• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2005-2016, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 *   file name:  utext.cpp
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2005apr12
16 *   created by: Markus W. Scherer
17 */
18 
19 #include <cstddef>
20 
21 #include "unicode/utypes.h"
22 #include "unicode/ustring.h"
23 #include "unicode/unistr.h"
24 #include "unicode/chariter.h"
25 #include "unicode/utext.h"
26 #include "unicode/utf.h"
27 #include "unicode/utf8.h"
28 #include "unicode/utf16.h"
29 #include "ustr_imp.h"
30 #include "cmemory.h"
31 #include "cstring.h"
32 #include "uassert.h"
33 #include "putilimp.h"
34 
35 U_NAMESPACE_USE
36 
37 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
38 
39 
40 static UBool
utext_access(UText * ut,int64_t index,UBool forward)41 utext_access(UText *ut, int64_t index, UBool forward) {
42     return ut->pFuncs->access(ut, index, forward);
43 }
44 
45 
46 
47 U_CAPI UBool U_EXPORT2
utext_moveIndex32(UText * ut,int32_t delta)48 utext_moveIndex32(UText *ut, int32_t delta) {
49     UChar32  c;
50     if (delta > 0) {
51         do {
52             if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
53                 return FALSE;
54             }
55             c = ut->chunkContents[ut->chunkOffset];
56             if (U16_IS_SURROGATE(c)) {
57                 c = utext_next32(ut);
58                 if (c == U_SENTINEL) {
59                     return FALSE;
60                 }
61             } else {
62                 ut->chunkOffset++;
63             }
64         } while(--delta>0);
65 
66     } else if (delta<0) {
67         do {
68             if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
69                 return FALSE;
70             }
71             c = ut->chunkContents[ut->chunkOffset-1];
72             if (U16_IS_SURROGATE(c)) {
73                 c = utext_previous32(ut);
74                 if (c == U_SENTINEL) {
75                     return FALSE;
76                 }
77             } else {
78                 ut->chunkOffset--;
79             }
80         } while(++delta<0);
81     }
82 
83     return TRUE;
84 }
85 
86 
87 U_CAPI int64_t U_EXPORT2
utext_nativeLength(UText * ut)88 utext_nativeLength(UText *ut) {
89     return ut->pFuncs->nativeLength(ut);
90 }
91 
92 
93 U_CAPI UBool U_EXPORT2
utext_isLengthExpensive(const UText * ut)94 utext_isLengthExpensive(const UText *ut) {
95     UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
96     return r;
97 }
98 
99 
100 U_CAPI int64_t U_EXPORT2
utext_getNativeIndex(const UText * ut)101 utext_getNativeIndex(const UText *ut) {
102     if(ut->chunkOffset <= ut->nativeIndexingLimit) {
103         return ut->chunkNativeStart+ut->chunkOffset;
104     } else {
105         return ut->pFuncs->mapOffsetToNative(ut);
106     }
107 }
108 
109 
110 U_CAPI void U_EXPORT2
utext_setNativeIndex(UText * ut,int64_t index)111 utext_setNativeIndex(UText *ut, int64_t index) {
112     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
113         // The desired position is outside of the current chunk.
114         // Access the new position.  Assume a forward iteration from here,
115         // which will also be optimimum for a single random access.
116         // Reverse iterations may suffer slightly.
117         ut->pFuncs->access(ut, index, TRUE);
118     } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
119         // utf-16 indexing.
120         ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
121     } else {
122          ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
123     }
124     // The convention is that the index must always be on a code point boundary.
125     // Adjust the index position if it is in the middle of a surrogate pair.
126     if (ut->chunkOffset<ut->chunkLength) {
127         UChar c= ut->chunkContents[ut->chunkOffset];
128         if (U16_IS_TRAIL(c)) {
129             if (ut->chunkOffset==0) {
130                 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
131             }
132             if (ut->chunkOffset>0) {
133                 UChar lead = ut->chunkContents[ut->chunkOffset-1];
134                 if (U16_IS_LEAD(lead)) {
135                     ut->chunkOffset--;
136                 }
137             }
138         }
139     }
140 }
141 
142 
143 
144 U_CAPI int64_t U_EXPORT2
utext_getPreviousNativeIndex(UText * ut)145 utext_getPreviousNativeIndex(UText *ut) {
146     //
147     //  Fast-path the common case.
148     //     Common means current position is not at the beginning of a chunk
149     //     and the preceding character is not supplementary.
150     //
151     int32_t i = ut->chunkOffset - 1;
152     int64_t result;
153     if (i >= 0) {
154         UChar c = ut->chunkContents[i];
155         if (U16_IS_TRAIL(c) == FALSE) {
156             if (i <= ut->nativeIndexingLimit) {
157                 result = ut->chunkNativeStart + i;
158             } else {
159                 ut->chunkOffset = i;
160                 result = ut->pFuncs->mapOffsetToNative(ut);
161                 ut->chunkOffset++;
162             }
163             return result;
164         }
165     }
166 
167     // If at the start of text, simply return 0.
168     if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
169         return 0;
170     }
171 
172     // Harder, less common cases.  We are at a chunk boundary, or on a surrogate.
173     //    Keep it simple, use other functions to handle the edges.
174     //
175     utext_previous32(ut);
176     result = UTEXT_GETNATIVEINDEX(ut);
177     utext_next32(ut);
178     return result;
179 }
180 
181 
182 //
183 //  utext_current32.  Get the UChar32 at the current position.
184 //                    UText iteration position is always on a code point boundary,
185 //                    never on the trail half of a surrogate pair.
186 //
187 U_CAPI UChar32 U_EXPORT2
utext_current32(UText * ut)188 utext_current32(UText *ut) {
189     UChar32  c;
190     if (ut->chunkOffset==ut->chunkLength) {
191         // Current position is just off the end of the chunk.
192         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
193             // Off the end of the text.
194             return U_SENTINEL;
195         }
196     }
197 
198     c = ut->chunkContents[ut->chunkOffset];
199     if (U16_IS_LEAD(c) == FALSE) {
200         // Normal, non-supplementary case.
201         return c;
202     }
203 
204     //
205     //  Possible supplementary char.
206     //
207     UChar32   trail = 0;
208     UChar32   supplementaryC = c;
209     if ((ut->chunkOffset+1) < ut->chunkLength) {
210         // The trail surrogate is in the same chunk.
211         trail = ut->chunkContents[ut->chunkOffset+1];
212     } else {
213         //  The trail surrogate is in a different chunk.
214         //     Because we must maintain the iteration position, we need to switch forward
215         //     into the new chunk, get the trail surrogate, then revert the chunk back to the
216         //     original one.
217         //     An edge case to be careful of:  the entire text may end with an unpaired
218         //        leading surrogate.  The attempt to access the trail will fail, but
219         //        the original position before the unpaired lead still needs to be restored.
220         int64_t  nativePosition = ut->chunkNativeLimit;
221         int32_t  originalOffset = ut->chunkOffset;
222         if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
223             trail = ut->chunkContents[ut->chunkOffset];
224         }
225         UBool r = ut->pFuncs->access(ut, nativePosition, FALSE);  // reverse iteration flag loads preceding chunk
226         U_ASSERT(r==TRUE);
227         ut->chunkOffset = originalOffset;
228         if(!r) {
229             return U_SENTINEL;
230         }
231     }
232 
233     if (U16_IS_TRAIL(trail)) {
234         supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
235     }
236     return supplementaryC;
237 
238 }
239 
240 
241 U_CAPI UChar32 U_EXPORT2
utext_char32At(UText * ut,int64_t nativeIndex)242 utext_char32At(UText *ut, int64_t nativeIndex) {
243     UChar32 c = U_SENTINEL;
244 
245     // Fast path the common case.
246     if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
247         ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
248         c = ut->chunkContents[ut->chunkOffset];
249         if (U16_IS_SURROGATE(c) == FALSE) {
250             return c;
251         }
252     }
253 
254 
255     utext_setNativeIndex(ut, nativeIndex);
256     if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
257         c = ut->chunkContents[ut->chunkOffset];
258         if (U16_IS_SURROGATE(c)) {
259             // For surrogates, let current32() deal with the complications
260             //    of supplementaries that may span chunk boundaries.
261             c = utext_current32(ut);
262         }
263     }
264     return c;
265 }
266 
267 
268 U_CAPI UChar32 U_EXPORT2
utext_next32(UText * ut)269 utext_next32(UText *ut) {
270     UChar32       c;
271 
272     if (ut->chunkOffset >= ut->chunkLength) {
273         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
274             return U_SENTINEL;
275         }
276     }
277 
278     c = ut->chunkContents[ut->chunkOffset++];
279     if (U16_IS_LEAD(c) == FALSE) {
280         // Normal case, not supplementary.
281         //   (A trail surrogate seen here is just returned as is, as a surrogate value.
282         //    It cannot be part of a pair.)
283         return c;
284     }
285 
286     if (ut->chunkOffset >= ut->chunkLength) {
287         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
288             // c is an unpaired lead surrogate at the end of the text.
289             // return it as it is.
290             return c;
291         }
292     }
293     UChar32 trail = ut->chunkContents[ut->chunkOffset];
294     if (U16_IS_TRAIL(trail) == FALSE) {
295         // c was an unpaired lead surrogate, not at the end of the text.
296         // return it as it is (unpaired).  Iteration position is on the
297         // following character, possibly in the next chunk, where the
298         //  trail surrogate would have been if it had existed.
299         return c;
300     }
301 
302     UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
303     ut->chunkOffset++;   // move iteration position over the trail surrogate.
304     return supplementary;
305     }
306 
307 
308 U_CAPI UChar32 U_EXPORT2
utext_previous32(UText * ut)309 utext_previous32(UText *ut) {
310     UChar32       c;
311 
312     if (ut->chunkOffset <= 0) {
313         if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
314             return U_SENTINEL;
315         }
316     }
317     ut->chunkOffset--;
318     c = ut->chunkContents[ut->chunkOffset];
319     if (U16_IS_TRAIL(c) == FALSE) {
320         // Normal case, not supplementary.
321         //   (A lead surrogate seen here is just returned as is, as a surrogate value.
322         //    It cannot be part of a pair.)
323         return c;
324     }
325 
326     if (ut->chunkOffset <= 0) {
327         if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
328             // c is an unpaired trail surrogate at the start of the text.
329             // return it as it is.
330             return c;
331         }
332     }
333 
334     UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
335     if (U16_IS_LEAD(lead) == FALSE) {
336         // c was an unpaired trail surrogate, not at the end of the text.
337         // return it as it is (unpaired).  Iteration position is at c
338         return c;
339     }
340 
341     UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
342     ut->chunkOffset--;   // move iteration position over the lead surrogate.
343     return supplementary;
344 }
345 
346 
347 
348 U_CAPI UChar32 U_EXPORT2
utext_next32From(UText * ut,int64_t index)349 utext_next32From(UText *ut, int64_t index) {
350     UChar32       c      = U_SENTINEL;
351 
352     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
353         // Desired position is outside of the current chunk.
354         if(!ut->pFuncs->access(ut, index, TRUE)) {
355             // no chunk available here
356             return U_SENTINEL;
357         }
358     } else if (index - ut->chunkNativeStart  <= (int64_t)ut->nativeIndexingLimit) {
359         // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
360         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
361     } else {
362         // Desired position is in chunk, with non-UTF16 indexing.
363         ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
364     }
365 
366     c = ut->chunkContents[ut->chunkOffset++];
367     if (U16_IS_SURROGATE(c)) {
368         // Surrogates.  Many edge cases.  Use other functions that already
369         //              deal with the problems.
370         utext_setNativeIndex(ut, index);
371         c = utext_next32(ut);
372     }
373     return c;
374 }
375 
376 
377 U_CAPI UChar32 U_EXPORT2
utext_previous32From(UText * ut,int64_t index)378 utext_previous32From(UText *ut, int64_t index) {
379     //
380     //  Return the character preceding the specified index.
381     //  Leave the iteration position at the start of the character that was returned.
382     //
383     UChar32     cPrev;    // The character preceding cCurr, which is what we will return.
384 
385     // Address the chunk containing the position preceding the incoming index
386     // A tricky edge case:
387     //   We try to test the requested native index against the chunkNativeStart to determine
388     //    whether the character preceding the one at the index is in the current chunk.
389     //    BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
390     //    requested index is on something other than the first position of the first char.
391     //
392     if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
393         // Requested native index is outside of the current chunk.
