1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2005-2016, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: utext.cpp
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2005apr12
16 * created by: Markus W. Scherer
17 */
18
19 #include <cstddef>
20
21 #include "unicode/utypes.h"
22 #include "unicode/ustring.h"
23 #include "unicode/unistr.h"
24 #include "unicode/chariter.h"
25 #include "unicode/utext.h"
26 #include "unicode/utf.h"
27 #include "unicode/utf8.h"
28 #include "unicode/utf16.h"
29 #include "ustr_imp.h"
30 #include "cmemory.h"
31 #include "cstring.h"
32 #include "uassert.h"
33 #include "putilimp.h"
34
35 U_NAMESPACE_USE
36
37 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
38
39
40 static UBool
utext_access(UText * ut,int64_t index,UBool forward)41 utext_access(UText *ut, int64_t index, UBool forward) {
42 return ut->pFuncs->access(ut, index, forward);
43 }
44
45
46
47 U_CAPI UBool U_EXPORT2
utext_moveIndex32(UText * ut,int32_t delta)48 utext_moveIndex32(UText *ut, int32_t delta) {
49 UChar32 c;
50 if (delta > 0) {
51 do {
52 if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
53 return FALSE;
54 }
55 c = ut->chunkContents[ut->chunkOffset];
56 if (U16_IS_SURROGATE(c)) {
57 c = utext_next32(ut);
58 if (c == U_SENTINEL) {
59 return FALSE;
60 }
61 } else {
62 ut->chunkOffset++;
63 }
64 } while(--delta>0);
65
66 } else if (delta<0) {
67 do {
68 if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
69 return FALSE;
70 }
71 c = ut->chunkContents[ut->chunkOffset-1];
72 if (U16_IS_SURROGATE(c)) {
73 c = utext_previous32(ut);
74 if (c == U_SENTINEL) {
75 return FALSE;
76 }
77 } else {
78 ut->chunkOffset--;
79 }
80 } while(++delta<0);
81 }
82
83 return TRUE;
84 }
85
86
87 U_CAPI int64_t U_EXPORT2
utext_nativeLength(UText * ut)88 utext_nativeLength(UText *ut) {
89 return ut->pFuncs->nativeLength(ut);
90 }
91
92
93 U_CAPI UBool U_EXPORT2
utext_isLengthExpensive(const UText * ut)94 utext_isLengthExpensive(const UText *ut) {
95 UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
96 return r;
97 }
98
99
100 U_CAPI int64_t U_EXPORT2
utext_getNativeIndex(const UText * ut)101 utext_getNativeIndex(const UText *ut) {
102 if(ut->chunkOffset <= ut->nativeIndexingLimit) {
103 return ut->chunkNativeStart+ut->chunkOffset;
104 } else {
105 return ut->pFuncs->mapOffsetToNative(ut);
106 }
107 }
108
109
110 U_CAPI void U_EXPORT2
utext_setNativeIndex(UText * ut,int64_t index)111 utext_setNativeIndex(UText *ut, int64_t index) {
112 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
113 // The desired position is outside of the current chunk.
114 // Access the new position. Assume a forward iteration from here,
115 // which will also be optimimum for a single random access.
116 // Reverse iterations may suffer slightly.
117 ut->pFuncs->access(ut, index, TRUE);
118 } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
119 // utf-16 indexing.
120 ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
121 } else {
122 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
123 }
124 // The convention is that the index must always be on a code point boundary.
125 // Adjust the index position if it is in the middle of a surrogate pair.
126 if (ut->chunkOffset<ut->chunkLength) {
127 UChar c= ut->chunkContents[ut->chunkOffset];
128 if (U16_IS_TRAIL(c)) {
129 if (ut->chunkOffset==0) {
130 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
131 }
132 if (ut->chunkOffset>0) {
133 UChar lead = ut->chunkContents[ut->chunkOffset-1];
134 if (U16_IS_LEAD(lead)) {
135 ut->chunkOffset--;
136 }
137 }
138 }
139 }
140 }
141
142
143
144 U_CAPI int64_t U_EXPORT2
utext_getPreviousNativeIndex(UText * ut)145 utext_getPreviousNativeIndex(UText *ut) {
146 //
147 // Fast-path the common case.
148 // Common means current position is not at the beginning of a chunk
149 // and the preceding character is not supplementary.
150 //
151 int32_t i = ut->chunkOffset - 1;
152 int64_t result;
153 if (i >= 0) {
154 UChar c = ut->chunkContents[i];
155 if (U16_IS_TRAIL(c) == FALSE) {
156 if (i <= ut->nativeIndexingLimit) {
157 result = ut->chunkNativeStart + i;
158 } else {
159 ut->chunkOffset = i;
160 result = ut->pFuncs->mapOffsetToNative(ut);
161 ut->chunkOffset++;
162 }
163 return result;
164 }
165 }
166
167 // If at the start of text, simply return 0.
168 if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
169 return 0;
170 }
171
172 // Harder, less common cases. We are at a chunk boundary, or on a surrogate.
173 // Keep it simple, use other functions to handle the edges.
174 //
175 utext_previous32(ut);
176 result = UTEXT_GETNATIVEINDEX(ut);
177 utext_next32(ut);
178 return result;
179 }
180
181
182 //
183 // utext_current32. Get the UChar32 at the current position.
184 // UText iteration position is always on a code point boundary,
185 // never on the trail half of a surrogate pair.
186 //
187 U_CAPI UChar32 U_EXPORT2
utext_current32(UText * ut)188 utext_current32(UText *ut) {
189 UChar32 c;
190 if (ut->chunkOffset==ut->chunkLength) {
191 // Current position is just off the end of the chunk.
192 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
193 // Off the end of the text.
194 return U_SENTINEL;
195 }
196 }
197
198 c = ut->chunkContents[ut->chunkOffset];
199 if (U16_IS_LEAD(c) == FALSE) {
200 // Normal, non-supplementary case.
201 return c;
202 }
203
204 //
205 // Possible supplementary char.
206 //
207 UChar32 trail = 0;
208 UChar32 supplementaryC = c;
209 if ((ut->chunkOffset+1) < ut->chunkLength) {
210 // The trail surrogate is in the same chunk.
211 trail = ut->chunkContents[ut->chunkOffset+1];
212 } else {
213 // The trail surrogate is in a different chunk.
214 // Because we must maintain the iteration position, we need to switch forward
215 // into the new chunk, get the trail surrogate, then revert the chunk back to the
216 // original one.
217 // An edge case to be careful of: the entire text may end with an unpaired
218 // leading surrogate. The attempt to access the trail will fail, but
219 // the original position before the unpaired lead still needs to be restored.
220 int64_t nativePosition = ut->chunkNativeLimit;
221 int32_t originalOffset = ut->chunkOffset;
222 if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
223 trail = ut->chunkContents[ut->chunkOffset];
224 }
225 UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk
226 U_ASSERT(r==TRUE);
227 ut->chunkOffset = originalOffset;
228 if(!r) {
229 return U_SENTINEL;
230 }
231 }
232
233 if (U16_IS_TRAIL(trail)) {
234 supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
235 }
236 return supplementaryC;
237
238 }
239
240
241 U_CAPI UChar32 U_EXPORT2
utext_char32At(UText * ut,int64_t nativeIndex)242 utext_char32At(UText *ut, int64_t nativeIndex) {
243 UChar32 c = U_SENTINEL;
244
245 // Fast path the common case.
246 if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
247 ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
248 c = ut->chunkContents[ut->chunkOffset];
249 if (U16_IS_SURROGATE(c) == FALSE) {
250 return c;
251 }
252 }
253
254
255 utext_setNativeIndex(ut, nativeIndex);
256 if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
257 c = ut->chunkContents[ut->chunkOffset];
258 if (U16_IS_SURROGATE(c)) {
259 // For surrogates, let current32() deal with the complications
260 // of supplementaries that may span chunk boundaries.
261 c = utext_current32(ut);
262 }
263 }
264 return c;
265 }
266
267
268 U_CAPI UChar32 U_EXPORT2
utext_next32(UText * ut)269 utext_next32(UText *ut) {
270 UChar32 c;
271
272 if (ut->chunkOffset >= ut->chunkLength) {
273 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
274 return U_SENTINEL;
275 }
276 }
277
278 c = ut->chunkContents[ut->chunkOffset++];
279 if (U16_IS_LEAD(c) == FALSE) {
280 // Normal case, not supplementary.
281 // (A trail surrogate seen here is just returned as is, as a surrogate value.
282 // It cannot be part of a pair.)
283 return c;
284 }
285
286 if (ut->chunkOffset >= ut->chunkLength) {
287 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
288 // c is an unpaired lead surrogate at the end of the text.
289 // return it as it is.
290 return c;
291 }
292 }
293 UChar32 trail = ut->chunkContents[ut->chunkOffset];
294 if (U16_IS_TRAIL(trail) == FALSE) {
295 // c was an unpaired lead surrogate, not at the end of the text.
296 // return it as it is (unpaired). Iteration position is on the
297 // following character, possibly in the next chunk, where the
298 // trail surrogate would have been if it had existed.
299 return c;
300 }
301
302 UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
303 ut->chunkOffset++; // move iteration position over the trail surrogate.
304 return supplementary;
305 }
306
307
308 U_CAPI UChar32 U_EXPORT2
utext_previous32(UText * ut)309 utext_previous32(UText *ut) {
310 UChar32 c;
311
312 if (ut->chunkOffset <= 0) {
313 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
314 return U_SENTINEL;
315 }
316 }
317 ut->chunkOffset--;
318 c = ut->chunkContents[ut->chunkOffset];
319 if (U16_IS_TRAIL(c) == FALSE) {
320 // Normal case, not supplementary.
321 // (A lead surrogate seen here is just returned as is, as a surrogate value.
322 // It cannot be part of a pair.)
323 return c;
324 }
325
326 if (ut->chunkOffset <= 0) {
327 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
328 // c is an unpaired trail surrogate at the start of the text.
329 // return it as it is.
330 return c;
331 }
332 }
333
334 UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
335 if (U16_IS_LEAD(lead) == FALSE) {
336 // c was an unpaired trail surrogate, not at the end of the text.
337 // return it as it is (unpaired). Iteration position is at c
338 return c;
339 }
340
341 UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
342 ut->chunkOffset--; // move iteration position over the lead surrogate.
343 return supplementary;
344 }
345
346
347
348 U_CAPI UChar32 U_EXPORT2
utext_next32From(UText * ut,int64_t index)349 utext_next32From(UText *ut, int64_t index) {
350 UChar32 c = U_SENTINEL;
351
352 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
353 // Desired position is outside of the current chunk.
354 if(!ut->pFuncs->access(ut, index, TRUE)) {
355 // no chunk available here
356 return U_SENTINEL;
357 }
358 } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
359 // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
360 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
361 } else {
362 // Desired position is in chunk, with non-UTF16 indexing.
363 ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
364 }
365
366 c = ut->chunkContents[ut->chunkOffset++];
367 if (U16_IS_SURROGATE(c)) {
368 // Surrogates. Many edge cases. Use other functions that already
369 // deal with the problems.
370 utext_setNativeIndex(ut, index);
371 c = utext_next32(ut);
372 }
373 return c;
374 }
375
376
377 U_CAPI UChar32 U_EXPORT2
utext_previous32From(UText * ut,int64_t index)378 utext_previous32From(UText *ut, int64_t index) {
379 //
380 // Return the character preceding the specified index.
381 // Leave the iteration position at the start of the character that was returned.
382 //
383 UChar32 cPrev; // The character preceding cCurr, which is what we will return.
384
385 // Address the chunk containing the position preceding the incoming index
386 // A tricky edge case:
387 // We try to test the requested native index against the chunkNativeStart to determine
388 // whether the character preceding the one at the index is in the current chunk.
389 // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
390 // requested index is on something other than the first position of the first char.
