1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3
4 // file: rbbi_cache.cpp
5
6 #include "unicode/utypes.h"
7
8 #if !UCONFIG_NO_BREAK_ITERATION
9
10 #include "unicode/ubrk.h"
11 #include "unicode/rbbi.h"
12
13 #include "rbbi_cache.h"
14
15 #include "brkeng.h"
16 #include "cmemory.h"
17 #include "rbbidata.h"
18 #include "rbbirb.h"
19 #include "uassert.h"
20 #include "uvectr32.h"
21
22 U_NAMESPACE_BEGIN
23
24 /*
25 * DictionaryCache implementation
26 */
27
DictionaryCache(RuleBasedBreakIterator * bi,UErrorCode & status)28 RuleBasedBreakIterator::DictionaryCache::DictionaryCache(RuleBasedBreakIterator *bi, UErrorCode &status) :
29 fBI(bi), fBreaks(status), fPositionInCache(-1),
30 fStart(0), fLimit(0), fFirstRuleStatusIndex(0), fOtherRuleStatusIndex(0) {
31 }
32
~DictionaryCache()33 RuleBasedBreakIterator::DictionaryCache::~DictionaryCache() {
34 }
35
reset()36 void RuleBasedBreakIterator::DictionaryCache::reset() {
37 fPositionInCache = -1;
38 fStart = 0;
39 fLimit = 0;
40 fFirstRuleStatusIndex = 0;
41 fOtherRuleStatusIndex = 0;
42 fBreaks.removeAllElements();
43 }
44
following(int32_t fromPos,int32_t * result,int32_t * statusIndex)45 UBool RuleBasedBreakIterator::DictionaryCache::following(int32_t fromPos, int32_t *result, int32_t *statusIndex) {
46 if (fromPos >= fLimit || fromPos < fStart) {
47 fPositionInCache = -1;
48 return FALSE;
49 }
50
51 // Sequential iteration, move from previous boundary to the following
52
53 int32_t r = 0;
54 if (fPositionInCache >= 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) {
55 ++fPositionInCache;
56 if (fPositionInCache >= fBreaks.size()) {
57 fPositionInCache = -1;
58 return FALSE;
59 }
60 r = fBreaks.elementAti(fPositionInCache);
61 U_ASSERT(r > fromPos);
62 *result = r;
63 *statusIndex = fOtherRuleStatusIndex;
64 return TRUE;
65 }
66
67 // Random indexing. Linear search for the boundary following the given position.
68
69 for (fPositionInCache = 0; fPositionInCache < fBreaks.size(); ++fPositionInCache) {
70 r= fBreaks.elementAti(fPositionInCache);
71 if (r > fromPos) {
72 *result = r;
73 *statusIndex = fOtherRuleStatusIndex;
74 return TRUE;
75 }
76 }
77 UPRV_UNREACHABLE_EXIT;
78 }
79
80
preceding(int32_t fromPos,int32_t * result,int32_t * statusIndex)81 UBool RuleBasedBreakIterator::DictionaryCache::preceding(int32_t fromPos, int32_t *result, int32_t *statusIndex) {
82 if (fromPos <= fStart || fromPos > fLimit) {
83 fPositionInCache = -1;
84 return FALSE;
85 }
86
87 if (fromPos == fLimit) {
88 fPositionInCache = fBreaks.size() - 1;
89 if (fPositionInCache >= 0) {
90 U_ASSERT(fBreaks.elementAti(fPositionInCache) == fromPos);
91 }
92 }
93
94 int32_t r;
95 if (fPositionInCache > 0 && fPositionInCache < fBreaks.size() && fBreaks.elementAti(fPositionInCache) == fromPos) {
96 --fPositionInCache;
97 r = fBreaks.elementAti(fPositionInCache);
98 U_ASSERT(r < fromPos);
99 *result = r;
100 *statusIndex = ( r== fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex;
101 return TRUE;
102 }
103
104 if (fPositionInCache == 0) {
105 fPositionInCache = -1;
106 return FALSE;
107 }
108
109 for (fPositionInCache = fBreaks.size()-1; fPositionInCache >= 0; --fPositionInCache) {
