1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import numpy as np 16 17import mindspore as ms 18from mindspore import Tensor 19from mindspore.parallel._utils import _to_full_shapes, _to_full_tensor 20 21 22def test_to_full_shapes(): 23 device_num = 16 24 shapes = [[32, 128], [12], [24, 1, 12]] 25 full_shapes = _to_full_shapes(shapes, device_num) 26 assert full_shapes == [(512, 128), (192,), (384, 1, 12)] 27 28 29def test_to_full_tensor_1(): 30 elem = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) 31 device_num = 4 32 global_rank = 2 33 full_tensor = _to_full_tensor(elem, device_num, global_rank, scaling_sens=None) 34 35 expect = ([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3], [4, 5, 6], [0, 0, 0], [0, 0, 0]]) 36 expect_tensor = Tensor(expect, dtype=ms.float32) 37 38 assert np.all(full_tensor[0].asnumpy() == expect_tensor.asnumpy()) 39 40 41def test_to_full_tensor_2(): 42 elem0 = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) 43 elem1 = Tensor([[1], [4]], dtype=ms.int32) 44 elem = (elem0, elem1,) 45 device_num = 4 46 global_rank = 2 47 full_tensor = _to_full_tensor(elem, device_num, global_rank, scaling_sens=None) 48 49 expect0 = ([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3], [4, 5, 6], [0, 0, 0], [0, 0, 0]]) 50 expect_tensor0 = Tensor(expect0, dtype=ms.float32) 51 expect1 = ([[0], [0], [0], [0], [1], [4], [0], [0]]) 52 expect_tensor1 = Tensor(expect1, dtype=ms.int32) 53 expect_tensors = (expect_tensor0, expect_tensor1) 54 55 assert np.all(full_tensor[0].asnumpy() == expect_tensors[0].asnumpy()) 56 assert np.all(full_tensor[1].asnumpy() == expect_tensors[1].asnumpy()) 57 58 59def test_to_full_tensor_sens_2(): 60 elem0 = Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) 61 elem1 = Tensor([[1], [4]], dtype=ms.int32) 62 elem = (elem0, elem1,) 63 device_num = 4 64 global_rank = 2 65 full_tensor = _to_full_tensor(elem, device_num, global_rank, scaling_sens=0.1) 66 67 expect0 = ([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 2, 3], [4, 5, 6], [0, 0, 0], [0, 0, 0]]) 68 expect_tensor0 = Tensor(expect0, dtype=ms.float32) 69 expect1 = ([[0], [0], [0], [0], [1], [4], [0], [0]]) 70 expect_tensor1 = Tensor(expect1, dtype=ms.int32) 71 expect_tensor_sens = Tensor(0.1, dtype=ms.float32) 72 expect_tensors = (expect_tensor0, expect_tensor1, expect_tensor_sens) 73 74 assert np.all(full_tensor[0].asnumpy() == expect_tensors[0].asnumpy()) 75 assert np.all(full_tensor[1].asnumpy() == expect_tensors[1].asnumpy()) 76 assert np.all(full_tensor[2].asnumpy() == expect_tensors[2].asnumpy()) 77