394         if(!ut->pFuncs->access(ut, index, FALSE)) {
395             // no chunk available here
396             return U_SENTINEL;
397         }
398     } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
399         // Direct UTF-16 indexing.
400         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
401     } else {
402         ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
403         if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
404             // no chunk available here
405             return U_SENTINEL;
406         }
407     }
408 
409     //
410     // Simple case with no surrogates.
411     //
412     ut->chunkOffset--;
413     cPrev = ut->chunkContents[ut->chunkOffset];
414 
415     if (U16_IS_SURROGATE(cPrev)) {
416         // Possible supplementary.  Many edge cases.
417         // Let other functions do the heavy lifting.
418         utext_setNativeIndex(ut, index);
419         cPrev = utext_previous32(ut);
420     }
421     return cPrev;
422 }
423 
424 
425 U_CAPI int32_t U_EXPORT2
utext_extract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)426 utext_extract(UText *ut,
427              int64_t start, int64_t limit,
428              UChar *dest, int32_t destCapacity,
429              UErrorCode *status) {
430                  return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
431              }
432 
433 
434 
435 U_CAPI UBool U_EXPORT2
utext_equals(const UText * a,const UText * b)436 utext_equals(const UText *a, const UText *b) {
437     if (a==NULL || b==NULL ||
438         a->magic != UTEXT_MAGIC ||
439         b->magic != UTEXT_MAGIC) {
440             // Null or invalid arguments don't compare equal to anything.
441             return FALSE;
442     }
443 
444     if (a->pFuncs != b->pFuncs) {
445         // Different types of text providers.
446         return FALSE;
447     }
448 
449     if (a->context != b->context) {
450         // Different sources (different strings)
451         return FALSE;
452     }
453     if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
454         // Different current position in the string.
455         return FALSE;
456     }
457 
458     return TRUE;
459 }
460 
461 U_CAPI UBool U_EXPORT2
utext_isWritable(const UText * ut)462 utext_isWritable(const UText *ut)
463 {
464     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
465     return b;
466 }
467 
468 
469 U_CAPI void U_EXPORT2
utext_freeze(UText * ut)470 utext_freeze(UText *ut) {
471     // Zero out the WRITABLE flag.
472     ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
473 }
474 
475 
476 U_CAPI UBool U_EXPORT2
utext_hasMetaData(const UText * ut)477 utext_hasMetaData(const UText *ut)
478 {
479     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
480     return b;
481 }
482 
483 
484 
485 U_CAPI int32_t U_EXPORT2
utext_replace(UText * ut,int64_t nativeStart,int64_t nativeLimit,const UChar * replacementText,int32_t replacementLength,UErrorCode * status)486 utext_replace(UText *ut,
487              int64_t nativeStart, int64_t nativeLimit,
488              const UChar *replacementText, int32_t replacementLength,
489              UErrorCode *status)
490 {
491     if (U_FAILURE(*status)) {
492         return 0;
493     }
494     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
495         *status = U_NO_WRITE_PERMISSION;
496         return 0;
497     }
498     int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
499     return i;
500 }
501 
502 U_CAPI void U_EXPORT2
utext_copy(UText * ut,int64_t nativeStart,int64_t nativeLimit,int64_t destIndex,UBool move,UErrorCode * status)503 utext_copy(UText *ut,
504           int64_t nativeStart, int64_t nativeLimit,
505           int64_t destIndex,
506           UBool move,
507           UErrorCode *status)
508 {
509     if (U_FAILURE(*status)) {
510         return;
511     }
512     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
513         *status = U_NO_WRITE_PERMISSION;
514         return;
515     }
516     ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
517 }
518 
519 
520 
521 U_CAPI UText * U_EXPORT2
utext_clone(UText * dest,const UText * src,UBool deep,UBool readOnly,UErrorCode * status)522 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
523     if (U_FAILURE(*status)) {
524         return dest;
525     }
526     UText *result = src->pFuncs->clone(dest, src, deep, status);
527     if (U_FAILURE(*status)) {
528         return result;
529     }
530     if (result == NULL) {
531         *status = U_MEMORY_ALLOCATION_ERROR;
532         return result;
533     }
534     if (readOnly) {
535         utext_freeze(result);
536     }
537     return result;
538 }
539 
540 
541 
542 //------------------------------------------------------------------------------
543 //
544 //   UText common functions implementation
545 //
546 //------------------------------------------------------------------------------
547 
548 //
549 //  UText.flags bit definitions
550 //
551 enum {
552     UTEXT_HEAP_ALLOCATED  = 1,      //  1 if ICU has allocated this UText struct on the heap.
553                                     //  0 if caller provided storage for the UText.
554 
555     UTEXT_EXTRA_HEAP_ALLOCATED = 2, //  1 if ICU has allocated extra storage as a separate
556                                     //     heap block.
557                                     //  0 if there is no separate allocation.  Either no extra
558                                     //     storage was requested, or it is appended to the end
559                                     //     of the main UText storage.
560 
561     UTEXT_OPEN = 4                  //  1 if this UText is currently open
562                                     //  0 if this UText is not open.
563 };
564 
565 
566 //
567 //  Extended form of a UText.  The purpose is to aid in computing the total size required
568 //    when a provider asks for a UText to be allocated with extra storage.
569 
570 struct ExtendedUText {
571     UText               ut;
572     std::max_align_t    extension;
573 };
574 
575 static const UText emptyText = UTEXT_INITIALIZER;
576 
577 U_CAPI UText * U_EXPORT2
utext_setup(UText * ut,int32_t extraSpace,UErrorCode * status)578 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
579     if (U_FAILURE(*status)) {
580         return ut;
581     }
582 
583     if (ut == NULL) {
584         // We need to heap-allocate storage for the new UText
585         int32_t spaceRequired = sizeof(UText);
586         if (extraSpace > 0) {
587             spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(std::max_align_t);
588         }
589         ut = (UText *)uprv_malloc(spaceRequired);
590         if (ut == NULL) {
591             *status = U_MEMORY_ALLOCATION_ERROR;
592             return NULL;
593         } else {
594             *ut = emptyText;
595             ut->flags |= UTEXT_HEAP_ALLOCATED;
596             if (spaceRequired>0) {
597                 ut->extraSize = extraSpace;
598                 ut->pExtra    = &((ExtendedUText *)ut)->extension;
599             }
600         }
601     } else {
602         // We have been supplied with an already existing UText.
603         // Verify that it really appears to be a UText.
604         if (ut->magic != UTEXT_MAGIC) {
605             *status = U_ILLEGAL_ARGUMENT_ERROR;
606             return ut;
607         }
608         // If the ut is already open and there's a provider supplied close
609         //   function, call it.
610         if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL)  {
611             ut->pFuncs->close(ut);
612         }
613         ut->flags &= ~UTEXT_OPEN;
614 
615         // If extra space was requested by our caller, check whether
616         //   sufficient already exists, and allocate new if needed.
617         if (extraSpace > ut->extraSize) {
618             // Need more space.  If there is existing separately allocated space,
619             //   delete it first, then allocate new space.
620             if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
621                 uprv_free(ut->pExtra);
622                 ut->extraSize = 0;
623             }
624             ut->pExtra = uprv_malloc(extraSpace);
625             if (ut->pExtra == NULL) {
626                 *status = U_MEMORY_ALLOCATION_ERROR;
627             } else {
628                 ut->extraSize = extraSpace;
629                 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
630             }
631         }
632     }
633     if (U_SUCCESS(*status)) {
634         ut->flags |= UTEXT_OPEN;
635 
636         // Initialize all remaining fields of the UText.
637         //
638         ut->context             = NULL;
639         ut->chunkContents       = NULL;
640         ut->p                   = NULL;
641         ut->q                   = NULL;
642         ut->r                   = NULL;
643         ut->a                   = 0;
644         ut->b                   = 0;
645         ut->c                   = 0;
646         ut->chunkOffset         = 0;
647         ut->chunkLength         = 0;
648         ut->chunkNativeStart    = 0;
649         ut->chunkNativeLimit    = 0;
650         ut->nativeIndexingLimit = 0;
651         ut->providerProperties  = 0;
652         ut->privA               = 0;
653         ut->privB               = 0;
654         ut->privC               = 0;
655         ut->privP               = NULL;
656         if (ut->pExtra!=NULL && ut->extraSize>0)
657             uprv_memset(ut->pExtra, 0, ut->extraSize);
658 
659     }
660     return ut;
661 }
662 
663 
664 U_CAPI UText * U_EXPORT2
utext_close(UText * ut)665 utext_close(UText *ut) {
666     if (ut==NULL ||
667         ut->magic != UTEXT_MAGIC ||
668         (ut->flags & UTEXT_OPEN) == 0)
669     {
670         // The supplied ut is not an open UText.
671         // Do nothing.
672         return ut;
673     }
674 
675     // If the provider gave us a close function, call it now.
676     // This will clean up anything allocated specifically by the provider.
677     if (ut->pFuncs->close != NULL) {
678         ut->pFuncs->close(ut);
679     }
680     ut->flags &= ~UTEXT_OPEN;
681 
682     // If we (the framework) allocated the UText or subsidiary storage,
683     //   delete it.
684     if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
685         uprv_free(ut->pExtra);
686         ut->pExtra = NULL;
687         ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
688         ut->extraSize = 0;
689     }
690 
691     // Zero out function table of the closed UText.  This is a defensive move,
692     //   intended to cause applications that inadvertently use a closed
693     //   utext to crash with null pointer errors.
694     ut->pFuncs        = NULL;
695 
696     if (ut->flags & UTEXT_HEAP_ALLOCATED) {
697         // This UText was allocated by UText setup.  We need to free it.
698         // Clear magic, so we can detect if the user messes up and immediately
699         //  tries to reopen another UText using the deleted storage.
700         ut->magic = 0;
701         uprv_free(ut);
702         ut = NULL;
703     }
704     return ut;
705 }
706 
707 
708 
709 
710 //
711 // invalidateChunk   Reset a chunk to have no contents, so that the next call
712 //                   to access will cause new data to load.
713 //                   This is needed when copy/move/replace operate directly on the
714 //                   backing text, potentially putting it out of sync with the
715 //                   contents in the chunk.
716 //
717 static void
invalidateChunk(UText * ut)718 invalidateChunk(UText *ut) {
719     ut->chunkLength = 0;
720     ut->chunkNativeLimit = 0;
721     ut->chunkNativeStart = 0;
722     ut->chunkOffset = 0;
723     ut->nativeIndexingLimit = 0;
724 }
725 
726 //
727 // pinIndex        Do range pinning on a native index parameter.
728 //                 64 bit pinning is done in place.
729 //                 32 bit truncated result is returned as a convenience for
730 //                        use in providers that don't need 64 bits.
731 static int32_t
pinIndex(int64_t & index,int64_t limit)732 pinIndex(int64_t &index, int64_t limit) {
733     if (index<0) {
734         index = 0;
735     } else if (index > limit) {
736         index = limit;
737     }
738     return (int32_t)index;
739 }
740 
741 
742 U_CDECL_BEGIN
743 
744 //
745 // Pointer relocation function,
746 //   a utility used by shallow clone.
747 //   Adjust a pointer that refers to something within one UText (the source)
748 //   to refer to the same relative offset within a another UText (the target)
749 //
adjustPointer(UText * dest,const void ** destPtr,const UText * src)750 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
751     // convert all pointers to (char *) so that byte address arithmetic will work.
752     char  *dptr = (char *)*destPtr;
753     char  *dUText = (char *)dest;
754     char  *sUText = (char *)src;
755 
756     if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
757         // target ptr was to something within the src UText's pExtra storage.
758         //   relocate it into the target UText's pExtra region.
759         *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
760     } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
761         // target ptr was pointing to somewhere within the source UText itself.
762         //   Move it to the same offset within the target UText.
763         *destPtr = dUText + (dptr-sUText);
764     }
765 }
766 
767 
768 //
769 //  Clone.  This is a generic copy-the-utext-by-value clone function that can be
770 //          used as-is with some utext types, and as a helper by other clones.
771 //
772 static UText * U_CALLCONV
shallowTextClone(UText * dest,const UText * src,UErrorCode * status)773 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
774     if (U_FAILURE(*status)) {
775         return NULL;
776     }
777     int32_t  srcExtraSize = src->extraSize;
778 
779     //
780     // Use the generic text_setup to allocate storage if required.