391 //
392 if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
393 // Requested native index is outside of the current chunk.
394 if(!ut->pFuncs->access(ut, index, FALSE)) {
395 // no chunk available here
396 return U_SENTINEL;
397 }
398 } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
399 // Direct UTF-16 indexing.
400 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
401 } else {
402 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
403 if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
404 // no chunk available here
405 return U_SENTINEL;
406 }
407 }
408
409 //
410 // Simple case with no surrogates.
411 //
412 ut->chunkOffset--;
413 cPrev = ut->chunkContents[ut->chunkOffset];
414
415 if (U16_IS_SURROGATE(cPrev)) {
416 // Possible supplementary. Many edge cases.
417 // Let other functions do the heavy lifting.
418 utext_setNativeIndex(ut, index);
419 cPrev = utext_previous32(ut);
420 }
421 return cPrev;
422 }
423
424
425 U_CAPI int32_t U_EXPORT2
utext_extract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)426 utext_extract(UText *ut,
427 int64_t start, int64_t limit,
428 UChar *dest, int32_t destCapacity,
429 UErrorCode *status) {
430 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
431 }
432
433
434
435 U_CAPI UBool U_EXPORT2
utext_equals(const UText * a,const UText * b)436 utext_equals(const UText *a, const UText *b) {
437 if (a==NULL || b==NULL ||
438 a->magic != UTEXT_MAGIC ||
439 b->magic != UTEXT_MAGIC) {
440 // Null or invalid arguments don't compare equal to anything.
441 return FALSE;
442 }
443
444 if (a->pFuncs != b->pFuncs) {
445 // Different types of text providers.
446 return FALSE;
447 }
448
449 if (a->context != b->context) {
450 // Different sources (different strings)
451 return FALSE;
452 }
453 if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
454 // Different current position in the string.
455 return FALSE;
456 }
457
458 return TRUE;
459 }
460
461 U_CAPI UBool U_EXPORT2
utext_isWritable(const UText * ut)462 utext_isWritable(const UText *ut)
463 {
464 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
465 return b;
466 }
467
468
469 U_CAPI void U_EXPORT2
utext_freeze(UText * ut)470 utext_freeze(UText *ut) {
471 // Zero out the WRITABLE flag.
472 ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
473 }
474
475
476 U_CAPI UBool U_EXPORT2
utext_hasMetaData(const UText * ut)477 utext_hasMetaData(const UText *ut)
478 {
479 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
480 return b;
481 }
482
483
484
485 U_CAPI int32_t U_EXPORT2
utext_replace(UText * ut,int64_t nativeStart,int64_t nativeLimit,const UChar * replacementText,int32_t replacementLength,UErrorCode * status)486 utext_replace(UText *ut,
487 int64_t nativeStart, int64_t nativeLimit,
488 const UChar *replacementText, int32_t replacementLength,
489 UErrorCode *status)
490 {
491 if (U_FAILURE(*status)) {
492 return 0;
493 }
494 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
495 *status = U_NO_WRITE_PERMISSION;
496 return 0;
497 }
498 int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
499 return i;
500 }
501
502 U_CAPI void U_EXPORT2
utext_copy(UText * ut,int64_t nativeStart,int64_t nativeLimit,int64_t destIndex,UBool move,UErrorCode * status)503 utext_copy(UText *ut,
504 int64_t nativeStart, int64_t nativeLimit,
505 int64_t destIndex,
506 UBool move,
507 UErrorCode *status)
508 {
509 if (U_FAILURE(*status)) {
510 return;
511 }
512 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
513 *status = U_NO_WRITE_PERMISSION;
514 return;
515 }
516 ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
517 }
518
519
520
521 U_CAPI UText * U_EXPORT2
utext_clone(UText * dest,const UText * src,UBool deep,UBool readOnly,UErrorCode * status)522 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
523 if (U_FAILURE(*status)) {
524 return dest;
525 }
526 UText *result = src->pFuncs->clone(dest, src, deep, status);
527 if (U_FAILURE(*status)) {
528 return result;
529 }
530 if (result == NULL) {
531 *status = U_MEMORY_ALLOCATION_ERROR;
532 return result;
533 }
534 if (readOnly) {
535 utext_freeze(result);
536 }
537 return result;
538 }
539
540
541
542 //------------------------------------------------------------------------------
543 //
544 // UText common functions implementation
545 //
546 //------------------------------------------------------------------------------
547
548 //
549 // UText.flags bit definitions
550 //
551 enum {
552 UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap.
553 // 0 if caller provided storage for the UText.
554
555 UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate
556 // heap block.
557 // 0 if there is no separate allocation. Either no extra
558 // storage was requested, or it is appended to the end
559 // of the main UText storage.
560
561 UTEXT_OPEN = 4 // 1 if this UText is currently open
562 // 0 if this UText is not open.
563 };
564
565
566 //
567 // Extended form of a UText. The purpose is to aid in computing the total size required
568 // when a provider asks for a UText to be allocated with extra storage.
569
570 struct ExtendedUText {
571 UText ut;
572 std::max_align_t extension;
573 };
574
575 static const UText emptyText = UTEXT_INITIALIZER;
576
577 U_CAPI UText * U_EXPORT2
utext_setup(UText * ut,int32_t extraSpace,UErrorCode * status)578 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
579 if (U_FAILURE(*status)) {
580 return ut;
581 }
582
583 if (ut == NULL) {
584 // We need to heap-allocate storage for the new UText
585 int32_t spaceRequired = sizeof(UText);
586 if (extraSpace > 0) {
587 spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(std::max_align_t);
588 }
589 ut = (UText *)uprv_malloc(spaceRequired);
590 if (ut == NULL) {
591 *status = U_MEMORY_ALLOCATION_ERROR;
592 return NULL;
593 } else {
594 *ut = emptyText;
595 ut->flags |= UTEXT_HEAP_ALLOCATED;
596 if (spaceRequired>0) {
597 ut->extraSize = extraSpace;
598 ut->pExtra = &((ExtendedUText *)ut)->extension;
599 }
600 }
601 } else {
602 // We have been supplied with an already existing UText.
603 // Verify that it really appears to be a UText.
604 if (ut->magic != UTEXT_MAGIC) {
605 *status = U_ILLEGAL_ARGUMENT_ERROR;
606 return ut;
607 }
608 // If the ut is already open and there's a provider supplied close
609 // function, call it.
610 if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) {
611 ut->pFuncs->close(ut);
612 }
613 ut->flags &= ~UTEXT_OPEN;
614
615 // If extra space was requested by our caller, check whether
616 // sufficient already exists, and allocate new if needed.
617 if (extraSpace > ut->extraSize) {
618 // Need more space. If there is existing separately allocated space,
619 // delete it first, then allocate new space.
620 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
621 uprv_free(ut->pExtra);
622 ut->extraSize = 0;
623 }
624 ut->pExtra = uprv_malloc(extraSpace);
625 if (ut->pExtra == NULL) {
626 *status = U_MEMORY_ALLOCATION_ERROR;
627 } else {
628 ut->extraSize = extraSpace;
629 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
630 }
631 }
632 }
633 if (U_SUCCESS(*status)) {
634 ut->flags |= UTEXT_OPEN;
635
636 // Initialize all remaining fields of the UText.
637 //
638 ut->context = NULL;
639 ut->chunkContents = NULL;
640 ut->p = NULL;
641 ut->q = NULL;
642 ut->r = NULL;
643 ut->a = 0;
644 ut->b = 0;
645 ut->c = 0;
646 ut->chunkOffset = 0;
647 ut->chunkLength = 0;
648 ut->chunkNativeStart = 0;
649 ut->chunkNativeLimit = 0;
650 ut->nativeIndexingLimit = 0;
651 ut->providerProperties = 0;
652 ut->privA = 0;
653 ut->privB = 0;
654 ut->privC = 0;
655 ut->privP = NULL;
656 if (ut->pExtra!=NULL && ut->extraSize>0)
657 uprv_memset(ut->pExtra, 0, ut->extraSize);
658
659 }
660 return ut;
661 }
662
663
664 U_CAPI UText * U_EXPORT2
utext_close(UText * ut)665 utext_close(UText *ut) {
666 if (ut==NULL ||
667 ut->magic != UTEXT_MAGIC ||
668 (ut->flags & UTEXT_OPEN) == 0)
669 {
670 // The supplied ut is not an open UText.
671 // Do nothing.
672 return ut;
673 }
674
675 // If the provider gave us a close function, call it now.
676 // This will clean up anything allocated specifically by the provider.
677 if (ut->pFuncs->close != NULL) {
678 ut->pFuncs->close(ut);
679 }
680 ut->flags &= ~UTEXT_OPEN;
681
682 // If we (the framework) allocated the UText or subsidiary storage,
683 // delete it.
684 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
685 uprv_free(ut->pExtra);
686 ut->pExtra = NULL;
687 ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
688 ut->extraSize = 0;
689 }
690
691 // Zero out function table of the closed UText. This is a defensive move,
692 // intended to cause applications that inadvertently use a closed
693 // utext to crash with null pointer errors.
694 ut->pFuncs = NULL;
695
696 if (ut->flags & UTEXT_HEAP_ALLOCATED) {
697 // This UText was allocated by UText setup. We need to free it.
698 // Clear magic, so we can detect if the user messes up and immediately
699 // tries to reopen another UText using the deleted storage.
700 ut->magic = 0;
701 uprv_free(ut);
702 ut = NULL;
703 }
704 return ut;
705 }
706
707
708
709
710 //
711 // invalidateChunk Reset a chunk to have no contents, so that the next call
712 // to access will cause new data to load.
713 // This is needed when copy/move/replace operate directly on the
714 // backing text, potentially putting it out of sync with the
715 // contents in the chunk.
716 //
717 static void
invalidateChunk(UText * ut)718 invalidateChunk(UText *ut) {
719 ut->chunkLength = 0;
720 ut->chunkNativeLimit = 0;
721 ut->chunkNativeStart = 0;
722 ut->chunkOffset = 0;
723 ut->nativeIndexingLimit = 0;
724 }
725
726 //
727 // pinIndex Do range pinning on a native index parameter.
728 // 64 bit pinning is done in place.
729 // 32 bit truncated result is returned as a convenience for
730 // use in providers that don't need 64 bits.
731 static int32_t
pinIndex(int64_t & index,int64_t limit)732 pinIndex(int64_t &index, int64_t limit) {
733 if (index<0) {
734 index = 0;
735 } else if (index > limit) {
736 index = limit;
737 }
738 return (int32_t)index;
739 }
740
741
742 U_CDECL_BEGIN
743
744 //
745 // Pointer relocation function,
746 // a utility used by shallow clone.
747 // Adjust a pointer that refers to something within one UText (the source)
748 // to refer to the same relative offset within a another UText (the target)
749 //
adjustPointer(UText * dest,const void ** destPtr,const UText * src)750 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
751 // convert all pointers to (char *) so that byte address arithmetic will work.
752 char *dptr = (char *)*destPtr;
753 char *dUText = (char *)dest;
754 char *sUText = (char *)src;
755
756 if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
757 // target ptr was to something within the src UText's pExtra storage.
758 // relocate it into the target UText's pExtra region.
759 *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
760 } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
761 // target ptr was pointing to somewhere within the source UText itself.
762 // Move it to the same offset within the target UText.
763 *destPtr = dUText + (dptr-sUText);
764 }
765 }
766
767
768 //
769 // Clone. This is a generic copy-the-utext-by-value clone function that can be
770 // used as-is with some utext types, and as a helper by other clones.
771 //
772 static UText * U_CALLCONV
shallowTextClone(UText * dest,const UText * src,UErrorCode * status)773 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
774 if (U_FAILURE(*status)) {
775 return NULL;
776 }
777 int32_t srcExtraSize = src->extraSize;
778
779 //
780 // Use the generic text_setup to allocate storage if required.
