• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#! /usr/bin/env perl
2# Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16
17# At some point it became apparent that the original SSLeay RC4
18# assembler implementation performs suboptimally on latest IA-32
19# microarchitectures. After re-tuning performance has changed as
20# following:
21#
22# Pentium	-10%
23# Pentium III	+12%
24# AMD		+50%(*)
25# P4		+250%(**)
26#
27# (*)	This number is actually a trade-off:-) It's possible to
28#	achieve	+72%, but at the cost of -48% off PIII performance.
29#	In other words code performing further 13% faster on AMD
30#	would perform almost 2 times slower on Intel PIII...
31#	For reference! This code delivers ~80% of rc4-amd64.pl
32#	performance on the same Opteron machine.
33# (**)	This number requires compressed key schedule set up by
34#	RC4_set_key [see commentary below for further details].
35
36# May 2011
37#
38# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
39# performance in cycles per processed byte (less is better) and
40# improvement relative to previous version of this module is:
41#
42# Pentium	10.2			# original numbers
43# Pentium III	7.8(*)
44# Intel P4	7.5
45#
46# Opteron	6.1/+20%		# new MMX numbers
47# Core2		5.3/+67%(**)
48# Westmere	5.1/+94%(**)
49# Sandy Bridge	5.0/+8%
50# Atom		12.6/+6%
51# VIA Nano	6.4/+9%
52# Ivy Bridge	4.9/±0%
53# Bulldozer	4.9/+15%
54#
55# (*)	PIII can actually deliver 6.6 cycles per byte with MMX code,
56#	but this specific code performs poorly on Core2. And vice
57#	versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
58#	poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
59#	[anymore], I chose to discard PIII-specific code path and opt
60#	for original IALU-only code, which is why MMX/SSE code path
61#	is guarded by SSE2 bit (see below), not MMX/SSE.
62# (**)	Performance vs. block size on Core2 and Westmere had a maximum
63#	at ... 64 bytes block size. And it was quite a maximum, 40-60%
64#	in comparison to largest 8KB block size. Above improvement
65#	coefficients are for the largest block size.
66
67$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
68push(@INC,"${dir}","${dir}../../perlasm");
69require "x86asm.pl";
70
71$output=pop;
72open STDOUT,">$output";
73
74&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
75
76$xx="eax";
77$yy="ebx";
78$tx="ecx";
79$ty="edx";
80$inp="esi";
81$out="ebp";
82$dat="edi";
83
84sub RC4_loop {
85  my $i=shift;
86  my $func = ($i==0)?*mov:*or;
87
88	&add	(&LB($yy),&LB($tx));
89	&mov	($ty,&DWP(0,$dat,$yy,4));
90	&mov	(&DWP(0,$dat,$yy,4),$tx);
91	&mov	(&DWP(0,$dat,$xx,4),$ty);
92	&add	($ty,$tx);
93	&inc	(&LB($xx));
94	&and	($ty,0xff);
95	&ror	($out,8)	if ($i!=0);
96	if ($i<3) {
97	  &mov	($tx,&DWP(0,$dat,$xx,4));
98	} else {
99	  &mov	($tx,&wparam(3));	# reload [re-biased] out
100	}
101	&$func	($out,&DWP(0,$dat,$ty,4));
102}
103
104if ($alt=0) {
105  # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
106  # but ~40% slower on Core2 and Westmere... Attempt to add movz
107  # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
108  # on Core2 with movz it's almost 20% slower than below alternative
109  # code... Yes, it's a total mess...
110  my @XX=($xx,$out);
111  $RC4_loop_mmx = sub {		# SSE actually...
112    my $i=shift;
113    my $j=$i<=0?0:$i>>1;
114    my $mm=$i<=0?"mm0":"mm".($i&1);
115
116	&add	(&LB($yy),&LB($tx));
117	&lea	(@XX[1],&DWP(1,@XX[0]));
118	&pxor	("mm2","mm0")				if ($i==0);
119	&psllq	("mm1",8)				if ($i==0);
120	&and	(@XX[1],0xff);
121	&pxor	("mm0","mm0")				if ($i<=0);
122	&mov	($ty,&DWP(0,$dat,$yy,4));
123	&mov	(&DWP(0,$dat,$yy,4),$tx);
124	&pxor	("mm1","mm2")				if ($i==0);
125	&mov	(&DWP(0,$dat,$XX[0],4),$ty);
126	&add	(&LB($ty),&LB($tx));
127	&movd	(@XX[0],"mm7")				if ($i==0);
128	&mov	($tx,&DWP(0,$dat,@XX[1],4));
129	&pxor	("mm1","mm1")				if ($i==1);
130	&movq	("mm2",&QWP(0,$inp))			if ($i==1);
131	&movq	(&QWP(-8,(@XX[0],$inp)),"mm1")		if ($i==0);
132	&pinsrw	($mm,&DWP(0,$dat,$ty,4),$j);
133
134	push	(@XX,shift(@XX))			if ($i>=0);
135  }
136} else {
137  # Using pinsrw here improves performance on Intel CPUs by 2-3%, but
138  # brings down AMD by 7%...