781     //
782     dest = utext_setup(dest, srcExtraSize, status);
783     if (U_FAILURE(*status)) {
784         return dest;
785     }
786 
787     //
788     //  flags (how the UText was allocated) and the pointer to the
789     //   extra storage must retain the values in the cloned utext that
790     //   were set up by utext_setup.  Save them separately before
791     //   copying the whole struct.
792     //
793     void *destExtra = dest->pExtra;
794     int32_t flags   = dest->flags;
795 
796 
797     //
798     //  Copy the whole UText struct by value.
799     //  Any "Extra" storage is copied also.
800     //
801     int sizeToCopy = src->sizeOfStruct;
802     if (sizeToCopy > dest->sizeOfStruct) {
803         sizeToCopy = dest->sizeOfStruct;
804     }
805     uprv_memcpy(dest, src, sizeToCopy);
806     dest->pExtra = destExtra;
807     dest->flags  = flags;
808     if (srcExtraSize > 0) {
809         uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
810     }
811 
812     //
813     // Relocate any pointers in the target that refer to the UText itself
814     //   to point to the cloned copy rather than the original source.
815     //
816     adjustPointer(dest, &dest->context, src);
817     adjustPointer(dest, &dest->p, src);
818     adjustPointer(dest, &dest->q, src);
819     adjustPointer(dest, &dest->r, src);
820     adjustPointer(dest, (const void **)&dest->chunkContents, src);
821 
822     // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
823     // (The source for the clone may or may not have owned the text.)
824 
825     dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
826 
827     return dest;
828 }
829 
830 
831 U_CDECL_END
832 
833 
834 
835 //------------------------------------------------------------------------------
836 //
837 //     UText implementation for UTF-8 char * strings (read-only)
838 //     Limitation:  string length must be <= 0x7fffffff in length.
839 //                  (length must for in an int32_t variable)
840 //
841 //         Use of UText data members:
842 //              context    pointer to UTF-8 string
843 //              utext.b    is the input string length (bytes).
844 //              utext.c    Length scanned so far in string
845 //                           (for optimizing finding length of zero terminated strings.)
846 //              utext.p    pointer to the current buffer
847 //              utext.q    pointer to the other buffer.
848 //
849 //------------------------------------------------------------------------------
850 
851 // Chunk size.
852 //     Must be less than 85 (256/3), because of byte mapping from UChar indexes to native indexes.
853 //     Worst case is three native bytes to one UChar.  (Supplemenaries are 4 native bytes
854 //     to two UChars.)
855 //     The longest illegal byte sequence treated as a single error (and converted to U+FFFD)
856 //     is a three-byte sequence (truncated four-byte sequence).
857 //
858 enum { UTF8_TEXT_CHUNK_SIZE=32 };
859 
860 //
861 // UTF8Buf  Two of these structs will be set up in the UText's extra allocated space.
862 //          Each contains the UChar chunk buffer, the to and from native maps, and
863 //          header info.
864 //
865 //     because backwards iteration fills the buffers starting at the end and
866 //     working towards the front, the filled part of the buffers may not begin
867 //     at the start of the available storage for the buffers.
868 //
869 //     Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
870 //     the last character added being a supplementary, and thus requiring a surrogate
871 //     pair.  Doing this is simpler than checking for the edge case.
872 //
873 
874 struct UTF8Buf {
875     int32_t   bufNativeStart;                        // Native index of first char in UChar buf
876     int32_t   bufNativeLimit;                        // Native index following last char in buf.
877     int32_t   bufStartIdx;                           // First filled position in buf.
878     int32_t   bufLimitIdx;                           // Limit of filled range in buf.
879     int32_t   bufNILimit;                            // Limit of native indexing part of buf
880     int32_t   toUCharsMapStart;                      // Native index corresponding to
881                                                      //   mapToUChars[0].
882                                                      //   Set to bufNativeStart when filling forwards.
883                                                      //   Set to computed value when filling backwards.
884 
885     UChar     buf[UTF8_TEXT_CHUNK_SIZE+4];           // The UChar buffer.  Requires one extra position beyond the
886                                                      //   the chunk size, to allow for surrogate at the end.
887                                                      //   Length must be identical to mapToNative array, below,
888                                                      //   because of the way indexing works when the array is
889                                                      //   filled backwards during a reverse iteration.  Thus,
890                                                      //   the additional extra size.
891     uint8_t   mapToNative[UTF8_TEXT_CHUNK_SIZE+4];   // map UChar index in buf to
892                                                      //  native offset from bufNativeStart.
893                                                      //  Requires two extra slots,
894                                                      //    one for a supplementary starting in the last normal position,
895                                                      //    and one for an entry for the buffer limit position.
896     uint8_t   mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
897                                                      //   corresponding offset in filled part of buf.
898     int32_t   align;
899 };
900 
901 U_CDECL_BEGIN
902 
903 //
904 //   utf8TextLength
905 //
906 //        Get the length of the string.  If we don't already know it,
907 //              we'll need to scan for the trailing  nul.
908 //
909 static int64_t U_CALLCONV
utf8TextLength(UText * ut)910 utf8TextLength(UText *ut) {
911     if (ut->b < 0) {
912         // Zero terminated string, and we haven't scanned to the end yet.
913         // Scan it now.
914         const char *r = (const char *)ut->context + ut->c;
915         while (*r != 0) {
916             r++;
917         }
918         if ((r - (const char *)ut->context) < 0x7fffffff) {
919             ut->b = (int32_t)(r - (const char *)ut->context);
920         } else {
921             // Actual string was bigger (more than 2 gig) than we
922             //   can handle.  Clip it to 2 GB.
923             ut->b = 0x7fffffff;
924         }
925         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
926     }
927     return ut->b;
928 }
929 
930 
931 
932 
933 
934 
935 static UBool U_CALLCONV
utf8TextAccess(UText * ut,int64_t index,UBool forward)936 utf8TextAccess(UText *ut, int64_t index, UBool forward) {
937     //
938     //  Apologies to those who are allergic to goto statements.
939     //    Consider each goto to a labelled block to be the equivalent of
940     //         call the named block as if it were a function();
941     //         return;
942     //
943     const uint8_t *s8=(const uint8_t *)ut->context;
944     UTF8Buf *u8b = NULL;
945     int32_t  length = ut->b;         // Length of original utf-8
946     int32_t  ix= (int32_t)index;     // Requested index, trimmed to 32 bits.
947     int32_t  mapIndex = 0;
948     if (index<0) {
949         ix=0;
950     } else if (index > 0x7fffffff) {
951         // Strings with 64 bit lengths not supported by this UTF-8 provider.
952         ix = 0x7fffffff;
953     }
954 
955     // Pin requested index to the string length.
956     if (ix>length) {
957         if (length>=0) {
958             ix=length;
959         } else if (ix>=ut->c) {
960             // Zero terminated string, and requested index is beyond
961             //   the region that has already been scanned.
962             //   Scan up to either the end of the string or to the
963             //   requested position, whichever comes first.
964             while (ut->c<ix && s8[ut->c]!=0) {
965                 ut->c++;
966             }
967             //  TODO:  support for null terminated string length > 32 bits.
968             if (s8[ut->c] == 0) {
969                 // We just found the actual length of the string.
970                 //  Trim the requested index back to that.
971                 ix     = ut->c;
972                 ut->b  = ut->c;
973                 length = ut->c;
974                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
975             }
976         }
977     }
978 
979     //
980     // Dispatch to the appropriate action for a forward iteration request.
981     //
982     if (forward) {
983         if (ix==ut->chunkNativeLimit) {
984             // Check for normal sequential iteration cases first.
985             if (ix==length) {
986                 // Just reached end of string
987                 // Don't swap buffers, but do set the
988                 //   current buffer position.
989                 ut->chunkOffset = ut->chunkLength;
990                 return FALSE;
991             } else {
992                 // End of current buffer.
993                 //   check whether other buffer already has what we need.
994                 UTF8Buf *altB = (UTF8Buf *)ut->q;
995                 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
996                     goto swapBuffers;
997                 }
998             }
999         }
1000 
1001         // A random access.  Desired index could be in either or niether buf.
1002         // For optimizing the order of testing, first check for the index
1003         //    being in the other buffer.  This will be the case for uses that
1004         //    move back and forth over a fairly limited range
1005         {
1006             u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1007             if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1008                 // Requested index is in the other buffer.
1009                 goto swapBuffers;
1010             }
1011             if (ix == length) {
1012                 // Requested index is end-of-string.
1013                 //   (this is the case of randomly seeking to the end.
1014                 //    The case of iterating off the end is handled earlier.)
1015                 if (ix == ut->chunkNativeLimit) {
1016                     // Current buffer extends up to the end of the string.
1017                     //   Leave it as the current buffer.
1018                     ut->chunkOffset = ut->chunkLength;
1019                     return FALSE;
1020                 }
1021                 if (ix == u8b->bufNativeLimit) {
1022                     // Alternate buffer extends to the end of string.
1023                     //   Swap it in as the current buffer.
1024                     goto swapBuffersAndFail;
1025                 }
1026 
1027                 // Neither existing buffer extends to the end of the string.
1028                 goto makeStubBuffer;
1029             }
1030 
1031             if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1032                 // Requested index is in neither buffer.
1033                 goto fillForward;
1034             }
1035 
1036             // Requested index is in this buffer.
1037             u8b = (UTF8Buf *)ut->p;   // the current buffer
1038             mapIndex = ix - u8b->toUCharsMapStart;
1039             U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1040             ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1041             return TRUE;
1042 
1043         }
1044     }
1045 
1046 
1047     //
1048     // Dispatch to the appropriate action for a
1049     //   Backwards Direction iteration request.
1050     //
1051     if (ix==ut->chunkNativeStart) {
1052         // Check for normal sequential iteration cases first.
1053         if (ix==0) {
1054             // Just reached the start of string
1055             // Don't swap buffers, but do set the
1056             //   current buffer position.
1057             ut->chunkOffset = 0;
1058             return FALSE;
1059         } else {
1060             // Start of current buffer.
1061             //   check whether other buffer already has what we need.
1062             UTF8Buf *altB = (UTF8Buf *)ut->q;
1063             if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1064                 goto swapBuffers;
1065             }
1066         }
1067     }
1068 
1069     // A random access.  Desired index could be in either or niether buf.
1070     // For optimizing the order of testing,
1071     //    Most likely case:  in the other buffer.
1072     //    Second most likely: in neither buffer.
1073     //    Unlikely, but must work:  in the current buffer.
1074     u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1075     if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1076         // Requested index is in the other buffer.
1077         goto swapBuffers;
1078     }
1079     // Requested index is start-of-string.
1080     //   (this is the case of randomly seeking to the start.
1081     //    The case of iterating off the start is handled earlier.)
1082     if (ix==0) {
1083         if (u8b->bufNativeStart==0) {
1084             // Alternate buffer contains the data for the start string.
1085             // Make it be the current buffer.
1086             goto swapBuffersAndFail;
1087         } else {
1088             // Request for data before the start of string,
1089             //   neither buffer is usable.
1090             //   set up a zero-length buffer.
1091             goto makeStubBuffer;
1092         }
1093     }
1094 
1095     if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1096         // Requested index is in neither buffer.
1097         goto fillReverse;
1098     }
1099 
1100     // Requested index is in this buffer.
1101     //   Set the utf16 buffer index.
1102     u8b = (UTF8Buf *)ut->p;
1103     mapIndex = ix - u8b->toUCharsMapStart;
1104     ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1105     if (ut->chunkOffset==0) {
1106         // This occurs when the first character in the text is
1107         //   a multi-byte UTF-8 char, and the requested index is to
1108         //   one of the trailing bytes.  Because there is no preceding ,
1109         //   character, this access fails.  We can't pick up on the
1110         //   situation sooner because the requested index is not zero.
1111         return FALSE;
1112     } else {
1113         return TRUE;
1114     }
1115 
1116 
1117 
1118 swapBuffers:
1119     //  The alternate buffer (ut->q) has the string data that was requested.
1120     //  Swap the primary and alternate buffers, and set the
1121     //   chunk index into the new primary buffer.
1122     {
1123         u8b   = (UTF8Buf *)ut->q;
1124         ut->q = ut->p;
1125         ut->p = u8b;
1126         ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1127         ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1128         ut->chunkNativeStart    = u8b->bufNativeStart;
1129         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1130         ut->nativeIndexingLimit = u8b->bufNILimit;
1131 
1132         // Index into the (now current) chunk
1133         // Use the map to set the chunk index.  It's more trouble than it's worth
1134         //    to check whether native indexing can be used.