781 //
782 dest = utext_setup(dest, srcExtraSize, status);
783 if (U_FAILURE(*status)) {
784 return dest;
785 }
786
787 //
788 // flags (how the UText was allocated) and the pointer to the
789 // extra storage must retain the values in the cloned utext that
790 // were set up by utext_setup. Save them separately before
791 // copying the whole struct.
792 //
793 void *destExtra = dest->pExtra;
794 int32_t flags = dest->flags;
795
796
797 //
798 // Copy the whole UText struct by value.
799 // Any "Extra" storage is copied also.
800 //
801 int sizeToCopy = src->sizeOfStruct;
802 if (sizeToCopy > dest->sizeOfStruct) {
803 sizeToCopy = dest->sizeOfStruct;
804 }
805 uprv_memcpy(dest, src, sizeToCopy);
806 dest->pExtra = destExtra;
807 dest->flags = flags;
808 if (srcExtraSize > 0) {
809 uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
810 }
811
812 //
813 // Relocate any pointers in the target that refer to the UText itself
814 // to point to the cloned copy rather than the original source.
815 //
816 adjustPointer(dest, &dest->context, src);
817 adjustPointer(dest, &dest->p, src);
818 adjustPointer(dest, &dest->q, src);
819 adjustPointer(dest, &dest->r, src);
820 adjustPointer(dest, (const void **)&dest->chunkContents, src);
821
822 // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
823 // (The source for the clone may or may not have owned the text.)
824
825 dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
826
827 return dest;
828 }
829
830
831 U_CDECL_END
832
833
834
835 //------------------------------------------------------------------------------
836 //
837 // UText implementation for UTF-8 char * strings (read-only)
838 // Limitation: string length must be <= 0x7fffffff in length.
839 // (length must for in an int32_t variable)
840 //
841 // Use of UText data members:
842 // context pointer to UTF-8 string
843 // utext.b is the input string length (bytes).
844 // utext.c Length scanned so far in string
845 // (for optimizing finding length of zero terminated strings.)
846 // utext.p pointer to the current buffer
847 // utext.q pointer to the other buffer.
848 //
849 //------------------------------------------------------------------------------
850
851 // Chunk size.
852 // Must be less than 85 (256/3), because of byte mapping from UChar indexes to native indexes.
853 // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes
854 // to two UChars.)
855 // The longest illegal byte sequence treated as a single error (and converted to U+FFFD)
856 // is a three-byte sequence (truncated four-byte sequence).
857 //
858 enum { UTF8_TEXT_CHUNK_SIZE=32 };
859
860 //
861 // UTF8Buf Two of these structs will be set up in the UText's extra allocated space.
862 // Each contains the UChar chunk buffer, the to and from native maps, and
863 // header info.
864 //
865 // because backwards iteration fills the buffers starting at the end and
866 // working towards the front, the filled part of the buffers may not begin
867 // at the start of the available storage for the buffers.
868 //
869 // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
870 // the last character added being a supplementary, and thus requiring a surrogate
871 // pair. Doing this is simpler than checking for the edge case.
872 //
873
874 struct UTF8Buf {
875 int32_t bufNativeStart; // Native index of first char in UChar buf
876 int32_t bufNativeLimit; // Native index following last char in buf.
877 int32_t bufStartIdx; // First filled position in buf.
878 int32_t bufLimitIdx; // Limit of filled range in buf.
879 int32_t bufNILimit; // Limit of native indexing part of buf
880 int32_t toUCharsMapStart; // Native index corresponding to
881 // mapToUChars[0].
882 // Set to bufNativeStart when filling forwards.
883 // Set to computed value when filling backwards.
884
885 UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the
886 // the chunk size, to allow for surrogate at the end.
887 // Length must be identical to mapToNative array, below,
888 // because of the way indexing works when the array is
889 // filled backwards during a reverse iteration. Thus,
890 // the additional extra size.
891 uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to
892 // native offset from bufNativeStart.
893 // Requires two extra slots,
894 // one for a supplementary starting in the last normal position,
895 // and one for an entry for the buffer limit position.
896 uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
897 // corresponding offset in filled part of buf.
898 int32_t align;
899 };
900
901 U_CDECL_BEGIN
902
903 //
904 // utf8TextLength
905 //
906 // Get the length of the string. If we don't already know it,
907 // we'll need to scan for the trailing nul.
908 //
909 static int64_t U_CALLCONV
utf8TextLength(UText * ut)910 utf8TextLength(UText *ut) {
911 if (ut->b < 0) {
912 // Zero terminated string, and we haven't scanned to the end yet.
913 // Scan it now.
914 const char *r = (const char *)ut->context + ut->c;
915 while (*r != 0) {
916 r++;
917 }
918 if ((r - (const char *)ut->context) < 0x7fffffff) {
919 ut->b = (int32_t)(r - (const char *)ut->context);
920 } else {
921 // Actual string was bigger (more than 2 gig) than we
922 // can handle. Clip it to 2 GB.
923 ut->b = 0x7fffffff;
924 }
925 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
926 }
927 return ut->b;
928 }
929
930
931
932
933
934
935 static UBool U_CALLCONV
utf8TextAccess(UText * ut,int64_t index,UBool forward)936 utf8TextAccess(UText *ut, int64_t index, UBool forward) {
937 //
938 // Apologies to those who are allergic to goto statements.
939 // Consider each goto to a labelled block to be the equivalent of
940 // call the named block as if it were a function();
941 // return;
942 //
943 const uint8_t *s8=(const uint8_t *)ut->context;
944 UTF8Buf *u8b = NULL;
945 int32_t length = ut->b; // Length of original utf-8
946 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits.
947 int32_t mapIndex = 0;
948 if (index<0) {
949 ix=0;
950 } else if (index > 0x7fffffff) {
951 // Strings with 64 bit lengths not supported by this UTF-8 provider.
952 ix = 0x7fffffff;
953 }
954
955 // Pin requested index to the string length.
956 if (ix>length) {
957 if (length>=0) {
958 ix=length;
959 } else if (ix>=ut->c) {
960 // Zero terminated string, and requested index is beyond
961 // the region that has already been scanned.
962 // Scan up to either the end of the string or to the
963 // requested position, whichever comes first.
964 while (ut->c<ix && s8[ut->c]!=0) {
965 ut->c++;
966 }
967 // TODO: support for null terminated string length > 32 bits.
968 if (s8[ut->c] == 0) {
969 // We just found the actual length of the string.
970 // Trim the requested index back to that.
971 ix = ut->c;
972 ut->b = ut->c;
973 length = ut->c;
974 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
975 }
976 }
977 }
978
979 //
980 // Dispatch to the appropriate action for a forward iteration request.
981 //
982 if (forward) {
983 if (ix==ut->chunkNativeLimit) {
984 // Check for normal sequential iteration cases first.
985 if (ix==length) {
986 // Just reached end of string
987 // Don't swap buffers, but do set the
988 // current buffer position.
989 ut->chunkOffset = ut->chunkLength;
990 return FALSE;
991 } else {
992 // End of current buffer.
993 // check whether other buffer already has what we need.
994 UTF8Buf *altB = (UTF8Buf *)ut->q;
995 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
996 goto swapBuffers;
997 }
998 }
999 }
1000
1001 // A random access. Desired index could be in either or niether buf.
1002 // For optimizing the order of testing, first check for the index
1003 // being in the other buffer. This will be the case for uses that
1004 // move back and forth over a fairly limited range
1005 {
1006 u8b = (UTF8Buf *)ut->q; // the alternate buffer
1007 if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1008 // Requested index is in the other buffer.
1009 goto swapBuffers;
1010 }
1011 if (ix == length) {
1012 // Requested index is end-of-string.
1013 // (this is the case of randomly seeking to the end.
1014 // The case of iterating off the end is handled earlier.)
1015 if (ix == ut->chunkNativeLimit) {
1016 // Current buffer extends up to the end of the string.
1017 // Leave it as the current buffer.
1018 ut->chunkOffset = ut->chunkLength;
1019 return FALSE;
1020 }
1021 if (ix == u8b->bufNativeLimit) {
1022 // Alternate buffer extends to the end of string.
1023 // Swap it in as the current buffer.
1024 goto swapBuffersAndFail;
1025 }
1026
1027 // Neither existing buffer extends to the end of the string.
1028 goto makeStubBuffer;
1029 }
1030
1031 if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1032 // Requested index is in neither buffer.
1033 goto fillForward;
1034 }
1035
1036 // Requested index is in this buffer.
1037 u8b = (UTF8Buf *)ut->p; // the current buffer
1038 mapIndex = ix - u8b->toUCharsMapStart;
1039 U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1040 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1041 return TRUE;
1042
1043 }
1044 }
1045
1046
1047 //
1048 // Dispatch to the appropriate action for a
1049 // Backwards Direction iteration request.
1050 //
1051 if (ix==ut->chunkNativeStart) {
1052 // Check for normal sequential iteration cases first.
1053 if (ix==0) {
1054 // Just reached the start of string
1055 // Don't swap buffers, but do set the
1056 // current buffer position.
1057 ut->chunkOffset = 0;
1058 return FALSE;
1059 } else {
1060 // Start of current buffer.
1061 // check whether other buffer already has what we need.
1062 UTF8Buf *altB = (UTF8Buf *)ut->q;
1063 if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1064 goto swapBuffers;
1065 }
1066 }
1067 }
1068
1069 // A random access. Desired index could be in either or niether buf.
1070 // For optimizing the order of testing,
1071 // Most likely case: in the other buffer.
1072 // Second most likely: in neither buffer.
1073 // Unlikely, but must work: in the current buffer.
1074 u8b = (UTF8Buf *)ut->q; // the alternate buffer
1075 if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1076 // Requested index is in the other buffer.
1077 goto swapBuffers;
1078 }
1079 // Requested index is start-of-string.
1080 // (this is the case of randomly seeking to the start.
1081 // The case of iterating off the start is handled earlier.)
1082 if (ix==0) {
1083 if (u8b->bufNativeStart==0) {
1084 // Alternate buffer contains the data for the start string.
1085 // Make it be the current buffer.
1086 goto swapBuffersAndFail;
1087 } else {
1088 // Request for data before the start of string,
1089 // neither buffer is usable.
1090 // set up a zero-length buffer.
1091 goto makeStubBuffer;
1092 }
1093 }
1094
1095 if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1096 // Requested index is in neither buffer.
1097 goto fillReverse;
1098 }
1099
1100 // Requested index is in this buffer.
1101 // Set the utf16 buffer index.
1102 u8b = (UTF8Buf *)ut->p;
1103 mapIndex = ix - u8b->toUCharsMapStart;
1104 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1105 if (ut->chunkOffset==0) {
1106 // This occurs when the first character in the text is
1107 // a multi-byte UTF-8 char, and the requested index is to
1108 // one of the trailing bytes. Because there is no preceding ,
1109 // character, this access fails. We can't pick up on the
1110 // situation sooner because the requested index is not zero.
1111 return FALSE;
1112 } else {
1113 return TRUE;
1114 }
1115
1116
1117
1118 swapBuffers:
1119 // The alternate buffer (ut->q) has the string data that was requested.
1120 // Swap the primary and alternate buffers, and set the
1121 // chunk index into the new primary buffer.
1122 {
1123 u8b = (UTF8Buf *)ut->q;
1124 ut->q = ut->p;
1125 ut->p = u8b;
1126 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1127 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1128 ut->chunkNativeStart = u8b->bufNativeStart;
1129 ut->chunkNativeLimit = u8b->bufNativeLimit;
1130 ut->nativeIndexingLimit = u8b->bufNILimit;
1131
1132 // Index into the (now current) chunk
1133 // Use the map to set the chunk index. It's more trouble than it's worth
1134 // to check whether native indexing can be used.
