• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import numpy as np
16
17import mindspore as ms
18from mindspore import context, Tensor, Parameter
19from mindspore.common.api import _cell_graph_executor
20from mindspore.nn import Cell, TrainOneStepCell, Momentum
21from mindspore.ops import operations as P
22
23
24class Net(Cell):
25    def __init__(self, mul_weight, strategy1=None, strategy2=None, strategy3=None):
26        super().__init__()
27        self.mul = P.Mul().shard(strategy1)
28        self.expand_dims = P.ExpandDims().shard(strategy2)
29        self.mul2 = P.Mul().shard(strategy3)
30        self.mul_weight = Parameter(mul_weight, "w1")
31
32    def construct(self, x, b):
33        out = self.mul(x, self.mul_weight)
34        out = self.expand_dims(out, -1)
35        out = self.mul2(out, b)
36        return out
37
38
39class Net2(Cell):
40    def __init__(self, mul_weight, strategy1=None, strategy2=None):
41        super().__init__()
42        self.expand_dims = P.ExpandDims().shard(strategy1)
43        self.mul = P.Mul().shard(strategy2)
44        self.mul_weight = Parameter(mul_weight, "w1")
45
46    def construct(self, x, b):
47        out = self.expand_dims(self.mul_weight, -1)
48        out = self.mul(out, b)
49        return out
50
51
52_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
53_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
54_b = Tensor(np.ones([128, 64, 32, 1]), dtype=ms.float32)
55
56
57def compile_net(net):
58    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
59    train_net = TrainOneStepCell(net, optimizer)
60    train_net.set_auto_parallel()
61    train_net.set_train()
62    _cell_graph_executor.compile(train_net, _x, _b)
63    context.reset_auto_parallel_context()
64
65
66def test_expand_dims_data_parallel():
67    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
68    strategy1 = ((16, 1, 1), (16, 1, 1))
69    strategy2 = ((16, 1, 1),)
70    strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1))
71    net = Net(_w1, strategy1, strategy2, strategy3)
72    compile_net(net)
73
74
75def test_expand_dims_model_parallel():
76    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
77    strategy1 = ((1, 1, 16), (1, 1, 16))
78    strategy2 = ((1, 1, 16),)
79    strategy3 = ((1, 1, 16, 1), (1, 1, 16, 1))
80    net = Net(_w1, strategy1, strategy2, strategy3)
81    compile_net(net)
82
83
84def test_expand_dims_hybrid_parallel():
85    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
86    strategy1 = ((2, 2, 4), (2, 2, 4))
87    strategy2 = ((2, 2, 4),)
88    strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
89    net = Net(_w1, strategy1, strategy2, strategy3)
90    compile_net(net)
91
92
93def test_expand_dims_auto_parallel():
94    context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
95    net = Net(_w1)
96    compile_net(net)
97
98
99def test_expand_dims_repeat_calc():
100    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
101    strategy1 = ((2, 2, 4), (2, 2, 4))
102    strategy2 = ((1, 2, 2),)
103    strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1))
104    net = Net(_w1, strategy1, strategy2, strategy3)
105    compile_net(net)
106
107
108def test_expand_dims_parameter():
109    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
110    strategy1 = ((1, 2, 2),)
111    strategy2 = ((2, 2, 4, 1), (2, 2, 4, 1))
112    net = Net2(_w1, strategy1, strategy2)
113    compile_net(net)
114