1135         U_ASSERT(ix>=u8b->bufNativeStart);
1136         U_ASSERT(ix<=u8b->bufNativeLimit);
1137         mapIndex = ix - u8b->toUCharsMapStart;
1138         U_ASSERT(mapIndex>=0);
1139         U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1140         ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1141 
1142         return TRUE;
1143     }
1144 
1145 
1146  swapBuffersAndFail:
1147     // We got a request for either the start or end of the string,
1148     //  with iteration continuing in the out-of-bounds direction.
1149     // The alternate buffer already contains the data up to the
1150     //  start/end.
1151     // Swap the buffers, then return failure, indicating that we couldn't
1152     //  make things correct for continuing the iteration in the requested
1153     //  direction.  The position & buffer are correct should the
1154     //  user decide to iterate in the opposite direction.
1155     u8b   = (UTF8Buf *)ut->q;
1156     ut->q = ut->p;
1157     ut->p = u8b;
1158     ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1159     ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1160     ut->chunkNativeStart    = u8b->bufNativeStart;
1161     ut->chunkNativeLimit    = u8b->bufNativeLimit;
1162     ut->nativeIndexingLimit = u8b->bufNILimit;
1163 
1164     // Index into the (now current) chunk
1165     //  For this function  (swapBuffersAndFail), the requested index
1166     //    will always be at either the start or end of the chunk.
1167     if (ix==u8b->bufNativeLimit) {
1168         ut->chunkOffset = ut->chunkLength;
1169     } else  {
1170         ut->chunkOffset = 0;
1171         U_ASSERT(ix == u8b->bufNativeStart);
1172     }
1173     return FALSE;
1174 
1175 makeStubBuffer:
1176     //   The user has done a seek/access past the start or end
1177     //   of the string.  Rather than loading data that is likely
1178     //   to never be used, just set up a zero-length buffer at
1179     //   the position.
1180     u8b = (UTF8Buf *)ut->q;
1181     u8b->bufNativeStart   = ix;
1182     u8b->bufNativeLimit   = ix;
1183     u8b->bufStartIdx      = 0;
1184     u8b->bufLimitIdx      = 0;
1185     u8b->bufNILimit       = 0;
1186     u8b->toUCharsMapStart = ix;
1187     u8b->mapToNative[0]   = 0;
1188     u8b->mapToUChars[0]   = 0;
1189     goto swapBuffersAndFail;
1190 
1191 
1192 
1193 fillForward:
1194     {
1195         // Move the incoming index to a code point boundary.
1196         U8_SET_CP_START(s8, 0, ix);
1197 
1198         // Swap the UText buffers.
1199         //  We want to fill what was previously the alternate buffer,
1200         //  and make what was the current buffer be the new alternate.
1201         UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
1202         ut->q = ut->p;
1203         ut->p = u8b_swap;
1204 
1205         int32_t strLen = ut->b;
1206         UBool   nulTerminated = FALSE;
1207         if (strLen < 0) {
1208             strLen = 0x7fffffff;
1209             nulTerminated = TRUE;
1210         }
1211 
1212         UChar   *buf = u8b_swap->buf;
1213         uint8_t *mapToNative  = u8b_swap->mapToNative;
1214         uint8_t *mapToUChars  = u8b_swap->mapToUChars;
1215         int32_t  destIx       = 0;
1216         int32_t  srcIx        = ix;
1217         UBool    seenNonAscii = FALSE;
1218         UChar32  c = 0;
1219 
1220         // Fill the chunk buffer and mapping arrays.
1221         while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1222             c = s8[srcIx];
1223             if (c>0 && c<0x80) {
1224                 // Special case ASCII range for speed.
1225                 //   zero is excluded to simplify bounds checking.
1226                 buf[destIx] = (UChar)c;
1227                 mapToNative[destIx]    = (uint8_t)(srcIx - ix);
1228                 mapToUChars[srcIx-ix]  = (uint8_t)destIx;
1229                 srcIx++;
1230                 destIx++;
1231             } else {
1232                 // General case, handle everything.
1233                 if (seenNonAscii == FALSE) {
1234                     seenNonAscii = TRUE;
1235                     u8b_swap->bufNILimit = destIx;
1236                 }
1237 
1238                 int32_t  cIx      = srcIx;
1239                 int32_t  dIx      = destIx;
1240                 int32_t  dIxSaved = destIx;
1241                 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1242                 if (c==0 && nulTerminated) {
1243                     srcIx--;
1244                     break;
1245                 }
1246 
1247                 U16_APPEND_UNSAFE(buf, destIx, c);
1248                 do {
1249                     mapToNative[dIx++] = (uint8_t)(cIx - ix);
1250                 } while (dIx < destIx);
1251 
1252                 do {
1253                     mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1254                 } while (cIx < srcIx);
1255             }
1256             if (srcIx>=strLen) {
1257                 break;
1258             }
1259 
1260         }
1261 
1262         //  store Native <--> Chunk Map entries for the end of the buffer.
1263         //    There is no actual character here, but the index position is valid.
1264         mapToNative[destIx]     = (uint8_t)(srcIx - ix);
1265         mapToUChars[srcIx - ix] = (uint8_t)destIx;
1266 
1267         //  fill in Buffer descriptor
1268         u8b_swap->bufNativeStart     = ix;
1269         u8b_swap->bufNativeLimit     = srcIx;
1270         u8b_swap->bufStartIdx        = 0;
1271         u8b_swap->bufLimitIdx        = destIx;
1272         if (seenNonAscii == FALSE) {
1273             u8b_swap->bufNILimit     = destIx;
1274         }
1275         u8b_swap->toUCharsMapStart   = u8b_swap->bufNativeStart;
1276 
1277         // Set UText chunk to refer to this buffer.
1278         ut->chunkContents       = buf;
1279         ut->chunkOffset         = 0;
1280         ut->chunkLength         = u8b_swap->bufLimitIdx;
1281         ut->chunkNativeStart    = u8b_swap->bufNativeStart;
1282         ut->chunkNativeLimit    = u8b_swap->bufNativeLimit;
1283         ut->nativeIndexingLimit = u8b_swap->bufNILimit;
1284 
1285         // For zero terminated strings, keep track of the maximum point
1286         //   scanned so far.
1287         if (nulTerminated && srcIx>ut->c) {
1288             ut->c = srcIx;
1289             if (c==0) {
1290                 // We scanned to the end.
1291                 //   Remember the actual length.
1292                 ut->b = srcIx;
1293                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1294             }
1295         }
1296         return TRUE;
1297     }
1298 
1299 
1300 fillReverse:
1301     {
1302         // Move the incoming index to a code point boundary.
1303         // Can only do this if the incoming index is somewhere in the interior of the string.
1304         //   If index is at the end, there is no character there to look at.
1305         if (ix != ut->b) {
1306             // Note: this function will only move the index back if it is on a trail byte
1307             //       and there is a preceding lead byte and the sequence from the lead
1308             //       through this trail could be part of a valid UTF-8 sequence
1309             //       Otherwise the index remains unchanged.
1310             U8_SET_CP_START(s8, 0, ix);
1311         }
1312 
1313         // Swap the UText buffers.
1314         //  We want to fill what was previously the alternate buffer,
1315         //  and make what was the current buffer be the new alternate.
1316         UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
1317         ut->q = ut->p;
1318         ut->p = u8b_swap;
1319 
1320         UChar   *buf = u8b_swap->buf;
1321         uint8_t *mapToNative = u8b_swap->mapToNative;
1322         uint8_t *mapToUChars = u8b_swap->mapToUChars;
1323         int32_t  toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1;
1324         // Note that toUCharsMapStart can be negative. Happens when the remaining
1325         // text from current position to the beginning is less than the buffer size.
1326         // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
1327         int32_t  destIx = UTF8_TEXT_CHUNK_SIZE+2;   // Start in the overflow region
1328                                                     //   at end of buffer to leave room
1329                                                     //   for a surrogate pair at the
1330                                                     //   buffer start.
1331         int32_t  srcIx  = ix;
1332         int32_t  bufNILimit = destIx;
1333         UChar32   c;
1334 
1335         // Map to/from Native Indexes, fill in for the position at the end of
1336         //   the buffer.
1337         //
1338         mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1339         mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1340 
1341         // Fill the chunk buffer
1342         // Work backwards, filling from the end of the buffer towards the front.
1343         //
1344         while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1345             srcIx--;
1346             destIx--;
1347 
1348             // Get last byte of the UTF-8 character
1349             c = s8[srcIx];
1350             if (c<0x80) {
1351                 // Special case ASCII range for speed.
1352                 buf[destIx] = (UChar)c;
1353                 U_ASSERT(toUCharsMapStart <= srcIx);
1354                 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1355                 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1356             } else {
1357                 // General case, handle everything non-ASCII.
1358 
1359                 int32_t  sIx      = srcIx;  // ix of last byte of multi-byte u8 char
1360 
1361                 // Get the full character from the UTF8 string.
1362                 //   use code derived from the macros in utf8.h
1363                 //   Leaves srcIx pointing at the first byte of the UTF-8 char.
1364                 //
1365                 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1366                 // leaves srcIx at first byte of the multi-byte char.
1367 
1368                 // Store the character in UTF-16 buffer.
1369                 if (c<0x10000) {
1370                     buf[destIx] = (UChar)c;
1371                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1372                 } else {
1373                     buf[destIx]         = U16_TRAIL(c);
1374                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1375                     buf[--destIx]       = U16_LEAD(c);
1376                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1377                 }
1378 
1379                 // Fill in the map from native indexes to UChars buf index.
1380                 do {
1381                     mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1382                 } while (sIx >= srcIx);
1383                 U_ASSERT(toUCharsMapStart <= (srcIx+1));
1384 
1385                 // Set native indexing limit to be the current position.
1386                 //   We are processing a non-ascii, non-native-indexing char now;
1387                 //     the limit will be here if the rest of the chars to be
1388                 //     added to this buffer are ascii.
1389                 bufNILimit = destIx;
1390             }
1391         }
1392         u8b_swap->bufNativeStart     = srcIx;
1393         u8b_swap->bufNativeLimit     = ix;
1394         u8b_swap->bufStartIdx        = destIx;
1395         u8b_swap->bufLimitIdx        = UTF8_TEXT_CHUNK_SIZE+2;
1396         u8b_swap->bufNILimit         = bufNILimit - u8b_swap->bufStartIdx;
1397         u8b_swap->toUCharsMapStart   = toUCharsMapStart;
1398 
1399         ut->chunkContents       = &buf[u8b_swap->bufStartIdx];
1400         ut->chunkLength         = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx;
1401         ut->chunkOffset         = ut->chunkLength;
1402         ut->chunkNativeStart    = u8b_swap->bufNativeStart;
1403         ut->chunkNativeLimit    = u8b_swap->bufNativeLimit;
1404         ut->nativeIndexingLimit = u8b_swap->bufNILimit;
1405         return TRUE;
1406     }
1407 
1408 }
1409 
1410 
1411 
1412 //
1413 //  This is a slightly modified copy of u_strFromUTF8,
1414 //     Inserts a Replacement Char rather than failing on invalid UTF-8
1415 //     Removes unnecessary features.
1416 //
1417 static UChar*
utext_strFromUTF8(UChar * dest,int32_t destCapacity,int32_t * pDestLength,const char * src,int32_t srcLength,UErrorCode * pErrorCode)1418 utext_strFromUTF8(UChar *dest,
1419               int32_t destCapacity,
1420               int32_t *pDestLength,
1421               const char* src,
1422               int32_t srcLength,        // required.  NUL terminated not supported.