110 r = fBreaks.elementAti(fPositionInCache);
111 if (r < fromPos) {
112 *result = r;
113 *statusIndex = ( r == fStart) ? fFirstRuleStatusIndex : fOtherRuleStatusIndex;
114 return TRUE;
115 }
116 }
117 UPRV_UNREACHABLE_EXIT;
118 }
119
populateDictionary(int32_t startPos,int32_t endPos,int32_t firstRuleStatus,int32_t otherRuleStatus)120 void RuleBasedBreakIterator::DictionaryCache::populateDictionary(int32_t startPos, int32_t endPos,
121 int32_t firstRuleStatus, int32_t otherRuleStatus) {
122 if ((endPos - startPos) <= 1) {
123 return;
124 }
125
126 reset();
127 fFirstRuleStatusIndex = firstRuleStatus;
128 fOtherRuleStatusIndex = otherRuleStatus;
129
130 int32_t rangeStart = startPos;
131 int32_t rangeEnd = endPos;
132
133 uint16_t category;
134 int32_t current;
135 UErrorCode status = U_ZERO_ERROR;
136 int32_t foundBreakCount = 0;
137 UText *text = &fBI->fText;
138
139 // Loop through the text, looking for ranges of dictionary characters.
140 // For each span, find the appropriate break engine, and ask it to find
141 // any breaks within the span.
142
143 utext_setNativeIndex(text, rangeStart);
144 UChar32 c = utext_current32(text);
145 category = ucptrie_get(fBI->fData->fTrie, c);
146 uint32_t dictStart = fBI->fData->fForwardTable->fDictCategoriesStart;
147
148 while(U_SUCCESS(status)) {
149 while((current = (int32_t)UTEXT_GETNATIVEINDEX(text)) < rangeEnd
150 && (category < dictStart)) {
151 utext_next32(text); // TODO: cleaner loop structure.
152 c = utext_current32(text);
153 category = ucptrie_get(fBI->fData->fTrie, c);
154 }
155 if (current >= rangeEnd) {
156 break;
157 }
158
159 // We now have a dictionary character. Get the appropriate language object
160 // to deal with it.
161 const LanguageBreakEngine *lbe = fBI->getLanguageBreakEngine(c);
162
163 // Ask the language object if there are any breaks. It will add them to the cache and
164 // leave the text pointer on the other side of its range, ready to search for the next one.
165 if (lbe != NULL) {
166 foundBreakCount += lbe->findBreaks(text, rangeStart, rangeEnd, fBreaks, status);
167 }
168
169 // Reload the loop variables for the next go-round
170 c = utext_current32(text);
171 category = ucptrie_get(fBI->fData->fTrie, c);
172 }
173
174 // If we found breaks, ensure that the first and last entries are
175 // the original starting and ending position. And initialize the
176 // cache iteration position to the first entry.
177
178 // printf("foundBreakCount = %d\n", foundBreakCount);
179 if (foundBreakCount > 0) {
180 U_ASSERT(foundBreakCount == fBreaks.size());
181 if (startPos < fBreaks.elementAti(0)) {
182 // The dictionary did not place a boundary at the start of the segment of text.
183 // Add one now. This should not commonly happen, but it would be easy for interactions
184 // of the rules for dictionary segments and the break engine implementations to
185 // inadvertently cause it. Cover it here, just in case.
186 fBreaks.insertElementAt(startPos, 0, status);
187 }
188 if (endPos > fBreaks.peeki()) {
189 fBreaks.push(endPos, status);
190 }
191 fPositionInCache = 0;
192 // Note: Dictionary matching may extend beyond the original limit.