139  $RC4_loop_mmx = sub {
140    my $i=shift;
141
142	&add	(&LB($yy),&LB($tx));
143	&psllq	("mm1",8*(($i-1)&7))			if (abs($i)!=1);
144	&mov	($ty,&DWP(0,$dat,$yy,4));
145	&mov	(&DWP(0,$dat,$yy,4),$tx);
146	&mov	(&DWP(0,$dat,$xx,4),$ty);
147	&inc	($xx);
148	&add	($ty,$tx);
149	&movz	($xx,&LB($xx));				# (*)
150	&movz	($ty,&LB($ty));				# (*)
151	&pxor	("mm2",$i==1?"mm0":"mm1")		if ($i>=0);
152	&movq	("mm0",&QWP(0,$inp))			if ($i<=0);
153	&movq	(&QWP(-8,($out,$inp)),"mm2")		if ($i==0);
154	&mov	($tx,&DWP(0,$dat,$xx,4));
155	&movd	($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
156
157	# (*)	This is the key to Core2 and Westmere performance.
158	#	Without movz out-of-order execution logic confuses
159	#	itself and fails to reorder loads and stores. Problem
160	#	appears to be fixed in Sandy Bridge...
161  }
162}
163
164&external_label("OPENSSL_ia32cap_P");
165
166# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
167&function_begin("RC4");
168	&mov	($dat,&wparam(0));	# load key schedule pointer
169	&mov	($ty, &wparam(1));	# load len
170	&mov	($inp,&wparam(2));	# load inp
171	&mov	($out,&wparam(3));	# load out
172
173	&xor	($xx,$xx);		# avoid partial register stalls
174	&xor	($yy,$yy);
175
176	&cmp	($ty,0);		# safety net
177	&je	(&label("abort"));
178
179	&mov	(&LB($xx),&BP(0,$dat));	# load key->x
180	&mov	(&LB($yy),&BP(4,$dat));	# load key->y
181	&add	($dat,8);
182
183	&lea	($tx,&DWP(0,$inp,$ty));
184	&sub	($out,$inp);		# re-bias out
185	&mov	(&wparam(1),$tx);	# save input+len
186
187	&inc	(&LB($xx));
188
189	# detect compressed key schedule...
190	&cmp	(&DWP(256,$dat),-1);
191	&je	(&label("RC4_CHAR"));
192
193	&mov	($tx,&DWP(0,$dat,$xx,4));
194
195	&and	($ty,-4);		# how many 4-byte chunks?
196	&jz	(&label("loop1"));
197
198	&mov	(&wparam(3),$out);	# $out as accumulator in these loops
199					if ($x86only) {
200	&jmp	(&label("go4loop4"));
201					} else {
202	&test	($ty,-8);
203	&jz	(&label("go4loop4"));
204
205	&picmeup($out,"OPENSSL_ia32cap_P");
206	&bt	(&DWP(0,$out),26);	# check SSE2 bit [could have been MMX]
207	&jnc	(&label("go4loop4"));
208
209	&mov	($out,&wparam(3))	if (!$alt);
210	&movd	("mm7",&wparam(3))	if ($alt);
211	&and	($ty,-8);
212	&lea	($ty,&DWP(-8,$inp,$ty));
213	&mov	(&DWP(-4,$dat),$ty);	# save input+(len/8)*8-8
214
215	&$RC4_loop_mmx(-1);
216	&jmp(&label("loop_mmx_enter"));
217
218	&set_label("loop_mmx",16);
219		&$RC4_loop_mmx(0);
220	&set_label("loop_mmx_enter");
221		for 	($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
222		&mov	($ty,$yy);
223		&xor	($yy,$yy);		# this is second key to Core2
224		&mov	(&LB($yy),&LB($ty));	# and Westmere performance...