1423               UErrorCode *pErrorCode
1424               )
1425 {
1426 
1427     UChar *pDest = dest;
1428     UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1429     UChar32 ch=0;
1430     int32_t index = 0;
1431     int32_t reqLength = 0;
1432     uint8_t* pSrc = (uint8_t*) src;
1433 
1434 
1435     while((index < srcLength)&&(pDest<pDestLimit)){
1436         ch = pSrc[index++];
1437         if(ch <=0x7f){
1438             *pDest++=(UChar)ch;
1439         }else{
1440             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1441             if(U_IS_BMP(ch)){
1442                 *(pDest++)=(UChar)ch;
1443             }else{
1444                 *(pDest++)=U16_LEAD(ch);
1445                 if(pDest<pDestLimit){
1446                     *(pDest++)=U16_TRAIL(ch);
1447                 }else{
1448                     reqLength++;
1449                     break;
1450                 }
1451             }
1452         }
1453     }
1454     /* donot fill the dest buffer just count the UChars needed */
1455     while(index < srcLength){
1456         ch = pSrc[index++];
1457         if(ch <= 0x7f){
1458             reqLength++;
1459         }else{
1460             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1461             reqLength+=U16_LENGTH(ch);
1462         }
1463     }
1464 
1465     reqLength+=(int32_t)(pDest - dest);
1466 
1467     if(pDestLength){
1468         *pDestLength = reqLength;
1469     }
1470 
1471     /* Terminate the buffer */
1472     u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1473 
1474     return dest;
1475 }
1476 
1477 
1478 
1479 static int32_t U_CALLCONV
utf8TextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)1480 utf8TextExtract(UText *ut,
1481                 int64_t start, int64_t limit,
1482                 UChar *dest, int32_t destCapacity,
1483                 UErrorCode *pErrorCode) {
1484     if(U_FAILURE(*pErrorCode)) {
1485         return 0;
1486     }
1487     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1488         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1489         return 0;
1490     }
1491     int32_t  length  = ut->b;
1492     int32_t  start32 = pinIndex(start, length);
1493     int32_t  limit32 = pinIndex(limit, length);
1494 
1495     if(start32>limit32) {
1496         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1497         return 0;
1498     }
1499 
1500 
1501     // adjust the incoming indexes to land on code point boundaries if needed.
1502     //    adjust by no more than three, because that is the largest number of trail bytes
1503     //    in a well formed UTF8 character.
1504     const uint8_t *buf = (const uint8_t *)ut->context;
1505     int i;
1506     if (start32 < ut->chunkNativeLimit) {
1507         for (i=0; i<3; i++) {
1508             if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1509                 break;
1510             }
1511             start32--;
1512         }
1513     }
1514 
1515     if (limit32 < ut->chunkNativeLimit) {
1516         for (i=0; i<3; i++) {
1517             if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1518                 break;
1519             }
1520             limit32--;
1521         }
1522     }
1523 
1524     // Do the actual extract.
1525     int32_t destLength=0;
1526     utext_strFromUTF8(dest, destCapacity, &destLength,
1527                     (const char *)ut->context+start32, limit32-start32,
1528                     pErrorCode);
1529     utf8TextAccess(ut, limit32, TRUE);
1530     return destLength;
1531 }
1532 
1533 //
1534 // utf8TextMapOffsetToNative
1535 //
1536 // Map a chunk (UTF-16) offset to a native index.
1537 static int64_t U_CALLCONV
utf8TextMapOffsetToNative(const UText * ut)1538 utf8TextMapOffsetToNative(const UText *ut) {
1539     //
1540     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1541     U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1542     int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1543     U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1544     return nativeOffset;
1545 }
1546 
1547 //
1548 // Map a native index to the corresponding chunk offset
1549 //
1550 static int32_t U_CALLCONV
utf8TextMapIndexToUTF16(const UText * ut,int64_t index64)1551 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1552     U_ASSERT(index64 <= 0x7fffffff);
1553     int32_t index = (int32_t)index64;
1554     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1555     U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1556     U_ASSERT(index<=ut->chunkNativeLimit);
1557     int32_t mapIndex = index - u8b->toUCharsMapStart;
1558     U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1559     int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1560     U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1561     return offset;
1562 }
1563 
1564 static UText * U_CALLCONV
utf8TextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1565 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1566 {
1567     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1568     dest = shallowTextClone(dest, src, status);
1569 
1570     // For deep clones, make a copy of the string.
1571     //  The copied storage is owned by the newly created clone.
1572     //
1573     // TODO:  There is an issue with using utext_nativeLength().
1574     //        That function is non-const in cases where the input was NUL terminated
1575     //          and the length has not yet been determined.
1576     //        This function (clone()) is const.
1577     //        There potentially a thread safety issue lurking here.
1578     //
1579     if (deep && U_SUCCESS(*status)) {
1580         int32_t  len = (int32_t)utext_nativeLength((UText *)src);
1581         char *copyStr = (char *)uprv_malloc(len+1);
1582         if (copyStr == NULL) {
1583             *status = U_MEMORY_ALLOCATION_ERROR;
1584         } else {
1585             uprv_memcpy(copyStr, src->context, len+1);
1586             dest->context = copyStr;
1587             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1588         }
1589     }
1590     return dest;
1591 }
1592 
1593 
1594 static void U_CALLCONV
utf8TextClose(UText * ut)1595 utf8TextClose(UText *ut) {
1596     // Most of the work of close is done by the generic UText framework close.
1597     // All that needs to be done here is to delete the UTF8 string if the UText
1598     //  owns it.  This occurs if the UText was created by cloning.
1599     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1600         char *s = (char *)ut->context;
1601         uprv_free(s);
1602         ut->context = NULL;
1603     }
1604 }
1605 
1606 U_CDECL_END
1607 
1608 
1609 static const struct UTextFuncs utf8Funcs =
1610 {
1611     sizeof(UTextFuncs),
1612     0, 0, 0,             // Reserved alignment padding
1613     utf8TextClone,
1614     utf8TextLength,
1615     utf8TextAccess,
1616     utf8TextExtract,
1617     NULL,                /* replace*/
1618     NULL,                /* copy   */
1619     utf8TextMapOffsetToNative,
1620     utf8TextMapIndexToUTF16,
1621     utf8TextClose,
1622     NULL,                // spare 1
1623     NULL,                // spare 2
1624     NULL                 // spare 3
1625 };
1626 
1627 
1628 static const char gEmptyString[] = {0};
1629 
1630 U_CAPI UText * U_EXPORT2
utext_openUTF8(UText * ut,const char * s,int64_t length,UErrorCode * status)1631 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1632     if(U_FAILURE(*status)) {
1633         return NULL;
1634     }
1635     if(s==NULL && length==0) {
1636         s = gEmptyString;
1637     }
1638 
1639     if(s==NULL || length<-1 || length>INT32_MAX) {
1640         *status=U_ILLEGAL_ARGUMENT_ERROR;
1641         return NULL;
1642     }
1643 
1644     ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1645     if (U_FAILURE(*status)) {
1646         return ut;
1647     }
1648 
1649     ut->pFuncs  = &utf8Funcs;
1650     ut->context = s;
1651     ut->b       = (int32_t)length;
1652     ut->c       = (int32_t)length;
1653     if (ut->c < 0) {
1654         ut->c = 0;
1655         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1656     }
1657     ut->p = ut->pExtra;
1658     ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1659     return ut;
1660 
1661 }
1662 
1663 
1664 
1665 
1666 
1667 
1668 
1669 
1670 //------------------------------------------------------------------------------
1671 //
1672 //     UText implementation wrapper for Replaceable (read/write)
1673 //
1674 //         Use of UText data members:
1675 //            context    pointer to Replaceable.
1676 //            p          pointer to Replaceable if it is owned by the UText.
1677 //
1678 //------------------------------------------------------------------------------
1679 
1680 
1681 
1682 // minimum chunk size for this implementation: 3
1683 // to allow for possible trimming for code point boundaries
1684 enum { REP_TEXT_CHUNK_SIZE=10 };
1685 
1686 struct ReplExtra {
1687     /*
1688      * Chunk UChars.
1689      * +1 to simplify filling with surrogate pair at the end.
1690      */
1691     UChar s[REP_TEXT_CHUNK_SIZE+1];
1692 };
1693 
1694 
1695 U_CDECL_BEGIN
1696 
1697 static UText * U_CALLCONV
repTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1698 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1699     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1700     dest = shallowTextClone(dest, src, status);
1701 
1702     // For deep clones, make a copy of the Replaceable.
1703     //  The copied Replaceable storage is owned by the newly created UText clone.
1704     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
1705     //    it.
1706     //
1707     if (deep && U_SUCCESS(*status)) {
1708         const Replaceable *replSrc = (const Replaceable *)src->context;
1709         dest->context = replSrc->clone();
1710         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1711 
1712         // with deep clone, the copy is writable, even when the source is not.
1713         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1714     }
1715     return dest;
1716 }
1717 
1718 
1719 static void U_CALLCONV
repTextClose(UText * ut)1720 repTextClose(UText *ut) {
1721     // Most of the work of close is done by the generic UText framework close.
1722     // All that needs to be done here is delete the Replaceable if the UText
1723     //  owns it.  This occurs if the UText was created by cloning.
1724     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1725         Replaceable *rep = (Replaceable *)ut->context;
1726         delete rep;
1727         ut->context = NULL;
1728     }
1729 }
1730 
1731 
1732 static int64_t U_CALLCONV
repTextLength(UText * ut)1733 repTextLength(UText *ut) {
1734     const Replaceable *replSrc = (const Replaceable *)ut->context;
1735     int32_t  len = replSrc->length();
1736     return len;
1737 }
1738 
1739 
1740 static UBool U_CALLCONV
repTextAccess(UText * ut,int64_t index,UBool forward)1741 repTextAccess(UText *ut, int64_t index, UBool forward) {
1742     const Replaceable *rep=(const Replaceable *)ut->context;
1743     int32_t length=rep->length();   // Full length of the input text (bigger than a chunk)
1744 
1745     // clip the requested index to the limits of the text.
1746     int32_t index32 = pinIndex(index, length);
1747     U_ASSERT(index<=INT32_MAX);
1748 
1749 
1750     /*
1751      * Compute start/limit boundaries around index, for a segment of text
1752      * to be extracted.
1753      * To allow for the possibility that our user gave an index to the trailing
1754      * half of a surrogate pair, we must request one extra preceding UChar when
1755      * going in the forward direction.  This will ensure that the buffer has the
1756      * entire code point at the specified index.
1757      */
1758     if(forward) {
1759 
1760         if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1761             // Buffer already contains the requested position.
1762             ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1763             return TRUE;
1764         }
1765         if (index32>=length && ut->chunkNativeLimit==length) {
1766             // Request for end of string, and buffer already extends up to it.
1767             // Can't get the data, but don't change the buffer.
1768             ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1769             return FALSE;
1770         }
1771 
1772         ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1773         // Going forward, so we want to have the buffer with stuff at and beyond
1774         //   the requested index.  The -1 gets us one code point before the
1775         //   requested index also, to handle the case of the index being on
1776         //   a trail surrogate of a surrogate pair.
1777         if(ut->chunkNativeLimit > length) {
1778             ut->chunkNativeLimit = length;
1779         }
1780         // unless buffer ran off end, start is index-1.
1781         ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1782         if(ut->chunkNativeStart < 0) {
1783             ut->chunkNativeStart = 0;
1784         }
1785     } else {
1786         // Reverse iteration.  Fill buffer with data preceding the requested index.
1787         if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1788             // Requested position already in buffer.
1789             ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1790             return TRUE;
1791         }
1792         if (index32==0 && ut->chunkNativeStart==0) {
1793             // Request for start, buffer already begins at start.
1794             //  No data, but keep the buffer as is.
1795             ut->chunkOffset = 0;
1796             return FALSE;
1797         }
1798 
1799         // Figure out the bounds of the chunk to extract for reverse iteration.
1800         // Need to worry about chunk not splitting surrogate pairs, and while still
1801         // containing the data we need.
1802         // Fix by requesting a chunk that includes an extra UChar at the end.
1803         // If this turns out to be a lead surrogate, we can lop it off and still have
1804         //   the data we wanted.
1805         ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1806         if (ut->chunkNativeStart < 0) {
1807             ut->chunkNativeStart = 0;
1808         }
1809 
1810         ut->chunkNativeLimit = index32 + 1;
1811         if (ut->chunkNativeLimit > length) {
1812             ut->chunkNativeLimit = length;
1813         }
1814     }
1815 
1816     // Extract the new chunk of text from the Replaceable source.
1817     ReplExtra *ex = (ReplExtra *)ut->pExtra;
1818     // UnicodeString with its buffer a writable alias to the chunk buffer
1819     UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1820     rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1821 
1822     ut->chunkContents  = ex->s;
1823     ut->chunkLength    = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1824     ut->chunkOffset    = (int32_t)(index32 - ut->chunkNativeStart);
1825 
1826     // Surrogate pairs from the input text must not span chunk boundaries.
1827     // If end of chunk could be the start of a surrogate, trim it off.