1135 U_ASSERT(ix>=u8b->bufNativeStart);
1136 U_ASSERT(ix<=u8b->bufNativeLimit);
1137 mapIndex = ix - u8b->toUCharsMapStart;
1138 U_ASSERT(mapIndex>=0);
1139 U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1140 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1141
1142 return TRUE;
1143 }
1144
1145
1146 swapBuffersAndFail:
1147 // We got a request for either the start or end of the string,
1148 // with iteration continuing in the out-of-bounds direction.
1149 // The alternate buffer already contains the data up to the
1150 // start/end.
1151 // Swap the buffers, then return failure, indicating that we couldn't
1152 // make things correct for continuing the iteration in the requested
1153 // direction. The position & buffer are correct should the
1154 // user decide to iterate in the opposite direction.
1155 u8b = (UTF8Buf *)ut->q;
1156 ut->q = ut->p;
1157 ut->p = u8b;
1158 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1159 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1160 ut->chunkNativeStart = u8b->bufNativeStart;
1161 ut->chunkNativeLimit = u8b->bufNativeLimit;
1162 ut->nativeIndexingLimit = u8b->bufNILimit;
1163
1164 // Index into the (now current) chunk
1165 // For this function (swapBuffersAndFail), the requested index
1166 // will always be at either the start or end of the chunk.
1167 if (ix==u8b->bufNativeLimit) {
1168 ut->chunkOffset = ut->chunkLength;
1169 } else {
1170 ut->chunkOffset = 0;
1171 U_ASSERT(ix == u8b->bufNativeStart);
1172 }
1173 return FALSE;
1174
1175 makeStubBuffer:
1176 // The user has done a seek/access past the start or end
1177 // of the string. Rather than loading data that is likely
1178 // to never be used, just set up a zero-length buffer at
1179 // the position.
1180 u8b = (UTF8Buf *)ut->q;
1181 u8b->bufNativeStart = ix;
1182 u8b->bufNativeLimit = ix;
1183 u8b->bufStartIdx = 0;
1184 u8b->bufLimitIdx = 0;
1185 u8b->bufNILimit = 0;
1186 u8b->toUCharsMapStart = ix;
1187 u8b->mapToNative[0] = 0;
1188 u8b->mapToUChars[0] = 0;
1189 goto swapBuffersAndFail;
1190
1191
1192
1193 fillForward:
1194 {
1195 // Move the incoming index to a code point boundary.
1196 U8_SET_CP_START(s8, 0, ix);
1197
1198 // Swap the UText buffers.
1199 // We want to fill what was previously the alternate buffer,
1200 // and make what was the current buffer be the new alternate.
1201 UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
1202 ut->q = ut->p;
1203 ut->p = u8b_swap;
1204
1205 int32_t strLen = ut->b;
1206 UBool nulTerminated = FALSE;
1207 if (strLen < 0) {
1208 strLen = 0x7fffffff;
1209 nulTerminated = TRUE;
1210 }
1211
1212 UChar *buf = u8b_swap->buf;
1213 uint8_t *mapToNative = u8b_swap->mapToNative;
1214 uint8_t *mapToUChars = u8b_swap->mapToUChars;
1215 int32_t destIx = 0;
1216 int32_t srcIx = ix;
1217 UBool seenNonAscii = FALSE;
1218 UChar32 c = 0;
1219
1220 // Fill the chunk buffer and mapping arrays.
1221 while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1222 c = s8[srcIx];
1223 if (c>0 && c<0x80) {
1224 // Special case ASCII range for speed.
1225 // zero is excluded to simplify bounds checking.
1226 buf[destIx] = (UChar)c;
1227 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1228 mapToUChars[srcIx-ix] = (uint8_t)destIx;
1229 srcIx++;
1230 destIx++;
1231 } else {
1232 // General case, handle everything.
1233 if (seenNonAscii == FALSE) {
1234 seenNonAscii = TRUE;
1235 u8b_swap->bufNILimit = destIx;
1236 }
1237
1238 int32_t cIx = srcIx;
1239 int32_t dIx = destIx;
1240 int32_t dIxSaved = destIx;
1241 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1242 if (c==0 && nulTerminated) {
1243 srcIx--;
1244 break;
1245 }
1246
1247 U16_APPEND_UNSAFE(buf, destIx, c);
1248 do {
1249 mapToNative[dIx++] = (uint8_t)(cIx - ix);
1250 } while (dIx < destIx);
1251
1252 do {
1253 mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1254 } while (cIx < srcIx);
1255 }
1256 if (srcIx>=strLen) {
1257 break;
1258 }
1259
1260 }
1261
1262 // store Native <--> Chunk Map entries for the end of the buffer.
1263 // There is no actual character here, but the index position is valid.
1264 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1265 mapToUChars[srcIx - ix] = (uint8_t)destIx;
1266
1267 // fill in Buffer descriptor
1268 u8b_swap->bufNativeStart = ix;
1269 u8b_swap->bufNativeLimit = srcIx;
1270 u8b_swap->bufStartIdx = 0;
1271 u8b_swap->bufLimitIdx = destIx;
1272 if (seenNonAscii == FALSE) {
1273 u8b_swap->bufNILimit = destIx;
1274 }
1275 u8b_swap->toUCharsMapStart = u8b_swap->bufNativeStart;
1276
1277 // Set UText chunk to refer to this buffer.
1278 ut->chunkContents = buf;
1279 ut->chunkOffset = 0;
1280 ut->chunkLength = u8b_swap->bufLimitIdx;
1281 ut->chunkNativeStart = u8b_swap->bufNativeStart;
1282 ut->chunkNativeLimit = u8b_swap->bufNativeLimit;
1283 ut->nativeIndexingLimit = u8b_swap->bufNILimit;
1284
1285 // For zero terminated strings, keep track of the maximum point
1286 // scanned so far.
1287 if (nulTerminated && srcIx>ut->c) {
1288 ut->c = srcIx;
1289 if (c==0) {
1290 // We scanned to the end.
1291 // Remember the actual length.
1292 ut->b = srcIx;
1293 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1294 }
1295 }
1296 return TRUE;
1297 }
1298
1299
1300 fillReverse:
1301 {
1302 // Move the incoming index to a code point boundary.
1303 // Can only do this if the incoming index is somewhere in the interior of the string.
1304 // If index is at the end, there is no character there to look at.
1305 if (ix != ut->b) {
1306 // Note: this function will only move the index back if it is on a trail byte
1307 // and there is a preceding lead byte and the sequence from the lead
1308 // through this trail could be part of a valid UTF-8 sequence
1309 // Otherwise the index remains unchanged.
1310 U8_SET_CP_START(s8, 0, ix);
1311 }
1312
1313 // Swap the UText buffers.
1314 // We want to fill what was previously the alternate buffer,
1315 // and make what was the current buffer be the new alternate.
1316 UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
1317 ut->q = ut->p;
1318 ut->p = u8b_swap;
1319
1320 UChar *buf = u8b_swap->buf;
1321 uint8_t *mapToNative = u8b_swap->mapToNative;
1322 uint8_t *mapToUChars = u8b_swap->mapToUChars;
1323 int32_t toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1;
1324 // Note that toUCharsMapStart can be negative. Happens when the remaining
1325 // text from current position to the beginning is less than the buffer size.
1326 // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
1327 int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region
1328 // at end of buffer to leave room
1329 // for a surrogate pair at the
1330 // buffer start.
1331 int32_t srcIx = ix;
1332 int32_t bufNILimit = destIx;
1333 UChar32 c;
1334
1335 // Map to/from Native Indexes, fill in for the position at the end of
1336 // the buffer.
1337 //
1338 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1339 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1340
1341 // Fill the chunk buffer
1342 // Work backwards, filling from the end of the buffer towards the front.
1343 //
1344 while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1345 srcIx--;
1346 destIx--;
1347
1348 // Get last byte of the UTF-8 character
1349 c = s8[srcIx];
1350 if (c<0x80) {
1351 // Special case ASCII range for speed.
1352 buf[destIx] = (UChar)c;
1353 U_ASSERT(toUCharsMapStart <= srcIx);
1354 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1355 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1356 } else {
1357 // General case, handle everything non-ASCII.
1358
1359 int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char
1360
1361 // Get the full character from the UTF8 string.
1362 // use code derived from the macros in utf8.h
1363 // Leaves srcIx pointing at the first byte of the UTF-8 char.
1364 //
1365 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1366 // leaves srcIx at first byte of the multi-byte char.
1367
1368 // Store the character in UTF-16 buffer.
1369 if (c<0x10000) {
1370 buf[destIx] = (UChar)c;
1371 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1372 } else {
1373 buf[destIx] = U16_TRAIL(c);
1374 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1375 buf[--destIx] = U16_LEAD(c);
1376 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1377 }
1378
1379 // Fill in the map from native indexes to UChars buf index.
1380 do {
1381 mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1382 } while (sIx >= srcIx);
1383 U_ASSERT(toUCharsMapStart <= (srcIx+1));
1384
1385 // Set native indexing limit to be the current position.
1386 // We are processing a non-ascii, non-native-indexing char now;
1387 // the limit will be here if the rest of the chars to be
1388 // added to this buffer are ascii.
1389 bufNILimit = destIx;
1390 }
1391 }
1392 u8b_swap->bufNativeStart = srcIx;
1393 u8b_swap->bufNativeLimit = ix;
1394 u8b_swap->bufStartIdx = destIx;
1395 u8b_swap->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2;
1396 u8b_swap->bufNILimit = bufNILimit - u8b_swap->bufStartIdx;
1397 u8b_swap->toUCharsMapStart = toUCharsMapStart;
1398
1399 ut->chunkContents = &buf[u8b_swap->bufStartIdx];
1400 ut->chunkLength = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx;
1401 ut->chunkOffset = ut->chunkLength;
1402 ut->chunkNativeStart = u8b_swap->bufNativeStart;
1403 ut->chunkNativeLimit = u8b_swap->bufNativeLimit;
1404 ut->nativeIndexingLimit = u8b_swap->bufNILimit;
1405 return TRUE;
1406 }
1407
1408 }
1409
1410
1411
1412 //
1413 // This is a slightly modified copy of u_strFromUTF8,
1414 // Inserts a Replacement Char rather than failing on invalid UTF-8
1415 // Removes unnecessary features.
1416 //
1417 static UChar*
utext_strFromUTF8(UChar * dest,int32_t destCapacity,int32_t * pDestLength,const char * src,int32_t srcLength,UErrorCode * pErrorCode)1418 utext_strFromUTF8(UChar *dest,
1419 int32_t destCapacity,
1420 int32_t *pDestLength,
1421 const char* src,
1422 int32_t srcLength, // required. NUL terminated not supported.
1423 UErrorCode *pErrorCode
1424 )
1425 {
1426
1427 UChar *pDest = dest;
1428 UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1429 UChar32 ch=0;
1430 int32_t index = 0;
1431 int32_t reqLength = 0;
1432 uint8_t* pSrc = (uint8_t*) src;
1433
1434
1435 while((index < srcLength)&&(pDest<pDestLimit)){
1436 ch = pSrc[index++];
1437 if(ch <=0x7f){
1438 *pDest++=(UChar)ch;
1439 }else{
1440 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1441 if(U_IS_BMP(ch)){
1442 *(pDest++)=(UChar)ch;
1443 }else{
1444 *(pDest++)=U16_LEAD(ch);
1445 if(pDest<pDestLimit){
1446 *(pDest++)=U16_TRAIL(ch);
1447 }else{
1448 reqLength++;
1449 break;
1450 }
1451 }
1452 }
1453 }
1454 /* donot fill the dest buffer just count the UChars needed */
1455 while(index < srcLength){
1456 ch = pSrc[index++];
1457 if(ch <= 0x7f){
1458 reqLength++;
1459 }else{
1460 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1461 reqLength+=U16_LENGTH(ch);
1462 }
1463 }
1464
1465 reqLength+=(int32_t)(pDest - dest);
1466
1467 if(pDestLength){
1468 *pDestLength = reqLength;
1469 }
1470
1471 /* Terminate the buffer */
1472 u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1473
1474 return dest;
1475 }
1476
1477
1478
1479 static int32_t U_CALLCONV
utf8TextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)1480 utf8TextExtract(UText *ut,
1481 int64_t start, int64_t limit,
1482 UChar *dest, int32_t destCapacity,
1483 UErrorCode *pErrorCode) {
1484 if(U_FAILURE(*pErrorCode)) {
1485 return 0;
1486 }
1487 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1488 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1489 return 0;
1490 }
1491 int32_t length = ut->b;
1492 int32_t start32 = pinIndex(start, length);
1493 int32_t limit32 = pinIndex(limit, length);
1494
1495 if(start32>limit32) {
1496 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1497 return 0;
1498 }
1499
1500
1501 // adjust the incoming indexes to land on code point boundaries if needed.
