• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 #ifndef __NUMBER_DECIMALQUANTITY_H__
8 #define __NUMBER_DECIMALQUANTITY_H__
9 
10 #include <cstdint>
11 #include "unicode/umachine.h"
12 #include "standardplural.h"
13 #include "plurrule_impl.h"
14 #include "number_types.h"
15 
16 U_NAMESPACE_BEGIN namespace number {
17 namespace impl {
18 
19 // Forward-declare (maybe don't want number_utils.h included here):
20 class DecNum;
21 
22 /**
23  * A class for representing a number to be processed by the decimal formatting pipeline. Includes
24  * methods for rounding, plural rules, and decimal digit extraction.
25  *
26  * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27  * object holding state during a pass through the decimal formatting pipeline.
28  *
29  * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30  *
31  * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32  */
33 class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34   public:
35     /** Copy constructor. */
36     DecimalQuantity(const DecimalQuantity &other);
37 
38     /** Move constructor. */
39     DecimalQuantity(DecimalQuantity &&src) U_NOEXCEPT;
40 
41     DecimalQuantity();
42 
43     ~DecimalQuantity() override;
44 
45     /**
46      * Sets this instance to be equal to another instance.
47      *
48      * @param other The instance to copy from.
49      */
50     DecimalQuantity &operator=(const DecimalQuantity &other);
51 
52     /** Move assignment */
53     DecimalQuantity &operator=(DecimalQuantity&& src) U_NOEXCEPT;
54 
55     /**
56      * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
57      * This method does not perform rounding.
58      *
59      * @param minInt The minimum number of integer digits.
60      */
61     void setMinInteger(int32_t minInt);
62 
63     /**
64      * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
65      * This method does not perform rounding.
66      *
67      * @param minFrac The minimum number of fraction digits.
68      */
69     void setMinFraction(int32_t minFrac);
70 
71     /**
72      * Truncates digits from the upper magnitude of the number in order to satisfy the
73      * specified maximum number of integer digits.
74      *
75      * @param maxInt The maximum number of integer digits.
76      */
77     void applyMaxInteger(int32_t maxInt);
78 
79     /**
80      * Rounds the number to a specified interval, such as 0.05.
81      *
82      * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
83      *
84      * @param roundingIncrement The increment to which to round.
85      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
86      */
87     void roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
88                           UErrorCode& status);
89 
90     /** Removes all fraction digits. */
91     void truncate();
92 
93     /**
94      * Rounds the number to the nearest multiple of 5 at the specified magnitude.
95      * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
96      *
97      * @param magnitude The magnitude at which the digit should become either 0 or 5.
98      * @param roundingMode Rounding strategy.
99      */
100     void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
101 
102     /**
103      * Rounds the number to a specified magnitude (power of ten).
104      *
105      * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
106      *     round to 2 decimal places.
107      * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
108      */
109     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
110 
111     /**
112      * Rounds the number to an infinite number of decimal points. This has no effect except for
113      * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
114      */
115     void roundToInfinity();
116 
117     /**
118      * Multiply the internal value. Uses decNumber.
119      *
120      * @param multiplicand The value by which to multiply.
121      */
122     void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
123 
124     /**
125      * Divide the internal value. Uses decNumber.
126      *
127      * @param multiplicand The value by which to multiply.
128      */
129     void divideBy(const DecNum& divisor, UErrorCode& status);
130 
131     /** Flips the sign from positive to negative and back. */
132     void negate();
133 
134     /**
135      * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
136      * this method with delta=-3 will change the value to "1.23456".
137      *
138      * @param delta The number of magnitudes of ten to change by.
139      * @return true if integer overflow occurred; false otherwise.
140      */
141     bool adjustMagnitude(int32_t delta);
142 
143     /**
144      * @return The power of ten corresponding to the most significant nonzero digit.
145      * The number must not be zero.
146      */
147     int32_t getMagnitude() const;
148 
149     /**
150      * @return The value of the (suppressed) exponent after the number has been
151      * put into a notation with exponents (ex: compact, scientific).  Ex: given
152      * the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
153      */
154     int32_t getExponent() const;
155 
156     /**
157      * Adjusts the value for the (suppressed) exponent stored when using
158      * notation with exponents (ex: compact, scientific).
159      *
160      * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
161      * order to allow flexibility for {@link StandardPlural} to be selected in
162      * formatting (ex: for compact notation) either with or without the exponent
163      * applied in the value of the number.
164      * @param delta
165      *             The value to adjust the exponent by.
166      */
167     void adjustExponent(int32_t delta);
168 
169     /**
170      * Resets the DecimalQuantity to the value before adjustMagnitude and adjustExponent.
171      */
172     void resetExponent();
173 
174     /**
175      * @return Whether the value represented by this {@link DecimalQuantity} is
176      * zero, infinity, or NaN.
177      */
178     bool isZeroish() const;
179 
180     /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
181     bool isNegative() const;
182 
183     /** @return The appropriate value from the Signum enum. */
184     Signum signum() const;
185 
186     /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
187     bool isInfinite() const U_OVERRIDE;
188 
189     /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
190     bool isNaN() const U_OVERRIDE;
191 
192     /**
193      * Note: this method incorporates the value of {@code exponent}
194      * (for cases such as compact notation) to return the proper long value
195      * represented by the result.