1828     if (ut->chunkNativeLimit < length &&
1829         U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1830             ut->chunkLength--;
1831             ut->chunkNativeLimit--;
1832             if (ut->chunkOffset > ut->chunkLength) {
1833                 ut->chunkOffset = ut->chunkLength;
1834             }
1835         }
1836 
1837     // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1838     // trim it off.
1839     if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1840         ++(ut->chunkContents);
1841         ++(ut->chunkNativeStart);
1842         --(ut->chunkLength);
1843         --(ut->chunkOffset);
1844     }
1845 
1846     // adjust the index/chunkOffset to a code point boundary
1847     U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1848 
1849     // Use fast indexing for get/setNativeIndex()
1850     ut->nativeIndexingLimit = ut->chunkLength;
1851 
1852     return TRUE;
1853 }
1854 
1855 
1856 
1857 static int32_t U_CALLCONV
repTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)1858 repTextExtract(UText *ut,
1859                int64_t start, int64_t limit,
1860                UChar *dest, int32_t destCapacity,
1861                UErrorCode *status) {
1862     const Replaceable *rep=(const Replaceable *)ut->context;
1863     int32_t  length=rep->length();
1864 
1865     if(U_FAILURE(*status)) {
1866         return 0;
1867     }
1868     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1869         *status=U_ILLEGAL_ARGUMENT_ERROR;
1870     }
1871     if(start>limit) {
1872         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1873         return 0;
1874     }
1875 
1876     int32_t  start32 = pinIndex(start, length);
1877     int32_t  limit32 = pinIndex(limit, length);
1878 
1879     // adjust start, limit if they point to trail half of surrogates
1880     if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1881         U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1882             start32--;
1883     }
1884     if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1885         U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1886             limit32--;
1887     }
1888 
1889     length=limit32-start32;
1890     if(length>destCapacity) {
1891         limit32 = start32 + destCapacity;
1892     }
1893     UnicodeString buffer(dest, 0, destCapacity); // writable alias
1894     rep->extractBetween(start32, limit32, buffer);
1895     repTextAccess(ut, limit32, TRUE);
1896 
1897     return u_terminateUChars(dest, destCapacity, length, status);
1898 }
1899 
1900 static int32_t U_CALLCONV
repTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * status)1901 repTextReplace(UText *ut,
1902                int64_t start, int64_t limit,
1903                const UChar *src, int32_t length,
1904                UErrorCode *status) {
1905     Replaceable *rep=(Replaceable *)ut->context;
1906     int32_t oldLength;
1907 
1908     if(U_FAILURE(*status)) {
1909         return 0;
1910     }
1911     if(src==NULL && length!=0) {
1912         *status=U_ILLEGAL_ARGUMENT_ERROR;
1913         return 0;
1914     }
1915     oldLength=rep->length(); // will subtract from new length
1916     if(start>limit ) {
1917         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1918         return 0;
1919     }
1920 
1921     int32_t start32 = pinIndex(start, oldLength);
1922     int32_t limit32 = pinIndex(limit, oldLength);
1923 
1924     // Snap start & limit to code point boundaries.
1925     if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1926         start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1927     {
1928             start32--;
1929     }
1930     if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1931         U16_IS_TRAIL(rep->charAt(limit32)))
1932     {
1933             limit32++;
1934     }
1935 
1936     // Do the actual replace operation using methods of the Replaceable class
1937     UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1938     rep->handleReplaceBetween(start32, limit32, replStr);
1939     int32_t newLength = rep->length();
1940     int32_t lengthDelta = newLength - oldLength;
1941 
1942     // Is the UText chunk buffer OK?
1943     if (ut->chunkNativeLimit > start32) {
1944         // this replace operation may have impacted the current chunk.
1945         // invalidate it, which will force a reload on the next access.
1946         invalidateChunk(ut);
1947     }
1948 
1949     // set the iteration position to the end of the newly inserted replacement text.
1950     int32_t newIndexPos = limit32 + lengthDelta;
1951     repTextAccess(ut, newIndexPos, TRUE);
1952 
1953     return lengthDelta;
1954 }
1955 
1956 
1957 static void U_CALLCONV
repTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * status)1958 repTextCopy(UText *ut,
1959                 int64_t start, int64_t limit,
1960                 int64_t destIndex,
1961                 UBool move,
1962                 UErrorCode *status)
1963 {
1964     Replaceable *rep=(Replaceable *)ut->context;
1965     int32_t length=rep->length();
1966 
1967     if(U_FAILURE(*status)) {
1968         return;
1969     }
1970     if (start>limit || (start<destIndex && destIndex<limit))
1971     {
1972         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1973         return;
1974     }
1975 
1976     int32_t start32     = pinIndex(start, length);
1977     int32_t limit32     = pinIndex(limit, length);
1978     int32_t destIndex32 = pinIndex(destIndex, length);
1979 
1980     // TODO:  snap input parameters to code point boundaries.
1981 
1982     if(move) {
1983         // move: copy to destIndex, then replace original with nothing
1984         int32_t segLength=limit32-start32;
1985         rep->copy(start32, limit32, destIndex32);
1986         if(destIndex32<start32) {
1987             start32+=segLength;
1988             limit32+=segLength;
1989         }
1990         rep->handleReplaceBetween(start32, limit32, UnicodeString());
1991     } else {
1992         // copy
1993         rep->copy(start32, limit32, destIndex32);
1994     }
1995 
1996     // If the change to the text touched the region in the chunk buffer,
1997     //  invalidate the buffer.
1998     int32_t firstAffectedIndex = destIndex32;
1999     if (move && start32<firstAffectedIndex) {
2000         firstAffectedIndex = start32;
2001     }
2002     if (firstAffectedIndex < ut->chunkNativeLimit) {
2003         // changes may have affected range covered by the chunk
2004         invalidateChunk(ut);
2005     }
2006 
2007     // Put iteration position at the newly inserted (moved) block,
2008     int32_t  nativeIterIndex = destIndex32 + limit32 - start32;
2009     if (move && destIndex32>start32) {
2010         // moved a block of text towards the end of the string.
2011         nativeIterIndex = destIndex32;
2012     }
2013 
2014     // Set position, reload chunk if needed.
2015     repTextAccess(ut, nativeIterIndex, TRUE);
2016 }
2017 
2018 static const struct UTextFuncs repFuncs =
2019 {
2020     sizeof(UTextFuncs),
2021     0, 0, 0,           // Reserved alignment padding
2022     repTextClone,
2023     repTextLength,
2024     repTextAccess,
2025     repTextExtract,
2026     repTextReplace,
2027     repTextCopy,
2028     NULL,              // MapOffsetToNative,
2029     NULL,              // MapIndexToUTF16,
2030     repTextClose,
2031     NULL,              // spare 1
2032     NULL,              // spare 2
2033     NULL               // spare 3
2034 };
2035 
2036 
2037 U_CAPI UText * U_EXPORT2
utext_openReplaceable(UText * ut,Replaceable * rep,UErrorCode * status)2038 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2039 {
2040     if(U_FAILURE(*status)) {
2041         return NULL;
2042     }
2043     if(rep==NULL) {
2044         *status=U_ILLEGAL_ARGUMENT_ERROR;
2045         return NULL;
2046     }
2047     ut = utext_setup(ut, sizeof(ReplExtra), status);
2048     if(U_FAILURE(*status)) {
2049         return ut;
2050     }
2051 
2052     ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2053     if(rep->hasMetaData()) {
2054         ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2055     }
2056 
2057     ut->pFuncs  = &repFuncs;
2058     ut->context =  rep;
2059     return ut;
2060 }
2061 
2062 U_CDECL_END
2063 
2064 
2065 
2066 
2067 
2068 
2069 
2070 
2071 //------------------------------------------------------------------------------
2072 //
2073 //     UText implementation for UnicodeString (read/write)  and
2074 //                    for const UnicodeString (read only)
2075 //             (same implementation, only the flags are different)
2076 //
2077 //         Use of UText data members:
2078 //            context    pointer to UnicodeString
2079 //            p          pointer to UnicodeString IF this UText owns the string
2080 //                       and it must be deleted on close().  NULL otherwise.
2081 //
2082 //------------------------------------------------------------------------------
2083 
2084 U_CDECL_BEGIN
2085 
2086 
2087 static UText * U_CALLCONV
unistrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2088 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2089     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
2090     dest = shallowTextClone(dest, src, status);
2091 
2092     // For deep clones, make a copy of the UnicodeSring.
2093     //  The copied UnicodeString storage is owned by the newly created UText clone.
2094     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2095     //    the UText.
2096     //
2097     if (deep && U_SUCCESS(*status)) {
2098         const UnicodeString *srcString = (const UnicodeString *)src->context;
2099         dest->context = new UnicodeString(*srcString);
2100         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2101 
2102         // with deep clone, the copy is writable, even when the source is not.
2103         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2104     }
2105     return dest;
2106 }
2107 
2108 static void U_CALLCONV
unistrTextClose(UText * ut)2109 unistrTextClose(UText *ut) {
2110     // Most of the work of close is done by the generic UText framework close.
2111     // All that needs to be done here is delete the UnicodeString if the UText
2112     //  owns it.  This occurs if the UText was created by cloning.
2113     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2114         UnicodeString *str = (UnicodeString *)ut->context;
2115         delete str;
2116         ut->context = NULL;
2117     }
2118 }
2119 
2120 
2121 static int64_t U_CALLCONV
unistrTextLength(UText * t)2122 unistrTextLength(UText *t) {
2123     return ((const UnicodeString *)t->context)->length();
2124 }
2125 
2126 
2127 static UBool U_CALLCONV
unistrTextAccess(UText * ut,int64_t index,UBool forward)2128 unistrTextAccess(UText *ut, int64_t index, UBool  forward) {
2129     int32_t length  = ut->chunkLength;
2130     ut->chunkOffset = pinIndex(index, length);
2131 
2132     // Check whether request is at the start or end
2133     UBool retVal = (forward && index<length) || (!forward && index>0);
2134     return retVal;
2135 }
2136 
2137 
2138 
2139 static int32_t U_CALLCONV
unistrTextExtract(UText * t,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2140 unistrTextExtract(UText *t,
2141                   int64_t start, int64_t limit,
2142                   UChar *dest, int32_t destCapacity,
2143                   UErrorCode *pErrorCode) {
2144     const UnicodeString *us=(const UnicodeString *)t->context;
2145     int32_t length=us->length();
2146 
2147     if(U_FAILURE(*pErrorCode)) {
2148         return 0;
2149     }
2150     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2151         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2152     }
2153     if(start<0 || start>limit) {
2154         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2155         return 0;
2156     }
2157 
2158     int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2159     int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2160 
2161     length=limit32-start32;
2162     if (destCapacity>0 && dest!=NULL) {
2163         int32_t trimmedLength = length;
2164         if(trimmedLength>destCapacity) {
2165             trimmedLength=destCapacity;
2166         }
2167         us->extract(start32, trimmedLength, dest);
2168         t->chunkOffset = start32+trimmedLength;
2169     } else {
2170         t->chunkOffset = start32;
2171     }
2172     u_terminateUChars(dest, destCapacity, length, pErrorCode);
2173     return length;
2174 }
2175 
2176 static int32_t U_CALLCONV
unistrTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * pErrorCode)2177 unistrTextReplace(UText *ut,
2178                   int64_t start, int64_t limit,
2179                   const UChar *src, int32_t length,
2180                   UErrorCode *pErrorCode) {
2181     UnicodeString *us=(UnicodeString *)ut->context;
2182     int32_t oldLength;
2183 
2184     if(U_FAILURE(*pErrorCode)) {
2185         return 0;
2186     }
2187     if(src==NULL && length!=0) {
2188         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2189     }
2190     if(start>limit) {
2191         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2192         return 0;
2193     }
2194     oldLength=us->length();
2195     int32_t start32 = pinIndex(start, oldLength);
2196     int32_t limit32 = pinIndex(limit, oldLength);
2197     if (start32 < oldLength) {
2198         start32 = us->getChar32Start(start32);
2199     }
2200     if (limit32 < oldLength) {
2201         limit32 = us->getChar32Start(limit32);
2202     }
2203 
2204     // replace
2205     us->replace(start32, limit32-start32, src, length);
2206     int32_t newLength = us->length();
2207 
2208     // Update the chunk description.
2209     ut->chunkContents    = us->getBuffer();
2210     ut->chunkLength      = newLength;
2211     ut->chunkNativeLimit = newLength;
2212     ut->nativeIndexingLimit = newLength;
2213 
2214     // Set iteration position to the point just following the newly inserted text.
