• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* sqrt(x)
13  * Return correctly rounded sqrt.
14  *           ------------------------------------------
15  *           |  Use the hardware sqrt if you have one |
16  *           ------------------------------------------
17  * Method:
18  *   Bit by bit method using integer arithmetic. (Slow, but portable)
19  *   1. Normalization
20  *      Scale x to y in [1,4) with even powers of 2:
21  *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
22  *              sqrt(x) = 2^k * sqrt(y)
23  *   2. Bit by bit computation
24  *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
25  *           i                                                   0
26  *                                     i+1         2
27  *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
28  *           i      i            i                 i
29  *
30  *      To compute q    from q , one checks whether
31  *                  i+1       i
32  *
33  *                            -(i+1) 2
34  *                      (q + 2      ) <= y.                     (2)
35  *                        i
36  *                                                            -(i+1)
37  *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
38  *                             i+1   i             i+1   i
39  *
40  *      With some algebric manipulation, it is not difficult to see
41  *      that (2) is equivalent to
42  *                             -(i+1)
43  *                      s  +  2       <= y                      (3)
44  *                       i                i
45  *
46  *      The advantage of (3) is that s  and y  can be computed by
47  *                                    i      i
48  *      the following recurrence formula:
49  *          if (3) is false
50  *
51  *          s     =  s  ,       y    = y   ;                    (4)
52  *           i+1      i          i+1    i
53  *
54  *          otherwise,
55  *                         -i                     -(i+1)
56  *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
57  *           i+1      i          i+1    i     i
58  *
59  *      One may easily use induction to prove (4) and (5).
60  *      Note. Since the left hand side of (3) contain only i+2 bits,
61  *            it does not necessary to do a full (53-bit) comparison
62  *            in (3).
63  *   3. Final rounding
64  *      After generating the 53 bits result, we compute one more bit.
65  *      Together with the remainder, we can decide whether the
66  *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
67  *      (it will never equal to 1/2ulp).
68  *      The rounding mode can be detected by checking whether
69  *      huge + tiny is equal to huge, and whether huge - tiny is
70  *      equal to huge for some floating point number "huge" and "tiny".
71  *
72  * Special cases:
73  *      sqrt(+-0) = +-0         ... exact
74  *      sqrt(inf) = inf
75  *      sqrt(-ve) = NaN         ... with invalid signal
76  *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
77  */
78 
79 #include "libm.h"
80 
81 static const double tiny = 1.0e-300;
82 
sqrt(double x)83 double sqrt(double x)
84 {
85 	double z;
86 	int32_t sign = (int)0x80000000;
87 	int32_t ix0,s0,q,m,t,i;
88 	uint32_t r,t1,s1,ix1,q1;
89 
90 	EXTRACT_WORDS(ix0, ix1, x);
91 
92 	/* take care of Inf and NaN */
93 	if ((ix0&0x7ff00000) == 0x7ff00000) {
94 		return x*x + x;  /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
95 	}
96 	/* take care of zero */
97 	if (ix0 <= 0) {
98 		if (((ix0&~sign)|ix1) == 0)
99 			return x;  /* sqrt(+-0) = +-0 */
100 		if (ix0 < 0)
101 			return (x-x)/(x-x);  /* sqrt(-ve) = sNaN */
102 	}
103 	/* normalize x */
104 	m = ix0>>20;
105 	if (m == 0) {  /* subnormal x */
106 		while (ix0 == 0) {
107 			m -= 21;
108 			ix0 |= (ix1>>11);
109 			ix1 <<= 21;
110 		}
111 		for (i=0; (ix0&0x00100000) == 0; i++)
112 			ix0<<=1;
113 		m -= i - 1;
114 		ix0 |= ix1>>(32-i);
115 		ix1 <<= i;
116 	}
117 	m -= 1023;    /* unbias exponent */
118 	ix0 = (ix0&0x000fffff)|0x00100000;
119 	if (m & 1) {  /* odd m, double x to make it even */
120 		ix0 += ix0 + ((ix1&sign)>>31);
121 		ix1 += ix1;
122 	}
123 	m >>= 1;      /* m = [m/2] */
124 
125 	/* generate sqrt(x) bit by bit */
126 	ix0 += ix0 + ((ix1&sign)>>31);
127 	ix1 += ix1;
128 	q = q1 = s0 = s1 = 0;  /* [q,q1] = sqrt(x) */
129 	r = 0x00200000;        /* r = moving bit from right to left */
130 
131 	while (r != 0) {
132 		t = s0 + r;
133 		if (t <= ix0) {
134 			s0   = t + r;
135 			ix0 -= t;
136 			q   += r;
137 		}
138 		ix0 += ix0 + ((ix1&sign)>>31);
139 		ix1 += ix1;
140 		r >>= 1;
141 	}
142 
143 	r = sign;
144 	while (r != 0) {
145 		t1 = s1 + r;
146 		t  = s0;
147 		if (t < ix0 || (t == ix0 && t1 <= ix1)) {
148 			s1 = t1 + r;
149 			if ((t1&sign) == sign && (s1&sign) == 0)
150 				s0++;
151 			ix0 -= t;
152 			if (ix1 < t1)
153 				ix0--;
154 			ix1 -= t1;
155 			q1 += r;
156 		}
157 		ix0 += ix0 + ((ix1&sign)>>31);
158 		ix1 += ix1;
159 		r >>= 1;
160 	}
161 
162 	/* use floating add to find out rounding direction */
163 	if ((ix0|ix1) != 0) {
164 		z = 1.0 - tiny; /* raise inexact flag */
165 		if (z >= 1.0) {
166 			z = 1.0 + tiny;
167 			if (q1 == (uint32_t)0xffffffff) {
168 				q1 = 0;
169 				q++;
170 			} else if (z > 1.0) {
171 				if (q1 == (uint32_t)0xfffffffe)
172 					q++;
173 				q1 += 2;
174 			} else
175 				q1 += q1 & 1;
176 		}
177 	}
178 	ix0 = (q>>1) + 0x3fe00000;
179 	ix1 = q1>>1;
180 	if (q&1)
181 		ix1 |= sign;
182 	INSERT_WORDS(z, ix0 + ((uint32_t)m << 20), ix1);
183 	return z;
184 }
185