225		&cmp	($inp,&DWP(-4,$dat));
226		&lea	($inp,&DWP(8,$inp));
227	&jb	(&label("loop_mmx"));
228
229    if ($alt) {
230	&movd	($out,"mm7");
231	&pxor	("mm2","mm0");
232	&psllq	("mm1",8);
233	&pxor	("mm1","mm2");
234	&movq	(&QWP(-8,$out,$inp),"mm1");
235    } else {
236	&psllq	("mm1",56);
237	&pxor	("mm2","mm1");
238	&movq	(&QWP(-8,$out,$inp),"mm2");
239    }
240	&emms	();
241
242	&cmp	($inp,&wparam(1));	# compare to input+len
243	&je	(&label("done"));
244	&jmp	(&label("loop1"));
245					}
246
247&set_label("go4loop4",16);
248	&lea	($ty,&DWP(-4,$inp,$ty));
249	&mov	(&wparam(2),$ty);	# save input+(len/4)*4-4
250
251	&set_label("loop4");
252		for ($i=0;$i<4;$i++) { RC4_loop($i); }
253		&ror	($out,8);
254		&xor	($out,&DWP(0,$inp));
255		&cmp	($inp,&wparam(2));	# compare to input+(len/4)*4-4
256		&mov	(&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
257		&lea	($inp,&DWP(4,$inp));
258		&mov	($tx,&DWP(0,$dat,$xx,4));
259	&jb	(&label("loop4"));
260
261	&cmp	($inp,&wparam(1));	# compare to input+len
262	&je	(&label("done"));
263	&mov	($out,&wparam(3));	# restore $out
264
265	&set_label("loop1",16);
266		&add	(&LB($yy),&LB($tx));
267		&mov	($ty,&DWP(0,$dat,$yy,4));
268		&mov	(&DWP(0,$dat,$yy,4),$tx);
269		&mov	(&DWP(0,$dat,$xx,4),$ty);
270		&add	($ty,$tx);
271		&inc	(&LB($xx));
272		&and	($ty,0xff);
273		&mov	($ty,&DWP(0,$dat,$ty,4));
274		&xor	(&LB($ty),&BP(0,$inp));
275		&lea	($inp,&DWP(1,$inp));
276		&mov	($tx,&DWP(0,$dat,$xx,4));
277		&cmp	($inp,&wparam(1));	# compare to input+len
278		&mov	(&BP(-1,$out,$inp),&LB($ty));
279	&jb	(&label("loop1"));
280
281	&jmp	(&label("done"));
282
283# this is essentially Intel P4 specific codepath...
284&set_label("RC4_CHAR",16);
285	&movz	($tx,&BP(0,$dat,$xx));
286	# strangely enough unrolled loop performs over 20% slower...
287	&set_label("cloop1");
288		&add	(&LB($yy),&LB($tx));
289		&movz	($ty,&BP(0,$dat,$yy));
290		&mov	(&BP(0,$dat,$yy),&LB($tx));
291		&mov	(&BP(0,$dat,$xx),&LB($ty));
292		&add	(&LB($ty),&LB($tx));
293		&movz	($ty,&BP(0,$dat,$ty));
294		&add	(&LB($xx),1);
295		&xor	(&LB($ty),&BP(0,$inp));
296		&lea	($inp,&DWP(1,$inp));
297		&movz	($tx,&BP(0,$dat,$xx));
298		&cmp	($inp,&wparam(1));
299		&mov	(&BP(-1,$out,$inp),&LB($ty));
300	&jb	(&label("cloop1"));
301
302&set_label("done");
303	&dec	(&LB($xx));
304	&mov	(&DWP(-4,$dat),$yy);		# save key->y
305	&mov	(&BP(-8,$dat),&LB($xx));	# save key->x
306&set_label("abort");
307&function_end("RC4");
308
309########################################################################
310
311$inp="esi";
312$out="edi";
313$idi="ebp";
314$ido="ecx";
315$idx="edx";
316
317# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
318&function_begin("RC4_set_key");
319	&mov	($out,&wparam(0));		# load key
320	&mov	($idi,&wparam(1));		# load len
321	&mov	($inp,&wparam(2));		# load data
322	&picmeup($idx,"OPENSSL_ia32cap_P");
323
324	&lea	($out,&DWP(2*4,$out));		# &key->data
325	&lea	($inp,&DWP(0,$inp,$idi));	# $inp to point at the end
326	&neg	($idi);
327	&xor	("eax","eax");
328	&mov	(&DWP(-4,$out),$idi);		# borrow key->y
329