2215     int32_t lengthDelta = newLength - oldLength;
2216     ut->chunkOffset = limit32 + lengthDelta;
2217 
2218     return lengthDelta;
2219 }
2220 
2221 static void U_CALLCONV
unistrTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * pErrorCode)2222 unistrTextCopy(UText *ut,
2223                int64_t start, int64_t limit,
2224                int64_t destIndex,
2225                UBool move,
2226                UErrorCode *pErrorCode) {
2227     UnicodeString *us=(UnicodeString *)ut->context;
2228     int32_t length=us->length();
2229 
2230     if(U_FAILURE(*pErrorCode)) {
2231         return;
2232     }
2233     int32_t start32 = pinIndex(start, length);
2234     int32_t limit32 = pinIndex(limit, length);
2235     int32_t destIndex32 = pinIndex(destIndex, length);
2236 
2237     if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2238         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2239         return;
2240     }
2241 
2242     if(move) {
2243         // move: copy to destIndex, then remove original
2244         int32_t segLength=limit32-start32;
2245         us->copy(start32, limit32, destIndex32);
2246         if(destIndex32<start32) {
2247             start32+=segLength;
2248         }
2249         us->remove(start32, segLength);
2250     } else {
2251         // copy
2252         us->copy(start32, limit32, destIndex32);
2253     }
2254 
2255     // update chunk description, set iteration position.
2256     ut->chunkContents = us->getBuffer();
2257     if (move==FALSE) {
2258         // copy operation, string length grows
2259         ut->chunkLength += limit32-start32;
2260         ut->chunkNativeLimit = ut->chunkLength;
2261         ut->nativeIndexingLimit = ut->chunkLength;
2262     }
2263 
2264     // Iteration position to end of the newly inserted text.
2265     ut->chunkOffset = destIndex32+limit32-start32;
2266     if (move && destIndex32>start32) {
2267         ut->chunkOffset = destIndex32;
2268     }
2269 
2270 }
2271 
2272 static const struct UTextFuncs unistrFuncs =
2273 {
2274     sizeof(UTextFuncs),
2275     0, 0, 0,             // Reserved alignment padding
2276     unistrTextClone,
2277     unistrTextLength,
2278     unistrTextAccess,
2279     unistrTextExtract,
2280     unistrTextReplace,
2281     unistrTextCopy,
2282     NULL,                // MapOffsetToNative,
2283     NULL,                // MapIndexToUTF16,
2284     unistrTextClose,
2285     NULL,                // spare 1
2286     NULL,                // spare 2
2287     NULL                 // spare 3
2288 };
2289 
2290 
2291 
2292 U_CDECL_END
2293 
2294 
2295 U_CAPI UText * U_EXPORT2
utext_openUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)2296 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2297     ut = utext_openConstUnicodeString(ut, s, status);
2298     if (U_SUCCESS(*status)) {
2299         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2300     }
2301     return ut;
2302 }
2303 
2304 
2305 
2306 U_CAPI UText * U_EXPORT2
utext_openConstUnicodeString(UText * ut,const UnicodeString * s,UErrorCode * status)2307 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2308     if (U_SUCCESS(*status) && s->isBogus()) {
2309         // The UnicodeString is bogus, but we still need to detach the UText
2310         //   from whatever it was hooked to before, if anything.
2311         utext_openUChars(ut, NULL, 0, status);
2312         *status = U_ILLEGAL_ARGUMENT_ERROR;
2313         return ut;
2314     }
2315     ut = utext_setup(ut, 0, status);
2316     //    note:  use the standard (writable) function table for UnicodeString.
2317     //           The flag settings disable writing, so having the functions in
2318     //           the table is harmless.
2319     if (U_SUCCESS(*status)) {
2320         ut->pFuncs              = &unistrFuncs;
2321         ut->context             = s;
2322         ut->providerProperties  = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2323         ut->chunkContents       = s->getBuffer();
2324         ut->chunkLength         = s->length();
2325         ut->chunkNativeStart    = 0;
2326         ut->chunkNativeLimit    = ut->chunkLength;
2327         ut->nativeIndexingLimit = ut->chunkLength;
2328     }
2329     return ut;
2330 }
2331 
2332 //------------------------------------------------------------------------------
2333 //
2334 //     UText implementation for const UChar * strings
2335 //
2336 //         Use of UText data members:
2337 //            context    pointer to UnicodeString
2338 //            a          length.  -1 if not yet known.
2339 //
2340 //         TODO:  support 64 bit lengths.
2341 //
2342 //------------------------------------------------------------------------------
2343 
2344 U_CDECL_BEGIN
2345 
2346 
2347 static UText * U_CALLCONV
ucstrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2348 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2349     // First do a generic shallow clone.
2350     dest = shallowTextClone(dest, src, status);
2351 
2352     // For deep clones, make a copy of the string.
2353     //  The copied storage is owned by the newly created clone.
2354     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2355     //    it.
2356     //
2357     if (deep && U_SUCCESS(*status)) {
2358         U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2359         int32_t  len = (int32_t)utext_nativeLength(dest);
2360 
2361         // The cloned string IS going to be NUL terminated, whether or not the original was.
2362         const UChar *srcStr = (const UChar *)src->context;
2363         UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2364         if (copyStr == NULL) {
2365             *status = U_MEMORY_ALLOCATION_ERROR;
2366         } else {
2367             int64_t i;
2368             for (i=0; i<len; i++) {
2369                 copyStr[i] = srcStr[i];
2370             }
2371             copyStr[len] = 0;
2372             dest->context = copyStr;
2373             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2374         }
2375     }
2376     return dest;
2377 }
2378 
2379 
2380 static void U_CALLCONV
ucstrTextClose(UText * ut)2381 ucstrTextClose(UText *ut) {
2382     // Most of the work of close is done by the generic UText framework close.
2383     // All that needs to be done here is delete the string if the UText
2384     //  owns it.  This occurs if the UText was created by cloning.
2385     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2386         UChar *s = (UChar *)ut->context;
2387         uprv_free(s);
2388         ut->context = NULL;
2389     }
2390 }
2391 
2392 
2393 
2394 static int64_t U_CALLCONV
ucstrTextLength(UText * ut)2395 ucstrTextLength(UText *ut) {
2396     if (ut->a < 0) {
2397         // null terminated, we don't yet know the length. Scan for it.
2398         //    Access is not convenient for doing this
2399         //    because the current iteration position can't be changed.
2400         const UChar  *str = (const UChar *)ut->context;
2401         for (;;) {
2402             if (str[ut->chunkNativeLimit] == 0) {
2403                 break;
2404             }
2405             ut->chunkNativeLimit++;
2406         }
2407         ut->a = ut->chunkNativeLimit;
2408         ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2409         ut->nativeIndexingLimit = ut->chunkLength;
2410         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2411     }
2412     return ut->a;
2413 }
2414 
2415 
2416 static UBool U_CALLCONV
ucstrTextAccess(UText * ut,int64_t index,UBool forward)2417 ucstrTextAccess(UText *ut, int64_t index, UBool  forward) {
2418     const UChar *str   = (const UChar *)ut->context;
2419 
2420     // pin the requested index to the bounds of the string,
2421     //  and set current iteration position.
2422     if (index<0) {
2423         index = 0;
2424     } else if (index < ut->chunkNativeLimit) {
2425         // The request data is within the chunk as it is known so far.
2426         // Put index on a code point boundary.
2427         U16_SET_CP_START(str, 0, index);
2428     } else if (ut->a >= 0) {
2429         // We know the length of this string, and the user is requesting something
2430         // at or beyond the length.  Pin the requested index to the length.
2431         index = ut->a;
2432     } else {
2433         // Null terminated string, length not yet known, and the requested index
2434         //  is beyond where we have scanned so far.
2435         //  Scan to 32 UChars beyond the requested index.  The strategy here is
2436         //  to avoid fully scanning a long string when the caller only wants to
2437         //  see a few characters at its beginning.
2438         int32_t scanLimit = (int32_t)index + 32;
2439         if ((index + 32)>INT32_MAX || (index + 32)<0 ) {   // note: int64 expression
2440             scanLimit = INT32_MAX;
2441         }
2442 
2443         int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2444         for (; chunkLimit<scanLimit; chunkLimit++) {
2445             if (str[chunkLimit] == 0) {
2446                 // We found the end of the string.  Remember it, pin the requested index to it,
2447                 //  and bail out of here.
2448                 ut->a = chunkLimit;
2449                 ut->chunkLength = chunkLimit;
2450                 ut->nativeIndexingLimit = chunkLimit;
2451                 if (index >= chunkLimit) {
2452                     index = chunkLimit;
2453                 } else {
2454                     U16_SET_CP_START(str, 0, index);
2455                 }
2456 
2457                 ut->chunkNativeLimit = chunkLimit;
2458                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2459                 goto breakout;
2460             }
2461         }
2462         // We scanned through the next batch of UChars without finding the end.
2463         U16_SET_CP_START(str, 0, index);
2464         if (chunkLimit == INT32_MAX) {
2465             // Scanned to the limit of a 32 bit length.
2466             // Forceably trim the overlength string back so length fits in int32
2467             //  TODO:  add support for 64 bit strings.
2468             ut->a = chunkLimit;
2469             ut->chunkLength = chunkLimit;
2470             ut->nativeIndexingLimit = chunkLimit;
2471             if (index > chunkLimit) {
2472                 index = chunkLimit;
2473             }
2474             ut->chunkNativeLimit = chunkLimit;
2475             ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2476         } else {
2477             // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2478             // If the current end is on a lead surrogate, back the end up by one.
2479             // It doesn't matter if the end char happens to be an unpaired surrogate,
2480             //    and it's simpler not to worry about it.
2481             if (U16_IS_LEAD(str[chunkLimit-1])) {
2482                 --chunkLimit;
2483             }
2484             // Null-terminated chunk with end still unknown.
2485             // Update the chunk length to reflect what has been scanned thus far.
2486             // That the full length is still unknown is (still) flagged by
2487             //    ut->a being < 0.
2488             ut->chunkNativeLimit = chunkLimit;
2489             ut->nativeIndexingLimit = chunkLimit;
2490             ut->chunkLength = chunkLimit;
2491         }
2492 
2493     }
2494 breakout:
2495     U_ASSERT(index<=INT32_MAX);
2496     ut->chunkOffset = (int32_t)index;
2497 
2498     // Check whether request is at the start or end
2499     UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2500     return retVal;
2501 }
2502 
2503 
2504 
2505 static int32_t U_CALLCONV
ucstrTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2506 ucstrTextExtract(UText *ut,
2507                   int64_t start, int64_t limit,
2508                   UChar *dest, int32_t destCapacity,
2509                   UErrorCode *pErrorCode)
2510 {
2511     if(U_FAILURE(*pErrorCode)) {
2512         return 0;
2513     }
2514     if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2515         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2516         return 0;
2517     }
2518 
2519     //const UChar *s=(const UChar *)ut->context;
2520     int32_t si, di;
2521 
2522     int32_t start32;
2523     int32_t limit32;
2524 
2525     // Access the start.  Does two things we need:
2526     //   Pins 'start' to the length of the string, if it came in out-of-bounds.
2527     //   Snaps 'start' to the beginning of a code point.
2528     ucstrTextAccess(ut, start, TRUE);
2529     const UChar *s=ut->chunkContents;
2530     start32 = ut->chunkOffset;
2531 
2532     int32_t strLength=(int32_t)ut->a;
2533     if (strLength >= 0) {
2534         limit32 = pinIndex(limit, strLength);
2535     } else {
2536         limit32 = pinIndex(limit, INT32_MAX);
2537     }
2538     di = 0;
2539     for (si=start32; si<limit32; si++) {
2540         if (strLength<0 && s[si]==0) {
2541             // Just hit the end of a null-terminated string.
2542             ut->a = si;               // set string length for this UText
2543             ut->chunkNativeLimit    = si;
2544             ut->chunkLength         = si;
2545             ut->nativeIndexingLimit = si;
2546             strLength               = si;
2547             limit32                 = si;
2548             break;
2549         }
2550         U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2551         if (di<destCapacity) {
2552             // only store if there is space.
2553             dest[di] = s[si];
2554         } else {
2555             if (strLength>=0) {
2556                 // We have filled the destination buffer, and the string length is known.