193 fStart = fBreaks.elementAti(0);
194 fLimit = fBreaks.peeki();
195 } else {
196 // there were no language-based breaks, even though the segment contained
197 // dictionary characters. Subsequent attempts to fetch boundaries from the dictionary cache
198 // for this range will fail, and the calling code will fall back to the rule based boundaries.
199 }
200 }
201
202
203 /*
204 * BreakCache implementation
205 */
206
BreakCache(RuleBasedBreakIterator * bi,UErrorCode & status)207 RuleBasedBreakIterator::BreakCache::BreakCache(RuleBasedBreakIterator *bi, UErrorCode &status) :
208 fBI(bi), fSideBuffer(status) {
209 reset();
210 }
211
212
~BreakCache()213 RuleBasedBreakIterator::BreakCache::~BreakCache() {
214 }
215
216
reset(int32_t pos,int32_t ruleStatus)217 void RuleBasedBreakIterator::BreakCache::reset(int32_t pos, int32_t ruleStatus) {
218 fStartBufIdx = 0;
219 fEndBufIdx = 0;
220 fTextIdx = pos;
221 fBufIdx = 0;
222 fBoundaries[0] = pos;
223 fStatuses[0] = (uint16_t)ruleStatus;
224 }
225
226
current()227 int32_t RuleBasedBreakIterator::BreakCache::current() {
228 fBI->fPosition = fTextIdx;
229 fBI->fRuleStatusIndex = fStatuses[fBufIdx];
230 fBI->fDone = FALSE;
231 return fTextIdx;
232 }
233
234
following(int32_t startPos,UErrorCode & status)235 void RuleBasedBreakIterator::BreakCache::following(int32_t startPos, UErrorCode &status) {
236 if (U_FAILURE(status)) {
237 return;
238 }
239 if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) {
240 // startPos is in the cache. Do a next() from that position.
241 // TODO: an awkward set of interactions with bi->fDone
242 // seek() does not clear it; it can't because of interactions with populateNear().
243 // next() does not clear it in the fast-path case, where everything matters. Maybe it should.
244 // So clear it here, for the case where seek() succeeded on an iterator that had previously run off the end.
245 fBI->fDone = false;
246 next();
247 }
248 return;
249 }
250
251
preceding(int32_t startPos,UErrorCode & status)252 void RuleBasedBreakIterator::BreakCache::preceding(int32_t startPos, UErrorCode &status) {
253 if (U_FAILURE(status)) {
254 return;
255 }
256 if (startPos == fTextIdx || seek(startPos) || populateNear(startPos, status)) {
257 if (startPos == fTextIdx) {
258 previous(status);
259 } else {
260 // seek() leaves the BreakCache positioned at the preceding boundary
261 // if the requested position is between two boundaries.
262 // current() pushes the BreakCache position out to the BreakIterator itself.
263 U_ASSERT(startPos > fTextIdx);
264 current();
265 }
266 }
267 return;
268 }
269
270
271 /*
272 * Out-of-line code for BreakCache::next().
273 * Cache does not already contain the boundary
274 */
nextOL()275 void RuleBasedBreakIterator::BreakCache::nextOL() {
276 fBI->fDone = !populateFollowing();
277 fBI->fPosition = fTextIdx;
278 fBI->fRuleStatusIndex = fStatuses[fBufIdx];
279 return;
280 }
281
282
previous(UErrorCode & status)283 void RuleBasedBreakIterator::BreakCache::previous(UErrorCode &status) {
284 if (U_FAILURE(status)) {
285 return;
286 }
287 int32_t initialBufIdx = fBufIdx;
288 if (fBufIdx == fStartBufIdx) {
289 // At start of cache. Prepend to it.