1502 // adjust by no more than three, because that is the largest number of trail bytes
1503 // in a well formed UTF8 character.
1504 const uint8_t *buf = (const uint8_t *)ut->context;
1505 int i;
1506 if (start32 < ut->chunkNativeLimit) {
1507 for (i=0; i<3; i++) {
1508 if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1509 break;
1510 }
1511 start32--;
1512 }
1513 }
1514
1515 if (limit32 < ut->chunkNativeLimit) {
1516 for (i=0; i<3; i++) {
1517 if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1518 break;
1519 }
1520 limit32--;
1521 }
1522 }
1523
1524 // Do the actual extract.
1525 int32_t destLength=0;
1526 utext_strFromUTF8(dest, destCapacity, &destLength,
1527 (const char *)ut->context+start32, limit32-start32,
1528 pErrorCode);
1529 utf8TextAccess(ut, limit32, TRUE);
1530 return destLength;
1531 }
1532
1533 //
1534 // utf8TextMapOffsetToNative
1535 //
1536 // Map a chunk (UTF-16) offset to a native index.
1537 static int64_t U_CALLCONV
utf8TextMapOffsetToNative(const UText * ut)1538 utf8TextMapOffsetToNative(const UText *ut) {
1539 //
1540 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1541 U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1542 int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1543 U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1544 return nativeOffset;
1545 }
1546
1547 //
1548 // Map a native index to the corresponding chunk offset
1549 //
1550 static int32_t U_CALLCONV
utf8TextMapIndexToUTF16(const UText * ut,int64_t index64)1551 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1552 U_ASSERT(index64 <= 0x7fffffff);
1553 int32_t index = (int32_t)index64;
1554 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1555 U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1556 U_ASSERT(index<=ut->chunkNativeLimit);
1557 int32_t mapIndex = index - u8b->toUCharsMapStart;
1558 U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
1559 int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1560 U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1561 return offset;
1562 }
1563
1564 static UText * U_CALLCONV
utf8TextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1565 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1566 {
1567 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1568 dest = shallowTextClone(dest, src, status);
1569
1570 // For deep clones, make a copy of the string.
1571 // The copied storage is owned by the newly created clone.
1572 //
1573 // TODO: There is an issue with using utext_nativeLength().
1574 // That function is non-const in cases where the input was NUL terminated
1575 // and the length has not yet been determined.
1576 // This function (clone()) is const.
1577 // There potentially a thread safety issue lurking here.
1578 //
1579 if (deep && U_SUCCESS(*status)) {
1580 int32_t len = (int32_t)utext_nativeLength((UText *)src);
1581 char *copyStr = (char *)uprv_malloc(len+1);
1582 if (copyStr == NULL) {
1583 *status = U_MEMORY_ALLOCATION_ERROR;
1584 } else {
1585 uprv_memcpy(copyStr, src->context, len+1);
1586 dest->context = copyStr;
1587 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1588 }
1589 }
1590 return dest;
1591 }
1592
1593
1594 static void U_CALLCONV
utf8TextClose(UText * ut)1595 utf8TextClose(UText *ut) {
1596 // Most of the work of close is done by the generic UText framework close.
1597 // All that needs to be done here is to delete the UTF8 string if the UText
1598 // owns it. This occurs if the UText was created by cloning.
1599 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1600 char *s = (char *)ut->context;
1601 uprv_free(s);
1602 ut->context = NULL;
1603 }
1604 }
1605
1606 U_CDECL_END
1607
1608
1609 static const struct UTextFuncs utf8Funcs =
1610 {
1611 sizeof(UTextFuncs),
1612 0, 0, 0, // Reserved alignment padding
1613 utf8TextClone,
1614 utf8TextLength,
1615 utf8TextAccess,
1616 utf8TextExtract,
1617 NULL, /* replace*/
1618 NULL, /* copy */
1619 utf8TextMapOffsetToNative,
1620 utf8TextMapIndexToUTF16,
1621 utf8TextClose,
1622 NULL, // spare 1
1623 NULL, // spare 2
1624 NULL // spare 3
1625 };
1626
1627
1628 static const char gEmptyString[] = {0};
1629
1630 U_CAPI UText * U_EXPORT2
utext_openUTF8(UText * ut,const char * s,int64_t length,UErrorCode * status)1631 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1632 if(U_FAILURE(*status)) {
1633 return NULL;
1634 }
1635 if(s==NULL && length==0) {
1636 s = gEmptyString;
1637 }
1638
1639 if(s==NULL || length<-1 || length>INT32_MAX) {
1640 *status=U_ILLEGAL_ARGUMENT_ERROR;
1641 return NULL;
1642 }
1643
1644 ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1645 if (U_FAILURE(*status)) {
1646 return ut;
1647 }
1648
1649 ut->pFuncs = &utf8Funcs;
1650 ut->context = s;
1651 ut->b = (int32_t)length;
1652 ut->c = (int32_t)length;
1653 if (ut->c < 0) {
1654 ut->c = 0;
1655 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1656 }
1657 ut->p = ut->pExtra;
1658 ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1659 return ut;
1660
1661 }
1662
1663
1664
1665
1666
1667
1668
1669
1670 //------------------------------------------------------------------------------
1671 //
1672 // UText implementation wrapper for Replaceable (read/write)
1673 //
1674 // Use of UText data members:
1675 // context pointer to Replaceable.
1676 // p pointer to Replaceable if it is owned by the UText.
1677 //
1678 //------------------------------------------------------------------------------
1679
1680
1681
1682 // minimum chunk size for this implementation: 3
1683 // to allow for possible trimming for code point boundaries
1684 enum { REP_TEXT_CHUNK_SIZE=10 };
1685
1686 struct ReplExtra {
1687 /*
1688 * Chunk UChars.
1689 * +1 to simplify filling with surrogate pair at the end.
1690 */
1691 UChar s[REP_TEXT_CHUNK_SIZE+1];
1692 };
1693
1694
1695 U_CDECL_BEGIN
1696
1697 static UText * U_CALLCONV
repTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1698 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1699 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1700 dest = shallowTextClone(dest, src, status);
1701
1702 // For deep clones, make a copy of the Replaceable.
1703 // The copied Replaceable storage is owned by the newly created UText clone.
1704 // A non-NULL pointer in UText.p is the signal to the close() function to delete
1705 // it.
1706 //
1707 if (deep && U_SUCCESS(*status)) {
1708 const Replaceable *replSrc = (const Replaceable *)src->context;
1709 dest->context = replSrc->clone();
1710 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1711
1712 // with deep clone, the copy is writable, even when the source is not.
1713 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1714 }
1715 return dest;
1716 }
1717
1718
1719 static void U_CALLCONV
repTextClose(UText * ut)1720 repTextClose(UText *ut) {
1721 // Most of the work of close is done by the generic UText framework close.
1722 // All that needs to be done here is delete the Replaceable if the UText
1723 // owns it. This occurs if the UText was created by cloning.
1724 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1725 Replaceable *rep = (Replaceable *)ut->context;
1726 delete rep;
1727 ut->context = NULL;
1728 }
1729 }
1730
1731
1732 static int64_t U_CALLCONV
repTextLength(UText * ut)1733 repTextLength(UText *ut) {
1734 const Replaceable *replSrc = (const Replaceable *)ut->context;
1735 int32_t len = replSrc->length();
1736 return len;
1737 }
1738
1739
1740 static UBool U_CALLCONV
repTextAccess(UText * ut,int64_t index,UBool forward)1741 repTextAccess(UText *ut, int64_t index, UBool forward) {
1742 const Replaceable *rep=(const Replaceable *)ut->context;
1743 int32_t length=rep->length(); // Full length of the input text (bigger than a chunk)
1744
1745 // clip the requested index to the limits of the text.
1746 int32_t index32 = pinIndex(index, length);
1747 U_ASSERT(index<=INT32_MAX);
1748
1749
1750 /*
1751 * Compute start/limit boundaries around index, for a segment of text
1752 * to be extracted.
1753 * To allow for the possibility that our user gave an index to the trailing
1754 * half of a surrogate pair, we must request one extra preceding UChar when
1755 * going in the forward direction. This will ensure that the buffer has the
1756 * entire code point at the specified index.
1757 */
1758 if(forward) {
1759
1760 if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1761 // Buffer already contains the requested position.
1762 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1763 return TRUE;
1764 }
1765 if (index32>=length && ut->chunkNativeLimit==length) {
1766 // Request for end of string, and buffer already extends up to it.
1767 // Can't get the data, but don't change the buffer.
1768 ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1769 return FALSE;
1770 }
1771
1772 ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1773 // Going forward, so we want to have the buffer with stuff at and beyond
1774 // the requested index. The -1 gets us one code point before the
1775 // requested index also, to handle the case of the index being on
1776 // a trail surrogate of a surrogate pair.
1777 if(ut->chunkNativeLimit > length) {
1778 ut->chunkNativeLimit = length;
1779 }
1780 // unless buffer ran off end, start is index-1.
1781 ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1782 if(ut->chunkNativeStart < 0) {
1783 ut->chunkNativeStart = 0;
1784 }
1785 } else {
1786 // Reverse iteration. Fill buffer with data preceding the requested index.
1787 if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1788 // Requested position already in buffer.
1789 ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1790 return TRUE;
1791 }
1792 if (index32==0 && ut->chunkNativeStart==0) {
1793 // Request for start, buffer already begins at start.
1794 // No data, but keep the buffer as is.
1795 ut->chunkOffset = 0;
1796 return FALSE;
1797 }
1798
1799 // Figure out the bounds of the chunk to extract for reverse iteration.
1800 // Need to worry about chunk not splitting surrogate pairs, and while still
1801 // containing the data we need.
1802 // Fix by requesting a chunk that includes an extra UChar at the end.
1803 // If this turns out to be a lead surrogate, we can lop it off and still have
1804 // the data we wanted.
1805 ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1806 if (ut->chunkNativeStart < 0) {
1807 ut->chunkNativeStart = 0;
1808 }
1809
1810 ut->chunkNativeLimit = index32 + 1;
1811 if (ut->chunkNativeLimit > length) {
1812 ut->chunkNativeLimit = length;
1813 }
1814 }
1815
1816 // Extract the new chunk of text from the Replaceable source.
1817 ReplExtra *ex = (ReplExtra *)ut->pExtra;
1818 // UnicodeString with its buffer a writable alias to the chunk buffer
1819 UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1820 rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1821
1822 ut->chunkContents = ex->s;
1823 ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1824 ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart);
1825
1826 // Surrogate pairs from the input text must not span chunk boundaries.
1827 // If end of chunk could be the start of a surrogate, trim it off.
1828 if (ut->chunkNativeLimit < length &&
1829 U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1830 ut->chunkLength--;
1831 ut->chunkNativeLimit--;
1832 if (ut->chunkOffset > ut->chunkLength) {
1833 ut->chunkOffset = ut->chunkLength;
1834 }
1835 }
1836
1837 // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1838 // trim it off.