330	&bt	(&DWP(0,$idx),20);		# check for bit#20
331	&jc	(&label("c1stloop"));
332
333&set_label("w1stloop",16);
334	&mov	(&DWP(0,$out,"eax",4),"eax");	# key->data[i]=i;
335	&add	(&LB("eax"),1);			# i++;
336	&jnc	(&label("w1stloop"));
337
338	&xor	($ido,$ido);
339	&xor	($idx,$idx);
340
341&set_label("w2ndloop",16);
342	&mov	("eax",&DWP(0,$out,$ido,4));
343	&add	(&LB($idx),&BP(0,$inp,$idi));
344	&add	(&LB($idx),&LB("eax"));
345	&add	($idi,1);
346	&mov	("ebx",&DWP(0,$out,$idx,4));
347	&jnz	(&label("wnowrap"));
348	  &mov	($idi,&DWP(-4,$out));
349	&set_label("wnowrap");
350	&mov	(&DWP(0,$out,$idx,4),"eax");
351	&mov	(&DWP(0,$out,$ido,4),"ebx");
352	&add	(&LB($ido),1);
353	&jnc	(&label("w2ndloop"));
354&jmp	(&label("exit"));
355
356# Unlike all other x86 [and x86_64] implementations, Intel P4 core
357# [including EM64T] was found to perform poorly with above "32-bit" key
358# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
359# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
360# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
361# schedule for x86[_64], because non-P4 implementations suffer from
362# significant performance losses then, e.g. PIII exhibits >2x
363# deterioration, and so does Opteron. In order to assure optimal
364# all-round performance, we detect P4 at run-time and set up compressed
365# key schedule, which is recognized by RC4 procedure.
366
367&set_label("c1stloop",16);
368	&mov	(&BP(0,$out,"eax"),&LB("eax"));	# key->data[i]=i;
369	&add	(&LB("eax"),1);			# i++;
370	&jnc	(&label("c1stloop"));
371
372	&xor	($ido,$ido);
373	&xor	($idx,$idx);
374	&xor	("ebx","ebx");
375
376&set_label("c2ndloop",16);
377	&mov	(&LB("eax"),&BP(0,$out,$ido));
378	&add	(&LB($idx),&BP(0,$inp,$idi));
379	&add	(&LB($idx),&LB("eax"));
380	&add	($idi,1);
381	&mov	(&LB("ebx"),&BP(0,$out,$idx));
382	&jnz	(&label("cnowrap"));
383	  &mov	($idi,&DWP(-4,$out));
384	&set_label("cnowrap");
385	&mov	(&BP(0,$out,$idx),&LB("eax"));
386	&mov	(&BP(0,$out,$ido),&LB("ebx"));
387	&add	(&LB($ido),1);
388	&jnc	(&label("c2ndloop"));
389
390	&mov	(&DWP(256,$out),-1);		# mark schedule as compressed
391
392&set_label("exit");
393	&xor	("eax","eax");
394	&mov	(&DWP(-8,$out),"eax");		# key->x=0;
395	&mov	(&DWP(-4,$out),"eax");		# key->y=0;
396&function_end("RC4_set_key");
397
398# const char *RC4_options(void);
399&function_begin_B("RC4_options");
400	&call	(&label("pic_point"));
401&set_label("pic_point");
402	&blindpop("eax");
403	&lea	("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
404	&picmeup("edx","OPENSSL_ia32cap_P");
405	&mov	("edx",&DWP(0,"edx"));
406	&bt	("edx",20);
407	&jc	(&label("1xchar"));
408	&bt	("edx",26);
409	&jnc	(&label("ret"));
410	&add	("eax",25);
411	&ret	();
412&set_label("1xchar");
413	&add	("eax",12);
414&set_label("ret");
415	&ret	();
416&set_label("opts",64);
417&asciz	("rc4(4x,int)");
418&asciz	("rc4(1x,char)");
419&asciz	("rc4(8x,mmx)");
420&asciz	("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
421&align	(64);
422&function_end_B("RC4_options");
423
424&asm_finish();
425
426close STDOUT or die "error closing STDOUT: $!";
427