290 populatePreceding(status);
291 } else {
292 // Cache already holds the next boundary
293 fBufIdx = modChunkSize(fBufIdx - 1);
294 fTextIdx = fBoundaries[fBufIdx];
295 }
296 fBI->fDone = (fBufIdx == initialBufIdx);
297 fBI->fPosition = fTextIdx;
298 fBI->fRuleStatusIndex = fStatuses[fBufIdx];
299 return;
300 }
301
302
seek(int32_t pos)303 UBool RuleBasedBreakIterator::BreakCache::seek(int32_t pos) {
304 if (pos < fBoundaries[fStartBufIdx] || pos > fBoundaries[fEndBufIdx]) {
305 return FALSE;
306 }
307 if (pos == fBoundaries[fStartBufIdx]) {
308 // Common case: seek(0), from BreakIterator::first()
309 fBufIdx = fStartBufIdx;
310 fTextIdx = fBoundaries[fBufIdx];
311 return TRUE;
312 }
313 if (pos == fBoundaries[fEndBufIdx]) {
314 fBufIdx = fEndBufIdx;
315 fTextIdx = fBoundaries[fBufIdx];
316 return TRUE;
317 }
318
319 int32_t min = fStartBufIdx;
320 int32_t max = fEndBufIdx;
321 while (min != max) {
322 int32_t probe = (min + max + (min>max ? CACHE_SIZE : 0)) / 2;
323 probe = modChunkSize(probe);
324 if (fBoundaries[probe] > pos) {
325 max = probe;
326 } else {
327 min = modChunkSize(probe + 1);
328 }
329 }
330 U_ASSERT(fBoundaries[max] > pos);
331 fBufIdx = modChunkSize(max - 1);
332 fTextIdx = fBoundaries[fBufIdx];
333 U_ASSERT(fTextIdx <= pos);
334 return TRUE;
335 }
336
337
populateNear(int32_t position,UErrorCode & status)338 UBool RuleBasedBreakIterator::BreakCache::populateNear(int32_t position, UErrorCode &status) {
339 if (U_FAILURE(status)) {
340 return FALSE;
341 }
342 U_ASSERT(position < fBoundaries[fStartBufIdx] || position > fBoundaries[fEndBufIdx]);
343
344 // Find a boundary somewhere in the vicinity of the requested position.
345 // Depending on the safe rules and the text data, it could be either before, at, or after
346 // the requested position.
347
348
349 // If the requested position is not near already cached positions, clear the existing cache,
350 // find a near-by boundary and begin new cache contents there.
351
352 if ((position < fBoundaries[fStartBufIdx] - 15) || position > (fBoundaries[fEndBufIdx] + 15)) {
353 int32_t aBoundary = 0;
354 int32_t ruleStatusIndex = 0;
355 if (position > 20) {
356 int32_t backupPos = fBI->handleSafePrevious(position);
357
358 if (backupPos > 0) {
359 // Advance to the boundary following the backup position.
360 // There is a complication: the safe reverse rules identify pairs of code points
361 // that are safe. If advancing from the safe point moves forwards by less than
362 // two code points, we need to advance one more time to ensure that the boundary
363 // is good, including a correct rules status value.
364 //
365 fBI->fPosition = backupPos;
366 aBoundary = fBI->handleNext();
367 if (aBoundary <= backupPos + 4) {
368 // +4 is a quick test for possibly having advanced only one codepoint.
369 // Four being the length of the longest potential code point, a supplementary in UTF-8
370 utext_setNativeIndex(&fBI->fText, aBoundary);
371 if (backupPos == utext_getPreviousNativeIndex(&fBI->fText)) {
372 // The initial handleNext() only advanced by a single code point. Go again.
373 aBoundary = fBI->handleNext(); // Safe rules identify safe pairs.
374 }
375 }
376 ruleStatusIndex = fBI->fRuleStatusIndex;
377 }
378 }
379 reset(aBoundary, ruleStatusIndex); // Reset cache to hold aBoundary as a single starting point.
380 }
381
382 // Fill in boundaries between existing cache content and the new requested position.
383
384 if (fBoundaries[fEndBufIdx] < position) {
385 // The last position in the cache precedes the requested position.