1839 if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1840 ++(ut->chunkContents);
1841 ++(ut->chunkNativeStart);
1842 --(ut->chunkLength);
1843 --(ut->chunkOffset);
1844 }
1845
1846 // adjust the index/chunkOffset to a code point boundary
1847 U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1848
1849 // Use fast indexing for get/setNativeIndex()
1850 ut->nativeIndexingLimit = ut->chunkLength;
1851
1852 return TRUE;
1853 }
1854
1855
1856
1857 static int32_t U_CALLCONV
repTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)1858 repTextExtract(UText *ut,
1859 int64_t start, int64_t limit,
1860 UChar *dest, int32_t destCapacity,
1861 UErrorCode *status) {
1862 const Replaceable *rep=(const Replaceable *)ut->context;
1863 int32_t length=rep->length();
1864
1865 if(U_FAILURE(*status)) {
1866 return 0;
1867 }
1868 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1869 *status=U_ILLEGAL_ARGUMENT_ERROR;
1870 }
1871 if(start>limit) {
1872 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1873 return 0;
1874 }
1875
1876 int32_t start32 = pinIndex(start, length);
1877 int32_t limit32 = pinIndex(limit, length);
1878
1879 // adjust start, limit if they point to trail half of surrogates
1880 if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1881 U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1882 start32--;
1883 }
1884 if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1885 U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1886 limit32--;
1887 }
1888
1889 length=limit32-start32;
1890 if(length>destCapacity) {
1891 limit32 = start32 + destCapacity;
1892 }
1893 UnicodeString buffer(dest, 0, destCapacity); // writable alias
1894 rep->extractBetween(start32, limit32, buffer);
1895 repTextAccess(ut, limit32, TRUE);
1896
1897 return u_terminateUChars(dest, destCapacity, length, status);
1898 }
1899
1900 static int32_t U_CALLCONV
repTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * status)1901 repTextReplace(UText *ut,
1902 int64_t start, int64_t limit,
1903 const UChar *src, int32_t length,
1904 UErrorCode *status) {
1905 Replaceable *rep=(Replaceable *)ut->context;
1906 int32_t oldLength;
1907
1908 if(U_FAILURE(*status)) {
1909 return 0;
1910 }
1911 if(src==NULL && length!=0) {
1912 *status=U_ILLEGAL_ARGUMENT_ERROR;
1913 return 0;
1914 }
1915 oldLength=rep->length(); // will subtract from new length
1916 if(start>limit ) {
1917 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1918 return 0;
1919 }
1920
1921 int32_t start32 = pinIndex(start, oldLength);
1922 int32_t limit32 = pinIndex(limit, oldLength);
1923
1924 // Snap start & limit to code point boundaries.
1925 if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1926 start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1927 {
1928 start32--;
1929 }
1930 if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1931 U16_IS_TRAIL(rep->charAt(limit32)))
1932 {
1933 limit32++;
1934 }
1935
1936 // Do the actual replace operation using methods of the Replaceable class
1937 UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1938 rep->handleReplaceBetween(start32, limit32, replStr);
1939 int32_t newLength = rep->length();
1940 int32_t lengthDelta = newLength - oldLength;
1941
1942 // Is the UText chunk buffer OK?
1943 if (ut->chunkNativeLimit > start32) {
1944 // this replace operation may have impacted the current chunk.
1945 // invalidate it, which will force a reload on the next access.
1946 invalidateChunk(ut);
1947 }
1948
1949 // set the iteration position to the end of the newly inserted replacement text.
1950 int32_t newIndexPos = limit32 + lengthDelta;
1951 repTextAccess(ut, newIndexPos, TRUE);
1952
1953 return lengthDelta;
1954 }
1955
1956
1957 static void U_CALLCONV
repTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * status)1958 repTextCopy(UText *ut,
1959 int64_t start, int64_t limit,
1960 int64_t destIndex,
1961 UBool move,
1962 UErrorCode *status)
1963 {
1964 Replaceable *rep=(Replaceable *)ut->context;
1965 int32_t length=rep->length();
1966
1967 if(U_FAILURE(*status)) {
1968 return;
1969 }
1970 if (start>limit || (start<destIndex && destIndex<limit))
1971 {
1972 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1973 return;
1974 }
1975
1976 int32_t start32 = pinIndex(start, length);
1977 int32_t limit32 = pinIndex(limit, length);
1978 int32_t destIndex32 = pinIndex(destIndex, length);
1979
1980 // TODO: snap input parameters to code point boundaries.
1981
1982 if(move) {
1983 // move: copy to destIndex, then replace original with nothing
1984 int32_t segLength=limit32-start32;
1985 rep->copy(start32, limit32, destIndex32);
1986 if(destIndex32<start32) {
1987 start32+=segLength;
1988 limit32+=segLength;
1989 }
1990 rep->handleReplaceBetween(start32, limit32, UnicodeString());
1991 } else {
1992 // copy
1993 rep->copy(start32, limit32, destIndex32);
1994 }
1995
1996 // If the change to the text touched the region in the chunk buffer,
1997 // invalidate the buffer.
1998 int32_t firstAffectedIndex = destIndex32;
1999 if (move && start32<firstAffectedIndex) {
2000 firstAffectedIndex = start32;
2001 }
2002 if (firstAffectedIndex < ut->chunkNativeLimit) {
2003 // changes may have affected range covered by the chunk
2004 invalidateChunk(ut);
2005 }
2006
2007 // Put iteration position at the newly inserted (moved) block,
2008 int32_t nativeIterIndex = destIndex32 + limit32 - start32;
2009 if (move && destIndex32>start32) {
2010 // moved a block of text towards the end of the string.
2011 nativeIterIndex = destIndex32;
2012 }
2013
2014 // Set position, reload chunk if needed.
2015 repTextAccess(ut, nativeIterIndex, TRUE);
2016 }
2017
2018 static const struct UTextFuncs repFuncs =
2019 {
2020 sizeof(UTextFuncs),
2021 0, 0, 0, // Reserved alignment padding
2022 repTextClone,
2023 repTextLength,
2024 repTextAccess,
2025 repTextExtract,
2026 repTextReplace,
2027 repTextCopy,
2028 NULL, // MapOffsetToNative,
2029 NULL, // MapIndexToUTF16,
2030 repTextClose,
2031 NULL, // spare 1
2032 NULL, // spare 2
2033 NULL // spare 3
2034 };
2035
2036
2037 U_CAPI UText * U_EXPORT2
utext_openReplaceable(UText * ut,Replaceable * rep,UErrorCode * status)2038 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2039 {
2040 if(U_FAILURE(*status)) {
2041 return NULL;
2042 }
2043 if(rep==NULL) {
2044 *status=U_ILLEGAL_ARGUMENT_ERROR;
2045 return NULL;
2046 }
2047 ut = utext_setup(ut, sizeof(ReplExtra), status);
2048 if(U_FAILURE(*status)) {
2049 return ut;
2050 }
2051
2052 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2053 if(rep->hasMetaData()) {
2054 ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2055 }
2056
2057 ut->pFuncs = &repFuncs;
2058 ut->context = rep;
2059 return ut;
2060 }
2061
2062 U_CDECL_END
2063
2064
2065
2066
2067
2068
2069
2070
2071 //------------------------------------------------------------------------------
2072 //
2073 // UText implementation for UnicodeString (read/write) and
2074 // for const UnicodeString (read only)
2075 // (same implementation, only the flags are different)
2076 //
2077 // Use of UText data members:
2078 // context pointer to UnicodeString
2079 // p pointer to UnicodeString IF this UText owns the string
2080 // and it must be deleted on close(). NULL otherwise.
2081 //
2082 //------------------------------------------------------------------------------
2083
2084 U_CDECL_BEGIN
2085
2086
2087 static UText * U_CALLCONV
unistrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2088 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2089 // First do a generic shallow clone. Does everything needed for the UText struct itself.
2090 dest = shallowTextClone(dest, src, status);
2091
2092 // For deep clones, make a copy of the UnicodeSring.
2093 // The copied UnicodeString storage is owned by the newly created UText clone.
2094 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2095 // the UText.
2096 //
2097 if (deep && U_SUCCESS(*status)) {
2098 const UnicodeString *srcString = (const UnicodeString *)src->context;
2099 dest->context = new UnicodeString(*srcString);
2100 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2101
2102 // with deep clone, the copy is writable, even when the source is not.
2103 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2104 }
2105 return dest;
2106 }
2107
2108 static void U_CALLCONV
unistrTextClose(UText * ut)2109 unistrTextClose(UText *ut) {
2110 // Most of the work of close is done by the generic UText framework close.
2111 // All that needs to be done here is delete the UnicodeString if the UText
2112 // owns it. This occurs if the UText was created by cloning.
2113 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2114 UnicodeString *str = (UnicodeString *)ut->context;
2115 delete str;
2116 ut->context = NULL;
2117 }
2118 }
2119
2120
2121 static int64_t U_CALLCONV
unistrTextLength(UText * t)2122 unistrTextLength(UText *t) {
2123 return ((const UnicodeString *)t->context)->length();
2124 }
2125
2126
2127 static UBool U_CALLCONV
unistrTextAccess(UText * ut,int64_t index,UBool forward)2128 unistrTextAccess(UText *ut, int64_t index, UBool forward) {
2129 int32_t length = ut->chunkLength;
2130 ut->chunkOffset = pinIndex(index, length);
2131
2132 // Check whether request is at the start or end
2133 UBool retVal = (forward && index<length) || (!forward && index>0);
2134 return retVal;
2135 }
2136
2137
2138
2139 static int32_t U_CALLCONV
unistrTextExtract(UText * t,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2140 unistrTextExtract(UText *t,
2141 int64_t start, int64_t limit,
2142 UChar *dest, int32_t destCapacity,
2143 UErrorCode *pErrorCode) {
2144 const UnicodeString *us=(const UnicodeString *)t->context;
2145 int32_t length=us->length();
2146
2147 if(U_FAILURE(*pErrorCode)) {
2148 return 0;
2149 }
2150 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2151 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2152 }
2153 if(start<0 || start>limit) {
2154 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2155 return 0;
2156 }
2157
2158 int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2159 int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2160
2161 length=limit32-start32;
2162 if (destCapacity>0 && dest!=NULL) {
2163 int32_t trimmedLength = length;
2164 if(trimmedLength>destCapacity) {
2165 trimmedLength=destCapacity;
2166 }
2167 us->extract(start32, trimmedLength, dest);
2168 t->chunkOffset = start32+trimmedLength;
2169 } else {
2170 t->chunkOffset = start32;
2171 }
2172 u_terminateUChars(dest, destCapacity, length, pErrorCode);
2173 return length;
2174 }
2175
2176 static int32_t U_CALLCONV
unistrTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * pErrorCode)2177 unistrTextReplace(UText *ut,
2178 int64_t start, int64_t limit,
2179 const UChar *src, int32_t length,
2180 UErrorCode *pErrorCode) {
2181 UnicodeString *us=(UnicodeString *)ut->context;
2182 int32_t oldLength;
2183
2184 if(U_FAILURE(*pErrorCode)) {
2185 return 0;
2186 }
2187 if(src==NULL && length!=0) {
2188 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2189 }
2190 if(start>limit) {
2191 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2192 return 0;
2193 }
2194 oldLength=us->length();
2195 int32_t start32 = pinIndex(start, oldLength);
2196 int32_t limit32 = pinIndex(limit, oldLength);
2197 if (start32 < oldLength) {
2198 start32 = us->getChar32Start(start32);
2199 }
2200 if (limit32 < oldLength) {
2201 limit32 = us->getChar32Start(limit32);
2202 }
2203
2204 // replace
2205 us->replace(start32, limit32-start32, src, length);
2206 int32_t newLength = us->length();
2207
2208 // Update the chunk description.
