numpy as np
18import pytest
19
20from mindspore import Tensor
21from mindspore.nn.metrics import Accuracy
22
23
24def test_classification_accuracy():
25    """test_classification_accuracy"""
26    x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
27    y = Tensor(np.array([1, 0, 1]))
28    y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
29    metric = Accuracy('classification')
30    metric.clear()
31    metric.update(x, y)
32    accuracy = metric.eval()
33    accuracy2 = metric(x, y2)
34    assert math.isclose(accuracy, 2 / 3)
35    assert math.isclose(accuracy2, 2 / 3)
36
37
38def test_classification_accuracy_indexes_awareness():
39    """A indexes aware version of test_classification_accuracy"""
40    x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
41    y = Tensor(np.array([1, 0, 1]))
42    y2 = Tensor(np.array([0, 0, 1]))
43    metric = Accuracy('classification').set_indexes([0, 2])
44    metric.clear()
45    metric.update(x, y, y2)
46    accuracy = metric.eval()
47    assert math.isclose(accuracy, 1 / 3)
48
49
50@pytest.mark.parametrize('indexes', [0, [0., 2.], [0., 1], ['1', '0']])
51def test_set_indexes(indexes):
52    with pytest.raises(ValueError, match="indexes should be a list and all its elements should be int"):
53        _ = Accuracy('classification').set_indexes(indexes)
54
55
56def test_multilabel_accuracy():
57    x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
58    y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]]))
59    metric = Accuracy('multilabel')
60    metric.clear()
61    metric.update(x, y)
62    accuracy = metric.eval()
63    assert accuracy == 1 / 3
64
65
66def test_shape_accuracy():
67    x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
68    y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1]]))
69    metric = Accuracy('multilabel')
70    metric.clear()
71    with pytest.raises(ValueError):
72        metric.update(x, y)
73
74
75def test_shape_accuracy2():
76    x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
77    y = Tensor(np.array([0, 1, 1, 1]))
78    metric = Accuracy('multilabel')
79    metric.clear()
80    with pytest.raises(ValueError):
81        metric.update(x, y)
82
83
84def test_shape_accuracy3():
85    x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
86    y = Tensor(np.array([[1, 0, 1], [1, 1, 1]]))
87    metric = Accuracy('classification')
88    metric.clear()
89    with pytest.raises(ValueError):
90        metric.update(x, y)
91
92
93def test_shape_accuracy4():
94    x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
95    y = Tensor(np.array(1))
96    metric = Accuracy('classification')
97    metric.clear()
98    with pytest.raises(ValueError):
99        metric.update(x, y)
100
101
102def test_type_accuracy():
103    with pytest.raises(TypeError):
104        Accuracy('test')
105