196      * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error.
197      */
198     int64_t toLong(bool truncateIfOverflow = false) const;
199 
200     /**
201      * Note: this method incorporates the value of {@code exponent}
202      * (for cases such as compact notation) to return the proper long value
203      * represented by the result.
204      */
205     uint64_t toFractionLong(bool includeTrailingZeros) const;
206 
207     /**
208      * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
209      * @param ignoreFraction if true, silently ignore digits after the decimal place.
210      */
211     bool fitsInLong(bool ignoreFraction = false) const;
212 
213     /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
214     double toDouble() const;
215 
216     /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
217     DecNum& toDecNum(DecNum& output, UErrorCode& status) const;
218 
219     DecimalQuantity &setToInt(int32_t n);
220 
221     DecimalQuantity &setToLong(int64_t n);
222 
223     DecimalQuantity &setToDouble(double n);
224 
225     /**
226      * Produces a DecimalQuantity that was parsed from a string by the decNumber
227      * C Library.
228      *
229      * decNumber is similar to BigDecimal in Java, and supports parsing strings
230      * such as "123.456621E+40".
231      */
232     DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
233 
234     /** Internal method if the caller already has a DecNum. */
235     DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
236 
237     /**
238      * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
239      * by this DecimalQuantity.
240      *
241      * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
242      * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
243      *
244      * @param value The digit to append.
245      * @param leadingZeros The number of zeros to append before the digit. For example, if the value
246      *     in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
247      *     12.304.
248      * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
249      *     new digit. If false, append to the end like a fraction digit. If true, there must not be
250      *     any fraction digits already in the number.
251      * @internal
252      * @deprecated This API is ICU internal only.
253      */
254     void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
255 
256     double getPluralOperand(PluralOperand operand) const U_OVERRIDE;
257 
258     bool hasIntegerValue() const U_OVERRIDE;
259 
260     /**
261      * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
262      * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
263      *
264      * @param magnitude The magnitude of the digit.
265      * @return The digit at the specified magnitude.
266      */
267     int8_t getDigit(int32_t magnitude) const;
268 
269     /**
270      * Gets the largest power of ten that needs to be displayed. The value returned by this function
271      * will be bounded between minInt and maxInt.
272      *
273      * @return The highest-magnitude digit to be displayed.
274      */
275     int32_t getUpperDisplayMagnitude() const;
276 
277     /**
278      * Gets the smallest power of ten that needs to be displayed. The value returned by this function
279      * will be bounded between -minFrac and -maxFrac.
280      *
281      * @return The lowest-magnitude digit to be displayed.
282      */
283     int32_t getLowerDisplayMagnitude() const;
284 
285     int32_t fractionCount() const;
286 
287     int32_t fractionCountWithoutTrailingZeros() const;
288 
289     void clear();
290 
291     /** This method is for internal testing only. */
292     uint64_t getPositionFingerprint() const;
293 
294 //    /**
295 //     * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
296 //     * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
297 //     * happens.
298 //     *
299 //     * @param fp The {@link UFieldPosition} to populate.
300 //     */
301 //    void populateUFieldPosition(FieldPosition fp);
302 
303     /**
304      * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
305      *
306      * @return An error message if this instance is invalid, or null if this instance is healthy.
307      */
308     const char16_t* checkHealth() const;
309 
310     UnicodeString toString() const;
311 
312     /** Returns the string in standard exponential notation. */
313     UnicodeString toScientificString() const;
314 
315     /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
316     UnicodeString toPlainString() const;
317 
318     /** Visible for testing */
isUsingBytes()319     inline bool isUsingBytes() { return usingBytes; }
320 
321     /** Visible for testing */
isExplicitExactDouble()322     inline bool isExplicitExactDouble() { return explicitExactDouble; }
323 
324     bool operator==(const DecimalQuantity& other) const;
325 
326     inline bool operator!=(const DecimalQuantity& other) const {
327         return !(*this == other);
328     }
329 
330     /**
331      * Bogus flag for when a DecimalQuantity is stored on the stack.
332      */
333     bool bogus = false;
334 
335   private:
336     /**
337      * The power of ten corresponding to the least significant digit in the BCD. For example, if this
338      * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
339      *
340      * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
341      * digits after the decimal place, which is the negative of our definition of scale.
342      */
343     int32_t scale;
344 
345     /**
346      * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
347      * maximum precision is 16 since a long can hold only 16 digits.
348      *
349      * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
350      * #computePrecisionAndCompact()}.
351      */
352     int32_t precision;
353 
354     /**
355      * A bitmask of properties relating to the number represented by this object.
356      *
357      * @see #NEGATIVE_FLAG
358      * @see #INFINITY_FLAG
359      * @see #NAN_FLAG
360      */
361     int8_t flags;
362 
363     // The following three fields relate to the double-to-ascii fast path algorithm.