2209 ut->chunkContents = us->getBuffer();
2210 ut->chunkLength = newLength;
2211 ut->chunkNativeLimit = newLength;
2212 ut->nativeIndexingLimit = newLength;
2213
2214 // Set iteration position to the point just following the newly inserted text.
2215 int32_t lengthDelta = newLength - oldLength;
2216 ut->chunkOffset = limit32 + lengthDelta;
2217
2218 return lengthDelta;
2219 }
2220
2221 static void U_CALLCONV
unistrTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * pErrorCode)2222 unistrTextCopy(UText *ut,
2223 int64_t start, int64_t limit,
2224 int64_t destIndex,
2225 UBool move,
2226 UErrorCode *pErrorCode) {
2227 UnicodeString *us=(UnicodeString *)ut->context;
2228 int32_t length=us->length();
2229
2230 if(U_FAILURE(*pErrorCode)) {
2231 return;
2232 }
2233 int32_t start32 = pinIndex(start, length);
2234 int32_t limit32 = pinIndex(limit, length);
2235 int32_t destIndex32 = pinIndex(destIndex, length);
2236
2237 if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2238 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2239 return;
2240 }
2241
2242 if(move) {
2243 // move: copy to destIndex, then remove original
2244 int32_t segLength=limit32-start32;
2245 us->copy(start32, limit32, destIndex32);
2246 if(destIndex32<start32) {
2247 start32+=segLength;
2248 }
2249 us->remove(start32, segLength);
2250 } else {
2251 // copy
2252 us->copy(start32, limit32, destIndex32);
2253 }
2254
2255 // update chunk description, set iteration position.
2256 ut->chunkContents = us->getBuffer();
2257 if (move==FALSE) {
2258 // copy operation, string length grows
2259 ut->chunkLength += limit32-start32;
2260 ut->chunkNativeLimit = ut->chunkLength;
2261 ut->nativeIndexingLimit = ut->chunkLength;
2262 }
2263
2264 // Iteration position to end of the newly inserted text.
2265 ut->chunkOffset = destIndex32+limit32-start32;
2266 if (move && destIndex32>start32) {
2267 ut->chunkOffset = destIndex32;
2268 }
2269
2270 }
2271
2272 static const struct UTextFuncs unistrFuncs =
2273 {
2274 sizeof(UTextFuncs),
2275 0, 0, 0, // Reserved alignment padding
2276 unistrTextClone,
2277 unistrTextLength,
2278 unistrTextAccess,
2279 unistrTextExtract,
2280 unistrTextReplace,
2281 unistrTextCopy,
2282 NULL, // MapOffsetToNative,
2283 NULL, // MapIndexToUTF16,
2284 unistrTextClose,
2285 NULL, // spare 1
2286 NULL, // spare 2
2287 NULL // spare 3
2288 };
2289
2290
2291
2292 U_CDECL_END
2293
2294
2295 U_CAPI UText * U_EXPORT2
utext_openUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)2296 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2297 ut = utext_openConstUnicodeString(ut, s, status);
2298 if (U_SUCCESS(*status)) {
2299 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2300 }
2301 return ut;
2302 }
2303
2304
2305
2306 U_CAPI UText * U_EXPORT2
utext_openConstUnicodeString(UText * ut,const UnicodeString * s,UErrorCode * status)2307 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2308 if (U_SUCCESS(*status) && s->isBogus()) {
2309 // The UnicodeString is bogus, but we still need to detach the UText
2310 // from whatever it was hooked to before, if anything.
2311 utext_openUChars(ut, NULL, 0, status);
2312 *status = U_ILLEGAL_ARGUMENT_ERROR;
2313 return ut;
2314 }
2315 ut = utext_setup(ut, 0, status);
2316 // note: use the standard (writable) function table for UnicodeString.
2317 // The flag settings disable writing, so having the functions in
2318 // the table is harmless.
2319 if (U_SUCCESS(*status)) {
2320 ut->pFuncs = &unistrFuncs;
2321 ut->context = s;
2322 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2323 ut->chunkContents = s->getBuffer();
2324 ut->chunkLength = s->length();
2325 ut->chunkNativeStart = 0;
2326 ut->chunkNativeLimit = ut->chunkLength;
2327 ut->nativeIndexingLimit = ut->chunkLength;
2328 }
2329 return ut;
2330 }
2331
2332 //------------------------------------------------------------------------------
2333 //
2334 // UText implementation for const UChar * strings
2335 //
2336 // Use of UText data members:
2337 // context pointer to UnicodeString
2338 // a length. -1 if not yet known.
2339 //
2340 // TODO: support 64 bit lengths.
2341 //
2342 //------------------------------------------------------------------------------
2343
2344 U_CDECL_BEGIN
2345
2346
2347 static UText * U_CALLCONV
ucstrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2348 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2349 // First do a generic shallow clone.
2350 dest = shallowTextClone(dest, src, status);
2351
2352 // For deep clones, make a copy of the string.
2353 // The copied storage is owned by the newly created clone.
2354 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2355 // it.
2356 //
2357 if (deep && U_SUCCESS(*status)) {
2358 U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2359 int32_t len = (int32_t)utext_nativeLength(dest);
2360
2361 // The cloned string IS going to be NUL terminated, whether or not the original was.
2362 const UChar *srcStr = (const UChar *)src->context;
2363 UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2364 if (copyStr == NULL) {
2365 *status = U_MEMORY_ALLOCATION_ERROR;
2366 } else {
2367 int64_t i;
2368 for (i=0; i<len; i++) {
2369 copyStr[i] = srcStr[i];
2370 }
2371 copyStr[len] = 0;
2372 dest->context = copyStr;
2373 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2374 }
2375 }
2376 return dest;
2377 }
2378
2379
2380 static void U_CALLCONV
ucstrTextClose(UText * ut)2381 ucstrTextClose(UText *ut) {
2382 // Most of the work of close is done by the generic UText framework close.
2383 // All that needs to be done here is delete the string if the UText
2384 // owns it. This occurs if the UText was created by cloning.
2385 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2386 UChar *s = (UChar *)ut->context;
2387 uprv_free(s);
2388 ut->context = NULL;
2389 }
2390 }
2391
2392
2393
2394 static int64_t U_CALLCONV
ucstrTextLength(UText * ut)2395 ucstrTextLength(UText *ut) {
2396 if (ut->a < 0) {
2397 // null terminated, we don't yet know the length. Scan for it.
2398 // Access is not convenient for doing this
2399 // because the current iteration position can't be changed.
2400 const UChar *str = (const UChar *)ut->context;
2401 for (;;) {
2402 if (str[ut->chunkNativeLimit] == 0) {
2403 break;
2404 }
2405 ut->chunkNativeLimit++;
2406 }
2407 ut->a = ut->chunkNativeLimit;
2408 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2409 ut->nativeIndexingLimit = ut->chunkLength;
2410 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2411 }
2412 return ut->a;
2413 }
2414
2415
2416 static UBool U_CALLCONV
ucstrTextAccess(UText * ut,int64_t index,UBool forward)2417 ucstrTextAccess(UText *ut, int64_t index, UBool forward) {
2418 const UChar *str = (const UChar *)ut->context;
2419
2420 // pin the requested index to the bounds of the string,
2421 // and set current iteration position.
2422 if (index<0) {
2423 index = 0;
2424 } else if (index < ut->chunkNativeLimit) {
2425 // The request data is within the chunk as it is known so far.
2426 // Put index on a code point boundary.
2427 U16_SET_CP_START(str, 0, index);
2428 } else if (ut->a >= 0) {
2429 // We know the length of this string, and the user is requesting something
2430 // at or beyond the length. Pin the requested index to the length.
2431 index = ut->a;
2432 } else {
2433 // Null terminated string, length not yet known, and the requested index
2434 // is beyond where we have scanned so far.
2435 // Scan to 32 UChars beyond the requested index. The strategy here is
2436 // to avoid fully scanning a long string when the caller only wants to
2437 // see a few characters at its beginning.
2438 int32_t scanLimit = (int32_t)index + 32;
2439 if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression
2440 scanLimit = INT32_MAX;
2441 }
2442
2443 int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2444 for (; chunkLimit<scanLimit; chunkLimit++) {
2445 if (str[chunkLimit] == 0) {
2446 // We found the end of the string. Remember it, pin the requested index to it,
2447 // and bail out of here.
2448 ut->a = chunkLimit;
2449 ut->chunkLength = chunkLimit;
2450 ut->nativeIndexingLimit = chunkLimit;
2451 if (index >= chunkLimit) {
2452 index = chunkLimit;
2453 } else {
2454 U16_SET_CP_START(str, 0, index);
2455 }
2456
2457 ut->chunkNativeLimit = chunkLimit;
2458 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2459 goto breakout;
2460 }
2461 }
2462 // We scanned through the next batch of UChars without finding the end.
2463 U16_SET_CP_START(str, 0, index);
2464 if (chunkLimit == INT32_MAX) {
2465 // Scanned to the limit of a 32 bit length.
2466 // Forceably trim the overlength string back so length fits in int32
2467 // TODO: add support for 64 bit strings.
2468 ut->a = chunkLimit;
2469 ut->chunkLength = chunkLimit;
2470 ut->nativeIndexingLimit = chunkLimit;
2471 if (index > chunkLimit) {
2472 index = chunkLimit;
2473 }
2474 ut->chunkNativeLimit = chunkLimit;
2475 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2476 } else {
2477 // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2478 // If the current end is on a lead surrogate, back the end up by one.
2479 // It doesn't matter if the end char happens to be an unpaired surrogate,
2480 // and it's simpler not to worry about it.
2481 if (U16_IS_LEAD(str[chunkLimit-1])) {
2482 --chunkLimit;
2483 }
2484 // Null-terminated chunk with end still unknown.
2485 // Update the chunk length to reflect what has been scanned thus far.
2486 // That the full length is still unknown is (still) flagged by
2487 // ut->a being < 0.
2488 ut->chunkNativeLimit = chunkLimit;
2489 ut->nativeIndexingLimit = chunkLimit;
2490 ut->chunkLength = chunkLimit;
2491 }
2492
2493 }
2494 breakout:
2495 U_ASSERT(index<=INT32_MAX);
2496 ut->chunkOffset = (int32_t)index;
2497
2498 // Check whether request is at the start or end
2499 UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2500 return retVal;
2501 }
2502
2503
2504
2505 static int32_t U_CALLCONV
ucstrTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2506 ucstrTextExtract(UText *ut,
2507 int64_t start, int64_t limit,
2508 UChar *dest, int32_t destCapacity,
2509 UErrorCode *pErrorCode)
2510 {
2511 if(U_FAILURE(*pErrorCode)) {
2512 return 0;
2513 }
2514 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2515 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2516 return 0;
2517 }
2518
2519 //const UChar *s=(const UChar *)ut->context;
2520 int32_t si, di;
2521
2522 int32_t start32;
2523 int32_t limit32;
2524
2525 // Access the start. Does two things we need:
2526 // Pins 'start' to the length of the string, if it came in out-of-bounds.
2527 // Snaps 'start' to the beginning of a code point.
2528 ucstrTextAccess(ut, start, TRUE);
2529 const UChar *s=ut->chunkContents;
2530 start32 = ut->chunkOffset;
2531
2532 int32_t strLength=(int32_t)ut->a;
2533 if (strLength >= 0) {
2534 limit32 = pinIndex(limit, strLength);
2535 } else {
2536 limit32 = pinIndex(limit, INT32_MAX);
2537 }
2538 di = 0;
2539 for (si=start32; si<limit32; si++) {
2540 if (strLength<0 && s[si]==0) {
2541 // Just hit the end of a null-terminated string.
2542 ut->a = si; // set string length for this UText
2543 ut->chunkNativeLimit = si;
2544 ut->chunkLength = si;
2545 ut->nativeIndexingLimit = si;
2546 strLength = si;
2547 limit32 = si;
2548 break;
2549 }
2550 U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2551 if (di<destCapacity) {
2552 // only store if there is space.