386 // Add following position(s) to the cache.
387 while (fBoundaries[fEndBufIdx] < position) {
388 if (!populateFollowing()) {
389 UPRV_UNREACHABLE_EXIT;
390 }
391 }
392 fBufIdx = fEndBufIdx; // Set iterator position to the end of the buffer.
393 fTextIdx = fBoundaries[fBufIdx]; // Required because populateFollowing may add extra boundaries.
394 while (fTextIdx > position) { // Move backwards to a position at or preceding the requested pos.
395 previous(status);
396 }
397 return true;
398 }
399
400 if (fBoundaries[fStartBufIdx] > position) {
401 // The first position in the cache is beyond the requested position.
402 // back up more until we get a boundary <= the requested position.
403 while (fBoundaries[fStartBufIdx] > position) {
404 populatePreceding(status);
405 }
406 fBufIdx = fStartBufIdx; // Set iterator position to the start of the buffer.
407 fTextIdx = fBoundaries[fBufIdx]; // Required because populatePreceding may add extra boundaries.
408 while (fTextIdx < position) { // Move forwards to a position at or following the requested pos.
409 next();
410 }
411 if (fTextIdx > position) {
412 // If position is not itself a boundary, the next() loop above will overshoot.
413 // Back up one, leaving cache position at the boundary preceding the requested position.
414 previous(status);
415 }
416 return true;
417 }
418
419 U_ASSERT(fTextIdx == position);
420 return true;
421 }
422
423
424
populateFollowing()425 UBool RuleBasedBreakIterator::BreakCache::populateFollowing() {
426 int32_t fromPosition = fBoundaries[fEndBufIdx];
427 int32_t fromRuleStatusIdx = fStatuses[fEndBufIdx];
428 int32_t pos = 0;
429 int32_t ruleStatusIdx = 0;
430
431 if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) {
432 addFollowing(pos, ruleStatusIdx, UpdateCachePosition);
433 return TRUE;
434 }
435
436 fBI->fPosition = fromPosition;
437 pos = fBI->handleNext();
438 if (pos == UBRK_DONE) {
439 return FALSE;
440 }
441
442 ruleStatusIdx = fBI->fRuleStatusIndex;
443 if (fBI->fDictionaryCharCount > 0) {
444 // The text segment obtained from the rules includes dictionary characters.
445 // Subdivide it, with subdivided results going into the dictionary cache.
446 fBI->fDictionaryCache->populateDictionary(fromPosition, pos, fromRuleStatusIdx, ruleStatusIdx);
447 if (fBI->fDictionaryCache->following(fromPosition, &pos, &ruleStatusIdx)) {
448 addFollowing(pos, ruleStatusIdx, UpdateCachePosition);
449 return TRUE;
450 // TODO: may want to move a sizable chunk of dictionary cache to break cache at this point.
451 // But be careful with interactions with populateNear().
452 }
453 }
454
455 // Rule based segment did not include dictionary characters.
456 // Or, it did contain dictionary chars, but the dictionary segmenter didn't handle them,
457 // meaning that we didn't take the return, above.
458 // Add its end point to the cache.
459 addFollowing(pos, ruleStatusIdx, UpdateCachePosition);
460
461 // Add several non-dictionary boundaries at this point, to optimize straight forward iteration.
462 // (subsequent calls to BreakIterator::next() will take the fast path, getting cached results.