2557                 //  Cut the loop short.  There is no need to scan string termination.
2558                 di = limit32 - start32;
2559                 si = limit32;
2560                 break;
2561             }
2562         }
2563         di++;
2564     }
2565 
2566     // If the limit index points to a lead surrogate of a pair,
2567     //   add the corresponding trail surrogate to the destination.
2568     if (si>0 && U16_IS_LEAD(s[si-1]) &&
2569             ((si<strLength || strLength<0)  && U16_IS_TRAIL(s[si])))
2570     {
2571         if (di<destCapacity) {
2572             // store only if there is space in the output buffer.
2573             dest[di++] = s[si];
2574         }
2575         si++;
2576     }
2577 
2578     // Put iteration position at the point just following the extracted text
2579     if (si <= ut->chunkNativeLimit) {
2580         ut->chunkOffset = si;
2581     } else {
2582         ucstrTextAccess(ut, si, TRUE);
2583     }
2584 
2585     // Add a terminating NUL if space in the buffer permits,
2586     // and set the error status as required.
2587     u_terminateUChars(dest, destCapacity, di, pErrorCode);
2588     return di;
2589 }
2590 
2591 static const struct UTextFuncs ucstrFuncs =
2592 {
2593     sizeof(UTextFuncs),
2594     0, 0, 0,           // Reserved alignment padding
2595     ucstrTextClone,
2596     ucstrTextLength,
2597     ucstrTextAccess,
2598     ucstrTextExtract,
2599     NULL,              // Replace
2600     NULL,              // Copy
2601     NULL,              // MapOffsetToNative,
2602     NULL,              // MapIndexToUTF16,
2603     ucstrTextClose,
2604     NULL,              // spare 1
2605     NULL,              // spare 2
2606     NULL,              // spare 3
2607 };
2608 
2609 U_CDECL_END
2610 
2611 static const UChar gEmptyUString[] = {0};
2612 
2613 U_CAPI UText * U_EXPORT2
utext_openUChars(UText * ut,const UChar * s,int64_t length,UErrorCode * status)2614 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2615     if (U_FAILURE(*status)) {
2616         return NULL;
2617     }
2618     if(s==NULL && length==0) {
2619         s = gEmptyUString;
2620     }
2621     if (s==NULL || length < -1 || length>INT32_MAX) {
2622         *status = U_ILLEGAL_ARGUMENT_ERROR;
2623         return NULL;
2624     }
2625     ut = utext_setup(ut, 0, status);
2626     if (U_SUCCESS(*status)) {
2627         ut->pFuncs               = &ucstrFuncs;
2628         ut->context              = s;
2629         ut->providerProperties   = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2630         if (length==-1) {
2631             ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2632         }
2633         ut->a                    = length;
2634         ut->chunkContents        = s;
2635         ut->chunkNativeStart     = 0;
2636         ut->chunkNativeLimit     = length>=0? length : 0;
2637         ut->chunkLength          = (int32_t)ut->chunkNativeLimit;
2638         ut->chunkOffset          = 0;
2639         ut->nativeIndexingLimit  = ut->chunkLength;
2640     }
2641     return ut;
2642 }
2643 
2644 
2645 //------------------------------------------------------------------------------
2646 //
2647 //     UText implementation for text from ICU CharacterIterators
2648 //
2649 //         Use of UText data members:
2650 //            context    pointer to the CharacterIterator
2651 //            a          length of the full text.
2652 //            p          pointer to  buffer 1
2653 //            b          start index of local buffer 1 contents
2654 //            q          pointer to buffer 2
2655 //            c          start index of local buffer 2 contents
2656 //            r          pointer to the character iterator if the UText owns it.
2657 //                       Null otherwise.
2658 //
2659 //------------------------------------------------------------------------------
2660 #define CIBufSize 16
2661 
2662 U_CDECL_BEGIN
2663 static void U_CALLCONV
charIterTextClose(UText * ut)2664 charIterTextClose(UText *ut) {
2665     // Most of the work of close is done by the generic UText framework close.
2666     // All that needs to be done here is delete the CharacterIterator if the UText
2667     //  owns it.  This occurs if the UText was created by cloning.
2668     CharacterIterator *ci = (CharacterIterator *)ut->r;
2669     delete ci;
2670     ut->r = NULL;
2671 }
2672 
2673 static int64_t U_CALLCONV
charIterTextLength(UText * ut)2674 charIterTextLength(UText *ut) {
2675     return (int32_t)ut->a;
2676 }
2677 
2678 static UBool U_CALLCONV
charIterTextAccess(UText * ut,int64_t index,UBool forward)2679 charIterTextAccess(UText *ut, int64_t index, UBool  forward) {
2680     CharacterIterator *ci   = (CharacterIterator *)ut->context;
2681 
2682     int32_t clippedIndex = (int32_t)index;
2683     if (clippedIndex<0) {
2684         clippedIndex=0;
2685     } else if (clippedIndex>=ut->a) {
2686         clippedIndex=(int32_t)ut->a;
2687     }
2688     int32_t neededIndex = clippedIndex;
2689     if (!forward && neededIndex>0) {
2690         // reverse iteration, want the position just before what was asked for.
2691         neededIndex--;
2692     } else if (forward && neededIndex==ut->a && neededIndex>0) {
2693         // Forward iteration, don't ask for something past the end of the text.
2694         neededIndex--;
2695     }
2696 
2697     // Find the native index of the start of the buffer containing what we want.
2698     neededIndex -= neededIndex % CIBufSize;
2699 
2700     UChar *buf = NULL;
2701     UBool  needChunkSetup = TRUE;
2702     int    i;
2703     if (ut->chunkNativeStart == neededIndex) {
2704         // The buffer we want is already the current chunk.
2705         needChunkSetup = FALSE;
2706     } else if (ut->b == neededIndex) {
2707         // The first buffer (buffer p) has what we need.
2708         buf = (UChar *)ut->p;
2709     } else if (ut->c == neededIndex) {
2710         // The second buffer (buffer q) has what we need.
2711         buf = (UChar *)ut->q;
2712     } else {
2713         // Neither buffer already has what we need.
2714         // Load new data from the character iterator.
2715         // Use the buf that is not the current buffer.
2716         buf = (UChar *)ut->p;
2717         if (ut->p == ut->chunkContents) {
2718             buf = (UChar *)ut->q;
2719         }
2720         ci->setIndex(neededIndex);
2721         for (i=0; i<CIBufSize; i++) {
2722             buf[i] = ci->nextPostInc();
2723             if (i+neededIndex > ut->a) {
2724                 break;
2725             }
2726         }
2727     }
2728 
2729     // We have a buffer with the data we need.
2730     // Set it up as the current chunk, if it wasn't already.
2731     if (needChunkSetup) {
2732         ut->chunkContents = buf;
2733         ut->chunkLength   = CIBufSize;
2734         ut->chunkNativeStart = neededIndex;
2735         ut->chunkNativeLimit = neededIndex + CIBufSize;
2736         if (ut->chunkNativeLimit > ut->a) {
2737             ut->chunkNativeLimit = ut->a;
2738             ut->chunkLength  = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2739         }
2740         ut->nativeIndexingLimit = ut->chunkLength;
2741         U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2742     }
2743     ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2744     UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2745     return success;
2746 }
2747 
2748 static UText * U_CALLCONV
charIterTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2749 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2750     if (U_FAILURE(*status)) {
2751         return NULL;
2752     }
2753 
2754     if (deep) {
2755         // There is no CharacterIterator API for cloning the underlying text storage.
2756         *status = U_UNSUPPORTED_ERROR;
2757         return NULL;
2758     } else {
2759         CharacterIterator *srcCI =(CharacterIterator *)src->context;
2760         srcCI = srcCI->clone();
2761         dest = utext_openCharacterIterator(dest, srcCI, status);
2762         if (U_FAILURE(*status)) {
2763             return dest;
2764         }
2765         // cast off const on getNativeIndex.
2766         //   For CharacterIterator based UTexts, this is safe, the operation is const.
2767         int64_t  ix = utext_getNativeIndex((UText *)src);
2768         utext_setNativeIndex(dest, ix);
2769         dest->r = srcCI;    // flags that this UText owns the CharacterIterator
2770     }
2771     return dest;
2772 }
2773 
2774 static int32_t U_CALLCONV
charIterTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)2775 charIterTextExtract(UText *ut,
2776                   int64_t start, int64_t limit,
2777                   UChar *dest, int32_t destCapacity,
2778                   UErrorCode *status)
2779 {
2780     if(U_FAILURE(*status)) {
2781         return 0;
2782     }
2783     if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2784         *status=U_ILLEGAL_ARGUMENT_ERROR;
2785         return 0;
2786     }
2787     int32_t  length  = (int32_t)ut->a;
2788     int32_t  start32 = pinIndex(start, length);
2789     int32_t  limit32 = pinIndex(limit, length);
2790     int32_t  desti   = 0;
2791     int32_t  srci;
2792     int32_t  copyLimit;
2793 
2794     CharacterIterator *ci = (CharacterIterator *)ut->context;
2795     ci->setIndex32(start32);   // Moves ix to lead of surrogate pair, if needed.
2796     srci = ci->getIndex();
2797     copyLimit = srci;
2798     while (srci<limit32) {
2799         UChar32 c = ci->next32PostInc();
2800         int32_t  len = U16_LENGTH(c);
2801         U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2802         if (desti+len <= destCapacity) {
2803             U16_APPEND_UNSAFE(dest, desti, c);
2804             copyLimit = srci+len;
2805         } else {
2806             desti += len;
2807             *status = U_BUFFER_OVERFLOW_ERROR;
2808         }
2809         srci += len;
2810     }
2811 
2812     charIterTextAccess(ut, copyLimit, TRUE);
2813 
2814     u_terminateUChars(dest, destCapacity, desti, status);
2815     return desti;
2816 }
2817 
2818 static const struct UTextFuncs charIterFuncs =
2819 {
2820     sizeof(UTextFuncs),
2821     0, 0, 0,             // Reserved alignment padding
2822     charIterTextClone,
2823     charIterTextLength,
2824     charIterTextAccess,
2825     charIterTextExtract,
2826     NULL,                // Replace
2827     NULL,                // Copy
2828     NULL,                // MapOffsetToNative,
2829     NULL,                // MapIndexToUTF16,
2830     charIterTextClose,
2831     NULL,                // spare 1
2832     NULL,                // spare 2
2833     NULL                 // spare 3
2834 };
2835 U_CDECL_END
2836 
2837 
2838 U_CAPI UText * U_EXPORT2
utext_openCharacterIterator(UText * ut,CharacterIterator * ci,UErrorCode * status)2839 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2840     if (U_FAILURE(*status)) {
2841         return NULL;
2842     }
2843 
2844     if (ci->startIndex() > 0) {
2845         // No support for CharacterIterators that do not start indexing from zero.
2846         *status = U_UNSUPPORTED_ERROR;
2847         return NULL;
2848     }
2849 
2850     // Extra space in UText for 2 buffers of CIBufSize UChars each.
2851     int32_t  extraSpace = 2 * CIBufSize * sizeof(UChar);
2852     ut = utext_setup(ut, extraSpace, status);
2853     if (U_SUCCESS(*status)) {
2854         ut->pFuncs                = &charIterFuncs;
2855         ut->context              = ci;
2856         ut->providerProperties   = 0;
2857         ut->a                    = ci->endIndex();        // Length of text
2858         ut->p                    = ut->pExtra;            // First buffer
2859         ut->b                    = -1;                    // Native index of first buffer contents
2860         ut->q                    = (UChar*)ut->pExtra+CIBufSize;  // Second buffer
2861         ut->c                    = -1;                    // Native index of second buffer contents
2862 
2863         // Initialize current chunk contents to be empty.
2864         //   First access will fault something in.
2865         //   Note:  The initial nativeStart and chunkOffset must sum to zero
2866         //          so that getNativeIndex() will correctly compute to zero
2867         //          if no call to Access() has ever been made.  They can't be both
2868         //          zero without Access() thinking that the chunk is valid.
2869         ut->chunkContents        = (UChar *)ut->p;
2870         ut->chunkNativeStart     = -1;
2871         ut->chunkOffset          = 1;
2872         ut->chunkNativeLimit     = 0;
2873         ut->chunkLength          = 0;
2874         ut->nativeIndexingLimit  = ut->chunkOffset;  // enables native indexing
2875     }
2876     return ut;
2877 }
2878