2553 dest[di] = s[si];
2554 } else {
2555 if (strLength>=0) {
2556 // We have filled the destination buffer, and the string length is known.
2557 // Cut the loop short. There is no need to scan string termination.
2558 di = limit32 - start32;
2559 si = limit32;
2560 break;
2561 }
2562 }
2563 di++;
2564 }
2565
2566 // If the limit index points to a lead surrogate of a pair,
2567 // add the corresponding trail surrogate to the destination.
2568 if (si>0 && U16_IS_LEAD(s[si-1]) &&
2569 ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si])))
2570 {
2571 if (di<destCapacity) {
2572 // store only if there is space in the output buffer.
2573 dest[di++] = s[si];
2574 }
2575 si++;
2576 }
2577
2578 // Put iteration position at the point just following the extracted text
2579 if (si <= ut->chunkNativeLimit) {
2580 ut->chunkOffset = si;
2581 } else {
2582 ucstrTextAccess(ut, si, TRUE);
2583 }
2584
2585 // Add a terminating NUL if space in the buffer permits,
2586 // and set the error status as required.
2587 u_terminateUChars(dest, destCapacity, di, pErrorCode);
2588 return di;
2589 }
2590
2591 static const struct UTextFuncs ucstrFuncs =
2592 {
2593 sizeof(UTextFuncs),
2594 0, 0, 0, // Reserved alignment padding
2595 ucstrTextClone,
2596 ucstrTextLength,
2597 ucstrTextAccess,
2598 ucstrTextExtract,
2599 NULL, // Replace
2600 NULL, // Copy
2601 NULL, // MapOffsetToNative,
2602 NULL, // MapIndexToUTF16,
2603 ucstrTextClose,
2604 NULL, // spare 1
2605 NULL, // spare 2
2606 NULL, // spare 3
2607 };
2608
2609 U_CDECL_END
2610
2611 static const UChar gEmptyUString[] = {0};
2612
2613 U_CAPI UText * U_EXPORT2
utext_openUChars(UText * ut,const UChar * s,int64_t length,UErrorCode * status)2614 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2615 if (U_FAILURE(*status)) {
2616 return NULL;
2617 }
2618 if(s==NULL && length==0) {
2619 s = gEmptyUString;
2620 }
2621 if (s==NULL || length < -1 || length>INT32_MAX) {
2622 *status = U_ILLEGAL_ARGUMENT_ERROR;
2623 return NULL;
2624 }
2625 ut = utext_setup(ut, 0, status);
2626 if (U_SUCCESS(*status)) {
2627 ut->pFuncs = &ucstrFuncs;
2628 ut->context = s;
2629 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2630 if (length==-1) {
2631 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2632 }
2633 ut->a = length;
2634 ut->chunkContents = s;
2635 ut->chunkNativeStart = 0;
2636 ut->chunkNativeLimit = length>=0? length : 0;
2637 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2638 ut->chunkOffset = 0;
2639 ut->nativeIndexingLimit = ut->chunkLength;
2640 }
2641 return ut;
2642 }
2643
2644
2645 //------------------------------------------------------------------------------
2646 //
2647 // UText implementation for text from ICU CharacterIterators
2648 //
2649 // Use of UText data members:
2650 // context pointer to the CharacterIterator
2651 // a length of the full text.
2652 // p pointer to buffer 1
2653 // b start index of local buffer 1 contents
2654 // q pointer to buffer 2
2655 // c start index of local buffer 2 contents
2656 // r pointer to the character iterator if the UText owns it.
2657 // Null otherwise.
2658 //
2659 //------------------------------------------------------------------------------
2660 #define CIBufSize 16
2661
2662 U_CDECL_BEGIN
2663 static void U_CALLCONV
charIterTextClose(UText * ut)2664 charIterTextClose(UText *ut) {
2665 // Most of the work of close is done by the generic UText framework close.
2666 // All that needs to be done here is delete the CharacterIterator if the UText
2667 // owns it. This occurs if the UText was created by cloning.
2668 CharacterIterator *ci = (CharacterIterator *)ut->r;
2669 delete ci;
2670 ut->r = NULL;
2671 }
2672
2673 static int64_t U_CALLCONV
charIterTextLength(UText * ut)2674 charIterTextLength(UText *ut) {
2675 return (int32_t)ut->a;
2676 }
2677
2678 static UBool U_CALLCONV
charIterTextAccess(UText * ut,int64_t index,UBool forward)2679 charIterTextAccess(UText *ut, int64_t index, UBool forward) {
2680 CharacterIterator *ci = (CharacterIterator *)ut->context;
2681
2682 int32_t clippedIndex = (int32_t)index;
2683 if (clippedIndex<0) {
2684 clippedIndex=0;
2685 } else if (clippedIndex>=ut->a) {
2686 clippedIndex=(int32_t)ut->a;
2687 }
2688 int32_t neededIndex = clippedIndex;
2689 if (!forward && neededIndex>0) {
2690 // reverse iteration, want the position just before what was asked for.
2691 neededIndex--;
2692 } else if (forward && neededIndex==ut->a && neededIndex>0) {
2693 // Forward iteration, don't ask for something past the end of the text.
2694 neededIndex--;
2695 }
2696
2697 // Find the native index of the start of the buffer containing what we want.
2698 neededIndex -= neededIndex % CIBufSize;
2699
2700 UChar *buf = NULL;
2701 UBool needChunkSetup = TRUE;
2702 int i;
2703 if (ut->chunkNativeStart == neededIndex) {
2704 // The buffer we want is already the current chunk.
2705 needChunkSetup = FALSE;
2706 } else if (ut->b == neededIndex) {
2707 // The first buffer (buffer p) has what we need.
2708 buf = (UChar *)ut->p;
2709 } else if (ut->c == neededIndex) {
2710 // The second buffer (buffer q) has what we need.
2711 buf = (UChar *)ut->q;
2712 } else {
2713 // Neither buffer already has what we need.
2714 // Load new data from the character iterator.
2715 // Use the buf that is not the current buffer.
2716 buf = (UChar *)ut->p;
2717 if (ut->p == ut->chunkContents) {
2718 buf = (UChar *)ut->q;
2719 }
2720 ci->setIndex(neededIndex);
2721 for (i=0; i<CIBufSize; i++) {
2722 buf[i] = ci->nextPostInc();
2723 if (i+neededIndex > ut->a) {
2724 break;
2725 }
2726 }
2727 }
2728
2729 // We have a buffer with the data we need.
2730 // Set it up as the current chunk, if it wasn't already.
2731 if (needChunkSetup) {
2732 ut->chunkContents = buf;
2733 ut->chunkLength = CIBufSize;
2734 ut->chunkNativeStart = neededIndex;
2735 ut->chunkNativeLimit = neededIndex + CIBufSize;
2736 if (ut->chunkNativeLimit > ut->a) {
2737 ut->chunkNativeLimit = ut->a;
2738 ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2739 }
2740 ut->nativeIndexingLimit = ut->chunkLength;
2741 U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2742 }
2743 ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2744 UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2745 return success;
2746 }
2747
2748 static UText * U_CALLCONV
charIterTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2749 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2750 if (U_FAILURE(*status)) {
2751 return NULL;
2752 }
2753
2754 if (deep) {
2755 // There is no CharacterIterator API for cloning the underlying text storage.
2756 *status = U_UNSUPPORTED_ERROR;
2757 return NULL;
2758 } else {
2759 CharacterIterator *srcCI =(CharacterIterator *)src->context;
2760 srcCI = srcCI->clone();
2761 dest = utext_openCharacterIterator(dest, srcCI, status);
2762 if (U_FAILURE(*status)) {
2763 return dest;
2764 }
2765 // cast off const on getNativeIndex.
2766 // For CharacterIterator based UTexts, this is safe, the operation is const.
2767 int64_t ix = utext_getNativeIndex((UText *)src);
2768 utext_setNativeIndex(dest, ix);
2769 dest->r = srcCI; // flags that this UText owns the CharacterIterator
2770 }
2771 return dest;
2772 }
2773
2774 static int32_t U_CALLCONV
charIterTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)2775 charIterTextExtract(UText *ut,
2776 int64_t start, int64_t limit,
2777 UChar *dest, int32_t destCapacity,
2778 UErrorCode *status)
2779 {
2780 if(U_FAILURE(*status)) {
2781 return 0;
2782 }
2783 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2784 *status=U_ILLEGAL_ARGUMENT_ERROR;
2785 return 0;
2786 }
2787 int32_t length = (int32_t)ut->a;
2788 int32_t start32 = pinIndex(start, length);
2789 int32_t limit32 = pinIndex(limit, length);
2790 int32_t desti = 0;
2791 int32_t srci;
2792 int32_t copyLimit;
2793
2794 CharacterIterator *ci = (CharacterIterator *)ut->context;
2795 ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed.
2796 srci = ci->getIndex();
2797 copyLimit = srci;
2798 while (srci<limit32) {
2799 UChar32 c = ci->next32PostInc();
2800 int32_t len = U16_LENGTH(c);
2801 U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2802 if (desti+len <= destCapacity) {
2803 U16_APPEND_UNSAFE(dest, desti, c);
2804 copyLimit = srci+len;
2805 } else {
2806 desti += len;
2807 *status = U_BUFFER_OVERFLOW_ERROR;
2808 }
2809 srci += len;
2810 }
2811
2812 charIterTextAccess(ut, copyLimit, TRUE);
2813
2814 u_terminateUChars(dest, destCapacity, desti, status);
2815 return desti;
2816 }
2817
2818 static const struct UTextFuncs charIterFuncs =
2819 {
2820 sizeof(UTextFuncs),
2821 0, 0, 0, // Reserved alignment padding
2822 charIterTextClone,
2823 charIterTextLength,
2824 charIterTextAccess,
2825 charIterTextExtract,
2826 NULL, // Replace
2827 NULL, // Copy
2828 NULL, // MapOffsetToNative,
2829 NULL, // MapIndexToUTF16,
2830 charIterTextClose,
2831 NULL, // spare 1
2832 NULL, // spare 2
2833 NULL // spare 3
2834 };
2835 U_CDECL_END
2836
2837
2838 U_CAPI UText * U_EXPORT2
utext_openCharacterIterator(UText * ut,CharacterIterator * ci,UErrorCode * status)2839 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2840 if (U_FAILURE(*status)) {
2841 return NULL;
2842 }
2843
2844 if (ci->startIndex() > 0) {
2845 // No support for CharacterIterators that do not start indexing from zero.
2846 *status = U_UNSUPPORTED_ERROR;
2847 return NULL;
2848 }
2849
2850 // Extra space in UText for 2 buffers of CIBufSize UChars each.
2851 int32_t extraSpace = 2 * CIBufSize * sizeof(UChar);
2852 ut = utext_setup(ut, extraSpace, status);
2853 if (U_SUCCESS(*status)) {
2854 ut->pFuncs = &charIterFuncs;
2855 ut->context = ci;
2856 ut->providerProperties = 0;
2857 ut->a = ci->endIndex(); // Length of text
2858 ut->p = ut->pExtra; // First buffer
2859 ut->b = -1; // Native index of first buffer contents
2860 ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer
2861 ut->c = -1; // Native index of second buffer contents
2862
2863 // Initialize current chunk contents to be empty.
2864 // First access will fault something in.
2865 // Note: The initial nativeStart and chunkOffset must sum to zero
2866 // so that getNativeIndex() will correctly compute to zero
2867 // if no call to Access() has ever been made. They can't be both
2868 // zero without Access() thinking that the chunk is valid.
2869 ut->chunkContents = (UChar *)ut->p;
2870 ut->chunkNativeStart = -1;
2871 ut->chunkOffset = 1;
2872 ut->chunkNativeLimit = 0;
2873 ut->chunkLength = 0;
2874 ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing
2875 }
2876 return ut;
2877 }
2878