463 //
464 for (int count=0; count<6; ++count) {
465 pos = fBI->handleNext();
466 if (pos == UBRK_DONE || fBI->fDictionaryCharCount > 0) {
467 break;
468 }
469 addFollowing(pos, fBI->fRuleStatusIndex, RetainCachePosition);
470 }
471
472 return TRUE;
473 }
474
475
populatePreceding(UErrorCode & status)476 UBool RuleBasedBreakIterator::BreakCache::populatePreceding(UErrorCode &status) {
477 if (U_FAILURE(status)) {
478 return FALSE;
479 }
480
481 int32_t fromPosition = fBoundaries[fStartBufIdx];
482 if (fromPosition == 0) {
483 return FALSE;
484 }
485
486 int32_t position = 0;
487 int32_t positionStatusIdx = 0;
488
489 if (fBI->fDictionaryCache->preceding(fromPosition, &position, &positionStatusIdx)) {
490 addPreceding(position, positionStatusIdx, UpdateCachePosition);
491 return TRUE;
492 }
493
494 int32_t backupPosition = fromPosition;
495
496 // Find a boundary somewhere preceding the first already-cached boundary
497 do {
498 backupPosition = backupPosition - 30;
499 if (backupPosition <= 0) {
500 backupPosition = 0;
501 } else {
502 backupPosition = fBI->handleSafePrevious(backupPosition);
503 }
504 if (backupPosition == UBRK_DONE || backupPosition == 0) {
505 position = 0;
506 positionStatusIdx = 0;
507 } else {
508 // Advance to the boundary following the backup position.
509 // There is a complication: the safe reverse rules identify pairs of code points
510 // that are safe. If advancing from the safe point moves forwards by less than
511 // two code points, we need to advance one more time to ensure that the boundary
512 // is good, including a correct rules status value.
513 //
514 fBI->fPosition = backupPosition;
515 position = fBI->handleNext();
516 if (position <= backupPosition + 4) {
517 // +4 is a quick test for possibly having advanced only one codepoint.
518 // Four being the length of the longest potential code point, a supplementary in UTF-8
519 utext_setNativeIndex(&fBI->fText, position);
520 if (backupPosition == utext_getPreviousNativeIndex(&fBI->fText)) {
521 // The initial handleNext() only advanced by a single code point. Go again.
522 position = fBI->handleNext(); // Safe rules identify safe pairs.
523 }
524 }
525 positionStatusIdx = fBI->fRuleStatusIndex;
526 }
527 } while (position >= fromPosition);
528
529 // Find boundaries between the one we just located and the first already-cached boundary
530 // Put them in a side buffer, because we don't yet know where they will fall in the circular cache buffer..
531
532 fSideBuffer.removeAllElements();
533 fSideBuffer.addElement(position, status);
534 fSideBuffer.addElement(positionStatusIdx, status);
535
536 do {
537 int32_t prevPosition = fBI->fPosition = position;
538 int32_t prevStatusIdx = positionStatusIdx;
539 position = fBI->handleNext();
540 positionStatusIdx = fBI->fRuleStatusIndex;
541 if (position == UBRK_DONE) {
542 break;
543 }
544
545 UBool segmentHandledByDictionary = FALSE;
546 if (fBI->fDictionaryCharCount != 0) {
547 // Segment from the rules includes dictionary characters.
548 // Subdivide it, with subdivided results going into the dictionary cache.
549 int32_t dictSegEndPosition = position;
550 fBI->fDictionaryCache->populateDictionary(prevPosition, dictSegEndPosition, prevStatusIdx, positionStatusIdx);
551 while (fBI->fDictionaryCache->following(prevPosition, &position, &positionStatusIdx)) {
552 segmentHandledByDictionary = true;
553 U_ASSERT(position > prevPosition);
554 if (position >= fromPosition) {
555 break;
556 }
557 U_ASSERT(position <= dictSegEndPosition);
558 fSideBuffer.addElement(position, status);
559 fSideBuffer.addElement(positionStatusIdx, status);
560 prevPosition = position;
561 }
562 U_ASSERT(position==dictSegEndPosition || position>=fromPosition);
563 }
564
565 if (!segmentHandledByDictionary && position < fromPosition) {
566 fSideBuffer.addElement(position, status);
567 fSideBuffer.addElement(positionStatusIdx, status);
568 }
569 } while (position < fromPosition);
570
571 // Move boundaries from the side buffer to the main circular buffer.
