1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15""" test scatter update """ 16import numpy as np 17import pytest 18import mindspore.nn as nn 19from mindspore import Tensor, Model, Parameter 20from mindspore.ops import operations as P 21from mindspore import context 22 23 24class Net(nn.Cell): 25 """Net definition""" 26 def __init__(self, strategy1=None, strategy2=None): 27 super(Net, self).__init__() 28 self.inputs = Parameter(Tensor(np.ones([32, 64, 128]).astype(np.float32)), "input") 29 self.indices = Tensor(np.ones([4, 8]).astype(np.int32)) 30 self.updates = Tensor(np.ones([4, 8, 64, 128]).astype(np.float32)) 31 self.scatter_update = P.ScatterUpdate().shard(strategy1) 32 self.add = P.TensorAdd().shard(strategy2) 33 self.relu = P.ReLU() 34 35 def construct(self, x): 36 out = self.scatter_update(self.inputs, self.indices, self.updates) 37 out = self.add(x, out) 38 out = self.relu(out) 39 return out 40 41 42def test_distribute_predict(): 43 context.set_context(mode=context.GRAPH_MODE) 44 context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True) 45 inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32)) 46 strategy1 = ((1, 2, 4), (1, 1), (1, 1, 2, 4)) 47 strategy2 = ((1, 2, 4), (1, 2, 4)) 48 net = Net(strategy1, strategy2) 49 model = Model(net) 50 predict_map = model.infer_predict_layout(inputs) 51 output = model.predict(inputs) 52 context.reset_auto_parallel_context() 53 return predict_map, output 54 55 56def test_scatter_update_wrong_strategy(): 57 context.set_context(mode=context.GRAPH_MODE) 58 context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True) 59 inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32)) 60 strategy1 = ((1, 2, 4), (1, 1), (1, 1, 4, 2)) 61 strategy2 = ((1, 2, 4), (1, 2, 4)) 62 net = Net(strategy1, strategy2) 63 model = Model(net) 64 with pytest.raises(RuntimeError): 65 model.predict(inputs) 66 context.reset_auto_parallel_context() 67 68 69def test_distribute_predict_auto_parallel(): 70 context.set_context(mode=context.GRAPH_MODE) 71 context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, full_batch=True) 72 inputs = Tensor(np.ones([32, 64, 128]).astype(np.float32)) 73 net = Net() 74 model = Model(net) 75 predict_map = model.infer_predict_layout(inputs) 76 output = model.predict(inputs) 77 context.reset_auto_parallel_context() 78 return predict_map, output 79