1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import numpy as np 16 17import mindspore as ms 18from mindspore import context, Tensor, Parameter 19from mindspore.common.api import _cell_graph_executor 20from mindspore.nn import Cell, TrainOneStepCell, Momentum 21from mindspore.ops import operations as P 22 23 24class Net(Cell): 25 def __init__(self, matmul_weight, strategy1=None): 26 super().__init__() 27 self.gatherv2 = P.Gather().shard(strategy1) 28 self.reshape = P.Reshape().add_prim_attr("skip_redistribution", True) 29 self.matmul = P.MatMul(transpose_b=False) 30 self.index = Tensor(np.ones([64, 64]), dtype=ms.int32) 31 self.matmul_weight = Parameter(matmul_weight, "w1") 32 self.axis = 0 33 34 def construct(self, x, b): 35 out = self.gatherv2(x, self.index, self.axis) 36 out = self.reshape(out, (64, -1)) 37 out = self.matmul(out, self.matmul_weight) 38 return out 39 40 41_w1 = Tensor(np.ones([4096, 32]), dtype=ms.float32) 42_x = Tensor(np.ones([64, 64]), dtype=ms.float32) 43_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) 44 45def compile_net(net): 46 optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) 47 train_net = TrainOneStepCell(net, optimizer) 48 train_net.set_auto_parallel() 49 train_net.set_train() 50 _cell_graph_executor.compile(train_net, _x, _b) 51 context.reset_auto_parallel_context() 52 53 54def test_reshape_skip_redistribution(): 55 context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) 56 strategy1 = ((1, 8), (1, 1)) 57 net = Net(_w1, strategy1) 58 compile_net(net) 59