572 UBool success = FALSE;
573 if (!fSideBuffer.isEmpty()) {
574 positionStatusIdx = fSideBuffer.popi();
575 position = fSideBuffer.popi();
576 addPreceding(position, positionStatusIdx, UpdateCachePosition);
577 success = TRUE;
578 }
579
580 while (!fSideBuffer.isEmpty()) {
581 positionStatusIdx = fSideBuffer.popi();
582 position = fSideBuffer.popi();
583 if (!addPreceding(position, positionStatusIdx, RetainCachePosition)) {
584 // No space in circular buffer to hold a new preceding result while
585 // also retaining the current cache (iteration) position.
586 // Bailing out is safe; the cache will refill again if needed.
587 break;
588 }
589 }
590
591 return success;
592 }
593
594
addFollowing(int32_t position,int32_t ruleStatusIdx,UpdatePositionValues update)595 void RuleBasedBreakIterator::BreakCache::addFollowing(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) {
596 U_ASSERT(position > fBoundaries[fEndBufIdx]);
597 U_ASSERT(ruleStatusIdx <= UINT16_MAX);
598 int32_t nextIdx = modChunkSize(fEndBufIdx + 1);
599 if (nextIdx == fStartBufIdx) {
600 fStartBufIdx = modChunkSize(fStartBufIdx + 6); // TODO: experiment. Probably revert to 1.
601 }
602 fBoundaries[nextIdx] = position;
603 fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx);
604 fEndBufIdx = nextIdx;
605 if (update == UpdateCachePosition) {
606 // Set current position to the newly added boundary.
607 fBufIdx = nextIdx;
608 fTextIdx = position;
609 } else {
610 // Retaining the original cache position.
611 // Check if the added boundary wraps around the buffer, and would over-write the original position.
612 // It's the responsibility of callers of this function to not add too many.
613 U_ASSERT(nextIdx != fBufIdx);
614 }
615 }
616
addPreceding(int32_t position,int32_t ruleStatusIdx,UpdatePositionValues update)617 bool RuleBasedBreakIterator::BreakCache::addPreceding(int32_t position, int32_t ruleStatusIdx, UpdatePositionValues update) {
618 U_ASSERT(position < fBoundaries[fStartBufIdx]);
619 U_ASSERT(ruleStatusIdx <= UINT16_MAX);
620 int32_t nextIdx = modChunkSize(fStartBufIdx - 1);
621 if (nextIdx == fEndBufIdx) {
622 if (fBufIdx == fEndBufIdx && update == RetainCachePosition) {
623 // Failure. The insertion of the new boundary would claim the buffer position that is the
624 // current iteration position. And we also want to retain the current iteration position.
625 // (The buffer is already completely full of entries that precede the iteration position.)
626 return false;
627 }
628 fEndBufIdx = modChunkSize(fEndBufIdx - 1);
629 }
630 fBoundaries[nextIdx] = position;
631 fStatuses[nextIdx] = static_cast<uint16_t>(ruleStatusIdx);
632 fStartBufIdx = nextIdx;
633 if (update == UpdateCachePosition) {
634 fBufIdx = nextIdx;
635 fTextIdx = position;
636 }
637 return true;
638 }
639
640
dumpCache()641 void RuleBasedBreakIterator::BreakCache::dumpCache() {
642 #ifdef RBBI_DEBUG
643 RBBIDebugPrintf("fTextIdx:%d fBufIdx:%d\n", fTextIdx, fBufIdx);
644 for (int32_t i=fStartBufIdx; ; i=modChunkSize(i+1)) {
645 RBBIDebugPrintf("%d %d\n", i, fBoundaries[i]);
646 if (i == fEndBufIdx) {
647 break;
648 }
649 }
650 #endif
651 }
652
653 U_NAMESPACE_END
654
655 #endif // #if !UCONFIG_NO_BREAK_ITERATION
656