364     // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
365     // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
366     // of rounding the number ensures that the converted digits are correct, falling back to a slow-
367     // path algorithm if required.  Therefore, if a DecimalQuantity is constructed from a double, it
368     // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
369     // you don't round, assertions will fail in certain other methods if you try calling them.
370 
371     /**
372      * Whether the value in the BCD comes from the double fast path without having been rounded to
373      * ensure correctness
374      */
375     UBool isApproximate;
376 
377     /**
378      * The original number provided by the user and which is represented in BCD. Used when we need to
379      * re-compute the BCD for an exact double representation.
380      */
381     double origDouble;
382 
383     /**
384      * The change in magnitude relative to the original double. Used when we need to re-compute the
385      * BCD for an exact double representation.
386      */
387     int32_t origDelta;
388 
389     // Positions to keep track of leading and trailing zeros.
390     // lReqPos is the magnitude of the first required leading zero.
391     // rReqPos is the magnitude of the last required trailing zero.
392     int32_t lReqPos = 0;
393     int32_t rReqPos = 0;
394 
395     // The value of the (suppressed) exponent after the number has been put into
396     // a notation with exponents (ex: compact, scientific).
397     int32_t exponent = 0;
398 
399     /**
400      * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
401      * to one digit. For example, the number "12345" in BCD is "0x12345".
402      *
403      * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
404      * like setting the digit to zero.
405      */
406     union {
407         struct {
408             int8_t *ptr;
409             int32_t len;
410         } bcdBytes;
411         uint64_t bcdLong;
412     } fBCD;
413 
414     bool usingBytes = false;
415 
416     /**
417      * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
418      * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
419      * Used for testing.
420      */
421     bool explicitExactDouble = false;
422 
423     void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
424 
425     /**
426      * Returns a single digit from the BCD list. No internal state is changed by calling this method.
427      *
428      * @param position The position of the digit to pop, counted in BCD units from the least
429      *     significant digit. If outside the range supported by the implementation, zero is returned.
430      * @return The digit at the specified location.
431      */
432     int8_t getDigitPos(int32_t position) const;
433 
434     /**
435      * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
436      * responsibility to call {@link #compact} after setting the digit, and to ensure
437      * that the precision field is updated to reflect the correct number of digits if a
438      * nonzero digit is added to the decimal.
439      *
440      * @param position The position of the digit to pop, counted in BCD units from the least
441      *     significant digit. If outside the range supported by the implementation, an AssertionError
442      *     is thrown.
443      * @param value The digit to set at the specified location.
444      */
445     void setDigitPos(int32_t position, int8_t value);
446 
447     /**
448      * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
449      * the caller's responsibility to do further manipulation and then call {@link #compact}.
450      *
451      * @param numDigits The number of zeros to add.
452      */
453     void shiftLeft(int32_t numDigits);
454 
455     /**
456      * Directly removes digits from the end of the BCD list.
457      * Updates the scale and precision.
458      *
459      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
460      */
461     void shiftRight(int32_t numDigits);
462 
463     /**
464      * Directly removes digits from the front of the BCD list.
465      * Updates precision.
466      *
467      * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
468      */
469     void popFromLeft(int32_t numDigits);
470 
471     /**
472      * Sets the internal representation to zero. Clears any values stored in scale, precision,
473      * hasDouble, origDouble, origDelta, exponent, and BCD data.
474      */
475     void setBcdToZero();
476 
477     /**
478      * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
479      * be either positive. The internal state is guaranteed to be empty when this method is called.
480      *
481      * @param n The value to consume.
482      */
483     void readIntToBcd(int32_t n);
484 
485     /**
486      * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
487      * be either positive. The internal state is guaranteed to be empty when this method is called.
488      *
489      * @param n The value to consume.
490      */
491     void readLongToBcd(int64_t n);
492 
493     void readDecNumberToBcd(const DecNum& dn);
494 
495     void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
496 
497     void copyFieldsFrom(const DecimalQuantity& other);
498 
499     void copyBcdFrom(const DecimalQuantity &other);
500 
501     void moveBcdFrom(DecimalQuantity& src);
502 
503     /**
504      * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
505      * precision. The precision is the number of digits in the number up through the greatest nonzero
506      * digit.
507      *
508      * <p>This method must always be called when bcd changes in order for assumptions to be correct in
509      * methods like {@link #fractionCount()}.
510      */
511     void compact();
512 
513     void _setToInt(int32_t n);
514 
515     void _setToLong(int64_t n);
516 
517     void _setToDoubleFast(double n);
518 
519     void _setToDecNum(const DecNum& dn, UErrorCode& status);
520 
521     void convertToAccurateDouble();
522 
523     /** Ensure that a byte array of at least 40 digits is allocated. */
524     void ensureCapacity();
525 
526     void ensureCapacity(int32_t capacity);
527 
528     /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
529     void switchStorage();
530 };
531 
532 } // namespace impl
533 } // namespace number
534 U_NAMESPACE_END
535 
536 
537 #endif //__NUMBER_DECIMALQUANTITY_H__
538 
539 #endif /* #if !UCONFIG_NO_FORMATTING */
540